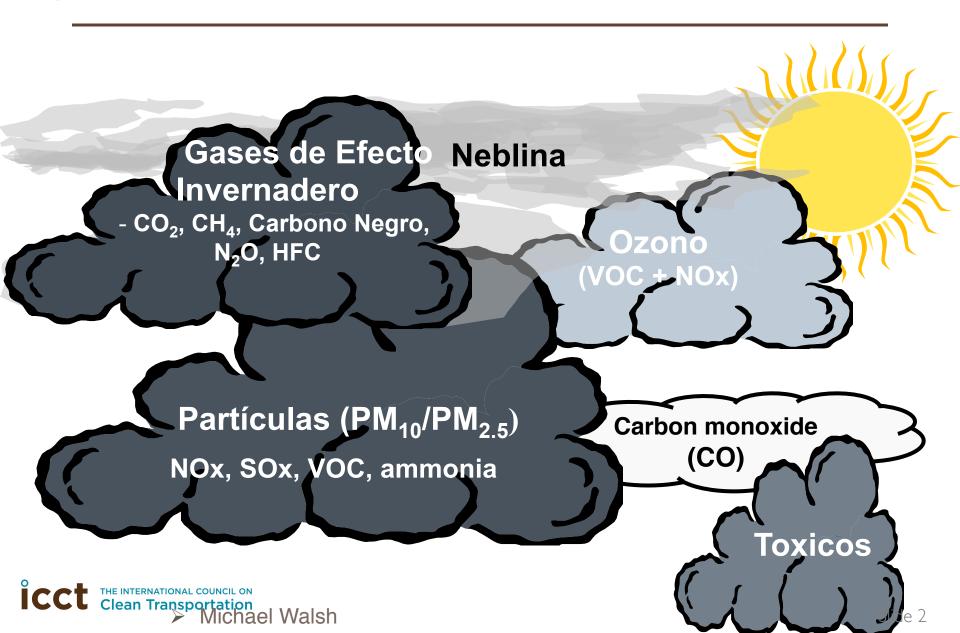
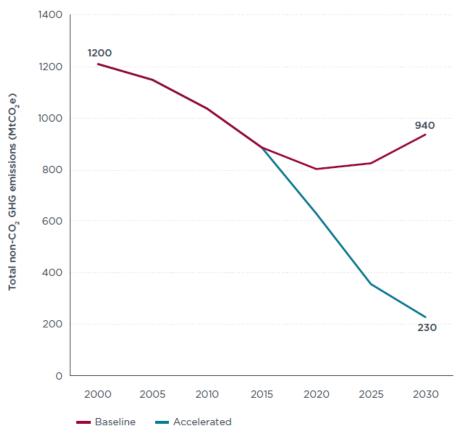
icct

THE INTERNATIONAL COUNCIL ON CLEAN TRANSPORTATION

International Energy Agency



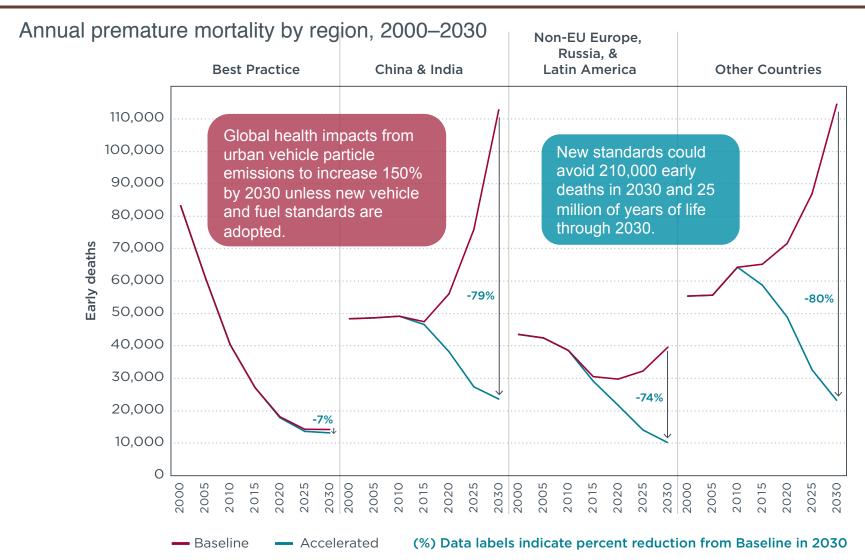
¿Cuáles son los contaminantes de interés?



Diesel exhaust harmful to health and climate

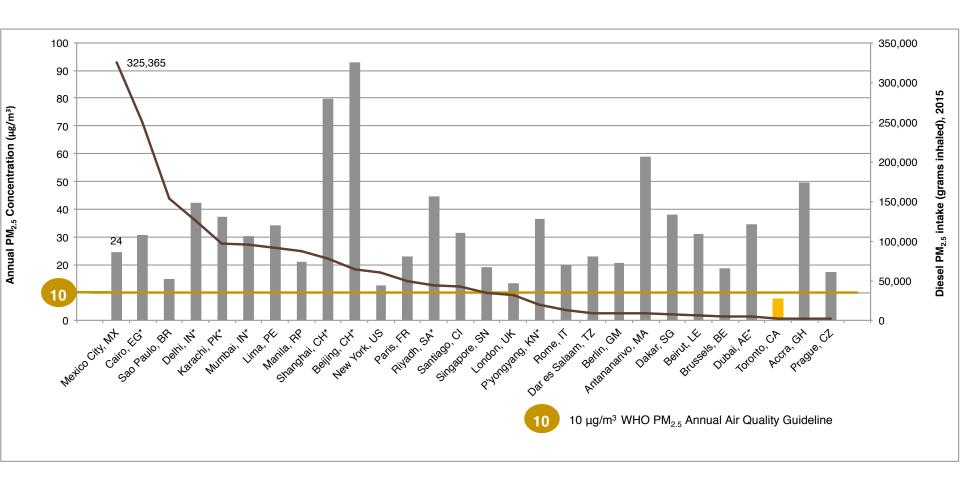
- Globally, diesel vehicles produce 90 percent of PM and 95 percent of BC emissions (ICCT Health Roadmap)
- One kg of black carbon causes as much climate impact in the near term as 3,200 kg of carbon dioxide (Forster, et al.)
- BC is the second largest contributor to climate warming from human activities (Bond, et al.)

Vehicle Non-CO₂ GHG emissions (2000-2030)

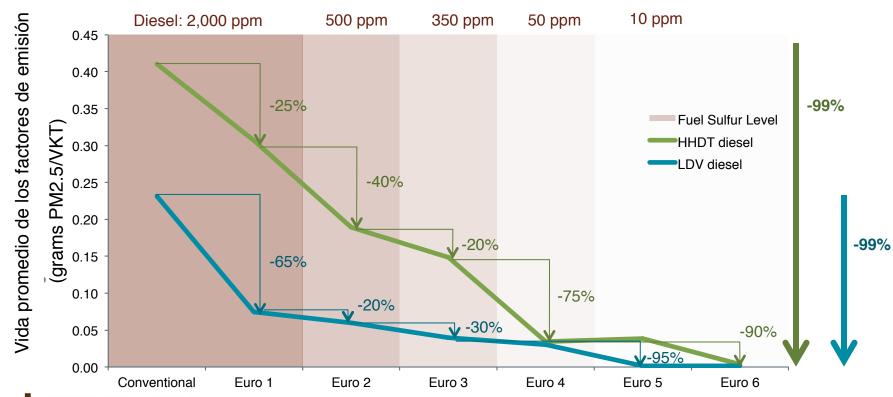


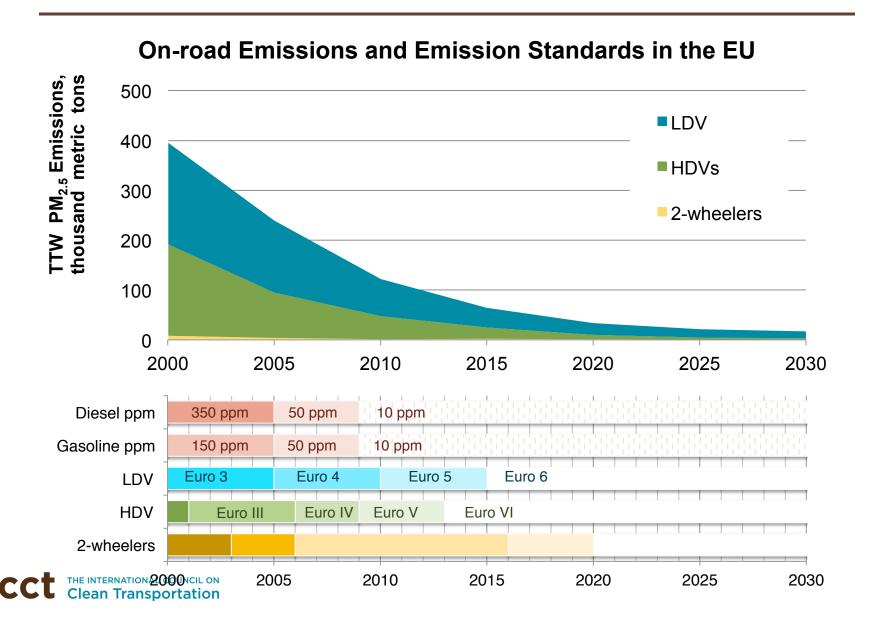
Calculated using GWP-20. Non-CO2 GHGs include BC, CH4, N2O, OC, SO2

theicct.org/global-health-roadmap

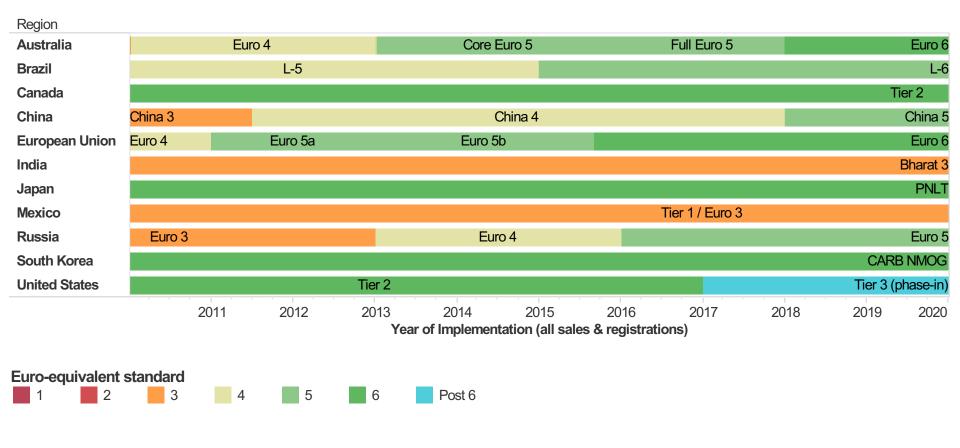


National vehicle emission control programs

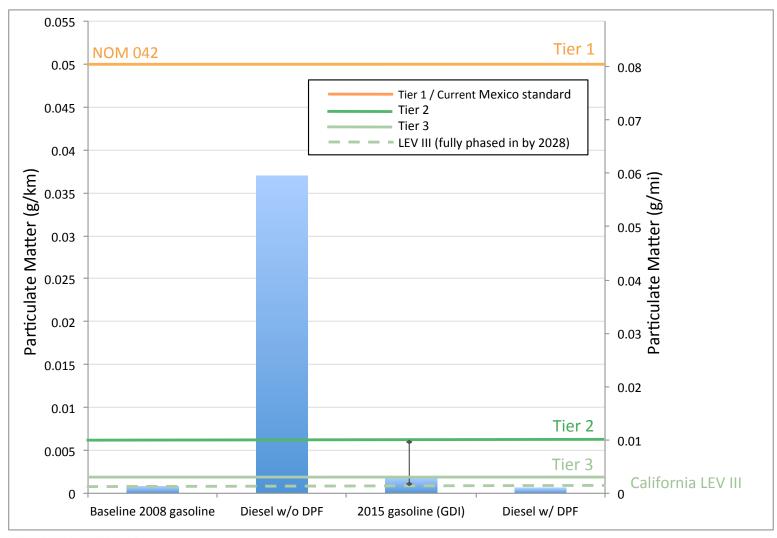

Exposure to Diesel Emissions Changes How We See Air Pollution in Large Cities



Los estándares de emisiones en los vehículos nuevos ofrecen un gran potencial de reducción


- Los programas europeos y estadounidenses son ejemplares en forzar la mejora tecnológica
- El estándar Euro sigue una tendencia como se muestra más abajo

Full Effects Take Time To Realize


Timeline for implementation of nationwide emissions standards for light-duty vehicles

Source: TransportPolicy.Net

PM standards for diesel passenger vehicles

Impact of fuel sulfur

- Diesel fuel quality
 - 15 ppm required for Tier 2 and beyond diesel vehicles.
 - Higher sulfur will increase emissions rapidly and could damage vehicle.
- Gasoline fuel quality
 - 30 average / 80 maximum for Tier 2
 - 10 average / 80 maximum for Tier 3
 - Sulfur locks up the precious metal sites on the catalyst, reducing catalyst efficiency. Important benefits from better catalysts even with higher sulfur fuels.
 - Impacts of higher sulfur fuels are completely reversible. Possible to phase in cleaner fuels and vehicles at the same time.

Fundamentals of controlling air pollutant emissions from motor vehicles

New vehicle standards

Must consider emissions from all mobile sources: on-road, offroad, marine, locomotives, aviation, construction...

Limit values only as good as:

- Compliance and enforcement
- Real-world performance

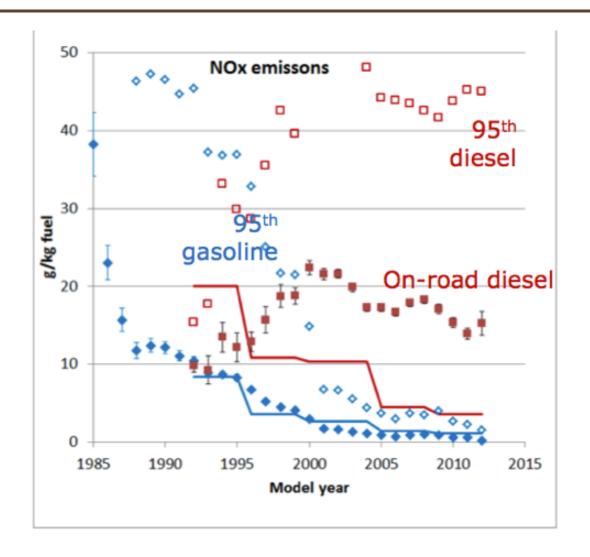
Fuel quality standards

High fuel quality (especially low sulfur levels) enables advanced emission control technologies to be deployed in the fleet.

Fuel quality compliance programs critical to prevent damage to engines and prevent misfueling

"Systems Approach"

In-use vehicle emission control


Measures include:

- Catching gross-emitters (I/M, remote sensing, maintenance)
- Cleaner fuels
- Fleet renewal
- Retrofit programs
- Complementary strategies (low emission zones, driver training, etc.)

Not shown but also important: transportation demand management, modal shift, traffic optimization, and more

Real-world emissions

Options to reduce transport emissions

Objective	Program	Form	PM	ВС	CO_2
New vehicles	Stringent standards	Mandatory; federal	•	~	
Existing vehicles	Lower sulfur fuels	Government implemented; generally federal	~		
	Retrofits for PM and NOx control	Generally voluntary; local; fiscal incentives	•	•	
	Transporte Limpio/ SmartWay	Generally voluntary; federal and local collaboration; fiscal incentives	•	✓	✓
	Accelerated fleet renovation/Scrappage	Voluntary or mandatory; local or federal; fiscal incentives	•	•	
	I/M, remote sensing, spotter programs	Mandatory; generally local	•	✓	•
Complementary measures	Low Emission Zones	Mandatory; local	•	•	
	Anti-idling restrictions	Mandatory; local	•	~	•
	Driver training program	Voluntary; local			•
Demand and mode shifting	Congestion relief measures	Range from mandatory to voluntary to government-implemented; local	~	✓	•
	Improve non-motorized & public transit options	Government-implemented; local	•	✓	~
THE INTERNATIONAL CO	ounParking programs	Mandatory or fee-based; local			✓

¡Gracias!

Kate Blumberg
Senior Fellow
ICCT
kate@theicct.org
+1-415-640-6352

NOM-042 vigente (opciones de EPA y Euro)

Standard Class		со	NMHC	NO _x		PM	
Stanuaru	Class	All	All	Gasoline	Diesel	Diesel	
	PC	Tier 1	Tier 1	Tier 1	Tier 1	Tier 1	
	CL1						
	CL2					Tier 1 (100k) ^a	
	CL3						
	CL4		Tier 1 (100k) ^a		Tier 1 (100k) ^a		
	PC	Tier 2 Bin 5–10 ^b	Tier 2 Temporary Bin 10 ^b	Tier 2 Temporary Bin 10 ^b		Tier 1	
	CL1						
	CL2					Tier 1 (100k) ^a	
	CL3	Tion 2 Tomporon, Bin 10b	Ti 2 T				
C	CL4	Tier 2 Temporary Bin 10 ^b	Tier 2 Temporary Bin 10 ^b				
	PC		Tier 2 Bin 5-7	Tier 2 Bin 7		Tier 1	
	CL1					Heri	
	CL2	Tier 2 Bin 5-8					
	CL3		Tier 2 Bin 8	Tier 2 Temporary Bin 9 ^b		Tier 1 (100k) ^a	
	CL4		HEI Z BIII O				

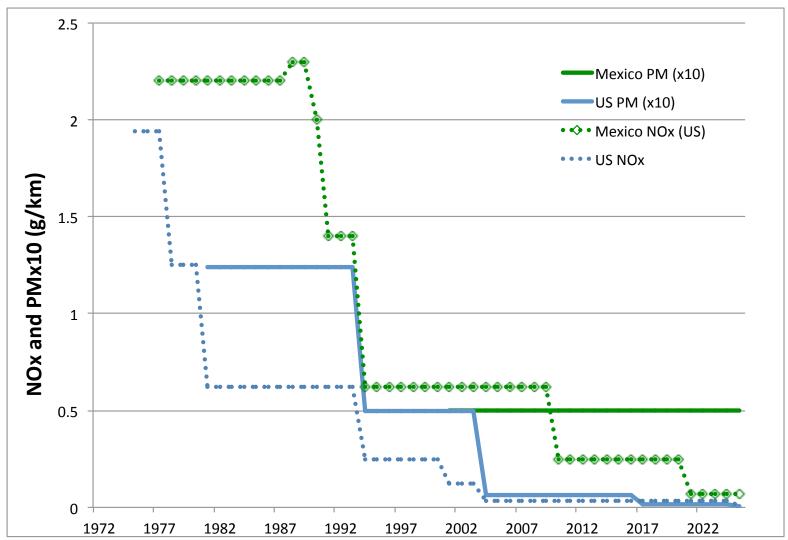
^a Tier 1 (100k) indicate values are taken from the higher emissions limits required in the US after 100,000 miles of use, but applied here after only 50,000 miles of vehicle use. As a result, these limits are less stringent than the US Tier 1 standard on which they are based.

^b Bins 9 and above are temporary bins that are no longer allowed under the US Tier 2 regulation.

Standard Class	Class	СО		NMHC		NO _x		PM
	Gasoline, LPG, NG	Diesel	Gasoline, LPG, NG	Diesel	Gasoline, LPG, NG	Diesel	Diesel	
В	PC, CL1, CL2, CL3	Euro 3ª	Euro 3	Euro 3ª	Euro 3	Euro 3ª	Euro 3	Euro 3
С	PC, CL1, CL2, CL3	Euro 4	Euro 4	Euro 4	Euro 4	Euro 4	Euro 4	Euro 4

NOM 042 vigente, línea de tiempo

Phase-In Schedule of Light-Duty Vehicles Meeting B Standards


Standard	2007	2008	2009	2010
Α	75%	50%	30%	0%
В	25%	50%	70%	100%

Phase-In Schedule of Light-Duty Vehicles Meeting C Standards

Standard	Year 1	Year 2	Year 3	Year 4
A+B	75%	50%	30%	0%
С	25%	50%	70%	100%

US and Mexico standards for NOx and PM

