Light-Duty Vehicle Emission Control Technologies

Mexico City Workshop July 2014

Dr. Joe Kubsh Manufacturers of Emission Controls Association www.meca.org

MECA - Industry Technology Voice with ARB, EPA, Environment Canada other Stakeholders; 41 Member Companies Cover Major OEM & Aftermarket Emission Control Manufacturers

manufacturing facilities also in Mexico

purge valves; low permeation materials)

Light-duty Vehicle Emission Control Technologies

- Gasoline Vehicle Technologies for Tier 2/Tier 3 & LEV II/LEV III
- Light-duty Diesel Emission Control Technologies

Mobile Source Emissions Regulations Drive Technology Innovation

- Light-duty: U.S. Tier 2/LEV II moving to Tier 3/LEV III
 - <u>Near Zero</u> gasoline exhaust emissions: advanced TWCs, HC adsorber cats, high cell density substrates, direct ozone reduction catalysts
 - <u>Near Zero</u> gasoline evap. emissions: advanced carbon canisters, low permeation materials, air intake adsorbents
 - <u>Near Zero</u> diesel exhaust emissions: EGR, DPFs, lean NOx catalysts, SCR
- U.S. 2007-2010 Heavy-Duty Highway Diesel
 DPFs, SCR, EGR
- U.S. Tier 4 Off-Road Diesel
 - DPFs, SCR, EGR

LEV III/Tier 3 Applications Continue to Emphasize Cold-Start & High Speed NOx Performance

The Three-way Catalytic Converter: A Familiar Technology Re-Engineered for High Performance

 Provides high efficiency "three-way (HC, CO, NOx)" performance

- Layered catalytic architectures to maximize noble metal (Pt, Pd, Rh) effectiveness
- Advanced materials with high thermal stability

 High cell density ceramic or metallic substrates

Gasoline Three-way Catalysts Utilize Advanced Design Strategies to Maximize Performance

Pd is zoned in the front to give fast HC light-off

Rh is zoned in the back to protect against catalyst poisons

Zoned OSC to give optimum performance

Toyota, SAE 2011-01-0296

Thermal Management Focused on Cold-Start Emission Reductions

PZEV Experience With Turbo-GDI Application

Source: 2007 Aachen Colloquium

Variety of PZEV Strategies in the U.S. Market

Vehicle	А	В	С	D	E
Engine Displacement	2.0	2.4	2.0	2.4	2.4
PFI or DI	DI	PFI	PFI	DI	PFI
NA or Turbo	Turbo	NA	NA	NA	NA
AIR or non-AIR	AIR	AIR	non-AIR	non-AIR	AIR
Average Ignition					
Setting ([°] btc)	-20	0	-7	-12	-5
Engine Speed (rpm)	1150	1200	1500-1700	1200-1500	900-1200
Lambda	1.05 (AIR)	>>1 (AIR)	.95-1	.95-1	>>1 (AIR)
Max Cat Temp (^o C)	670	1000	500	700	950

Vehicle	Positives	Negatives
А	PZEV turbo, low startup engine speed, more accurate fuel control	High system cost/complexity
В	Extremely fast catalyst light-off, low startup engine speed, less calibration time	Cost of AIR, excess fuel used in start-up
С	Lowest system cost	High engine speed in first idle
D	Split injections enable fast lightoff w/o AIR	Additional calibration effort
E	Extremely fast catalyst light-off, low startup engine speed, less calibration time	Cost of AIR, excess fuel used in start-up

Gasoline Sulfur Degrades Catalyst Performance: Example Chevy Malibu PZEV Application

2.4 liter, 4 cyl.: CC+UF TWCs Ref.: SAE 2011-01-0300

UF never above
600 C with FTP;UF at 700-750 C
during US06;NO NOx "creep"NOx "creep"NO NOx "creep"with 3 ppm S

Additional Cold-Start HC Control Available From Hydrocarbon Traps

- Limited SULEV/PZEV HC trap applications to date
- Development work continuing with focus on durability/cost
- Example: HC trap PGM loading of only <u>26 g/ft³</u>
- Calibration support needed for O₂ during HC desorption – decel. fuel cut-off

Reference: SAE 2013-01-1297

U.S. Evaporative Emission Standards Provide Comprehensive VOC Controls for Gasoline Vehicles

Standard	US ≤ 1995 and Euro Evap. Stds.	US ≥ 1996-2004
ORVR		✓
24-hr Diurnal	✓	
48-hr Diurnal		1
72-hr Diurnal		1
Evap Standard = 2 g/day	\checkmark	
Evap Standard < 0.5-1.2 g/day		\checkmark
Hot Soak	✓	V
Running Loss		V
In-use standards and monitoring		√
OBD		\checkmark

Since 1996, the US progressively added ORVR, extended diurnals, short drive cycles, running loss, low certification and in-use emissions standards, and OBD to improve air quality.

CARBON TECHNOLOGIES TO ACHIEVE PZEV/LEV III EVAPORATIVE REQUIREMENTS

Gasoline Particulate Filters

GHG Compliance Creates Emission Control Opportunities

Engines and Transmissions

GPF Effective at Reducing Particle Emissions even at Cold Ambient Temperatures

FTP Particle Emissions in Bag 1 (Cold-start) and Bag 3 (Hot-start)

GPF Vehicle Durability Run Completed

2.0 L Audi TFSI CC TWC (stock) + UF TWC GPF

Stock Catalyst CC: TWC 1.24L 8

80g/ft³

Test Converter Layout CC TWC + UF converter CC: TWC 1.24L 64g/ft³ UF: GPF 1.68L 10g/ft³

CAPoC9, August 2012

Light-duty Diesel Emisson Control Technologies

First Wave LEV II/Tier 2 Light-Duty Clean Diesels FTP Emissions: 30 to 50 mg/mi NOx; 12 to 23 mg/mi NMHC

FTP-75 NMOG and NMHC at Full Usefull Life

FTP-75 NOx at Full Usefull Life

Current best in class: 50 mg/mi NMHC+NOx (compare to 30 mg/mi NMHC+NOx for Bin 2 or SULEV)

CARB certification data

Diesel Particulate Filters (DPFs) Provide High PM/PN Removal Efficiency

 Wall flow ceramic filter element with high capture efficiency for particulates over a broad size range (cordierite or SiC filter elements)

 Captured soot needs to be burned off (regenerated) at regular intervals to manage backpressure on engine

 Commercialized on light-duty diesels in Europe in 2000, on US LDD starting in 2006; standard on US 2007+ trucks/buses, on 2013+ Euro VI trucks/buses – 10s of millions in-use worldwide

 Capture soot and inorganic-based particles associated with engine wear, lubricant consumption: regular maintenance required (filter cleaning)

DPF Optimization Focused on Backpressure and Cold Start

- DPF designs with higher porosity, smaller, uniform sized pores
- Reduces backpressure
- Facilitates SCR catalyst coating on DPF
- Earlier ammonia injection and light-off

Diesel Engines Continue to Evolve Systems that Contribute to Lower Engine-out Emissions and Improved Efficiency

SCR Applications Moving from Stationary to Mobile Sources: Urea Infrastructure Expanding

SCR Catalysts Continue to Improve

V-SCR with Excellent Durability

Cu-SCR Demonstrate Better Low Temperature Conversion

2012 SAE HDD Symposium

Combined NOx Adsorber/SCR for Low Temperature NOx

JM SAE HDD Symp. 9/12

Cummins, DEER Conf. 10/11

• Passive NOx adsorber (PNA) begins to capture NOx below 150°C

NOx release can be matched to SCR NOx conversion profile

Substrates Optimized for SCR

SCR Catalysts Are Being Integrated with DPFs to Improve Cold-start NOx Performance: VW New 2.0 liter TDI

Clean Diesel Vehicles Include Sophisticated Sensors and Diagnostics

Combined O₂/NOx Sensor

Ammonia Sensor

Urea Quality Sensor

Urea solution tank level indicator SCR system trouble warning Urea solution discrimination warning

Diagnostic Systems

Soot Sensor

Heated Urea Tanks

Summary

- U.S. Light-duty Emission Standards Are the World's Benchmark – Drive Emission Control Technology Innovation
- Developing World Quickly Moving to Catch-up on Clean Vehicle Technologies but Introduction of Clean Fuels Will Dictate the Pace of Change
- Future Powertrains Will Need to Compete on Both Emissions and Climate Change Performance
- Health Impacts of Ozone, PM, Climate Change Will Continue to Drive Regulatory Groups to Revisit the Need to Achieve Even More Emission Reductions from Mobile Sources

www.meca.org – <u>Newly redesigned</u> Your emission control technology resources on the web

- Emission control technology white papers and fact sheets
- Public testimony
- Regulatory information

- Retrofit technology descriptions
- Contacts for retrofit suppliers
- Case study reports

Back-up Slides

LEV III/Tier 3 Resets the Emissions Performance Bar for Light-duty Vehicles – Drives Innovation

Combined NMOG+NOx Standard Provides Additional Flexibility

PZEV Vehicle Evaluations

- 4/5 vehicles struggle with the 10 mg NMOG standard
- Vehicle A(4K) is most comfortable
- SULEV20
 - 3 of the 5 vehicles get relief from the 10 mg NMOG standard
- SULEV30
 - No problem with current 4 cylinder PZEV vehicles
 - Opportunities to thrift catalysts

Ref. : SAE 2012-01-12451245

1/10 SULEV Achieved on Gasoline Vehicle with Advanced Engine and Emission Controls

Source: SAE 2009-01-1076

HEV and PHEV Vehicles Require Unique Catalyst Systems

- Emission peaks during engine restart
- Cool-down of exhaust system during pure electric drive
- Battery SOC (45-60%) impacts engine operation and temperature
- Catalysts must demonstrate rapid, low temperature light-off and low backpressure.

2010 Vienna Motor Symposium

DPFs Generally Have Small Impact on Fuel Consumption (0.6% ave. increase in CO₂ for 184 recent Euro models available with or without DPF)

Comparison of vehicles with and without DPF

CO2 (g/km) change with use of DPF

Reference: AECC analysis of 2007 model European vehicles

Advanced Diesel Systems Packaging Reduce Cold-Start Emissions

SAE Paper No. 2011-01-1318

U.S. vs. Euro Light-Duty Vehicle Emission Standards

Note: U.S. Tier 2, Bin 5 is equivalent to CARB LEV II - LEV Gasoline NOx Diesel NOx Diesel PM X 10

Euro 5+ (2011) and 6 include 6 X 10¹¹/km diesel particle number limit; Euro 6c includes PN limit for GDI

