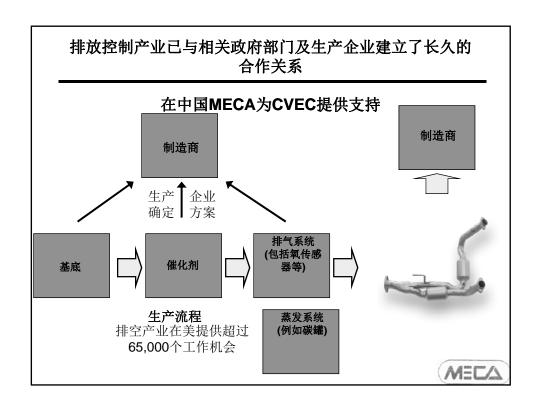
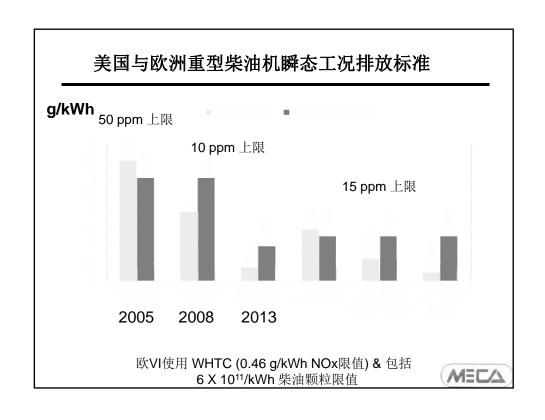
美国重型柴油机排放控制技术路线

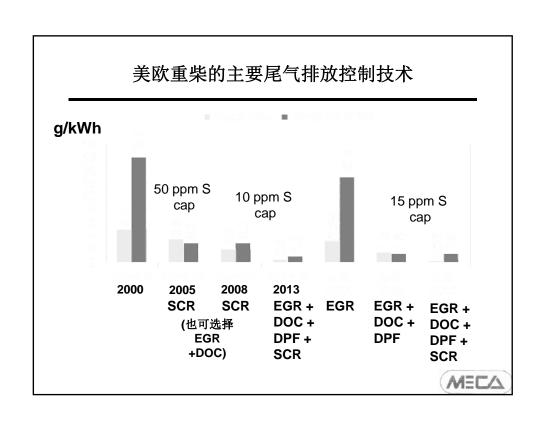
第四届中美机动车污染防治研讨会 2014年6月


Joe Kubsh博士 美国排放控制工业协会(MECA) www.meca.org

美国重柴排控经验

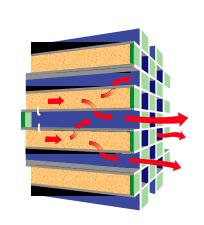
- MECA介绍
- 重型道路柴油机:柴油车颗粒物捕集器与选择性催化还原技术双管齐下,使之达到美2010/ 欧6标准
- 非道路柴油机: 有更加丰富的技术选择
- 对老旧卡车&巴士进行改造

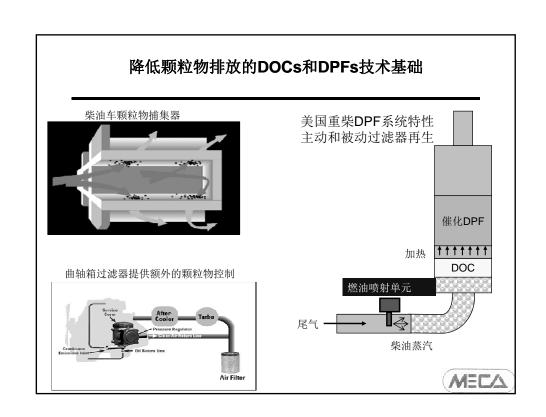




低硫燃料是使用高效尾气控制技术的基础

- 美国 (EPA)
 - <u>Tier 1</u> 汽油: 平均硫含量350 ppm, 上限1000 ppm
 - <u>Tier 1</u> 柴油: 道路燃料硫含量上限500 ppm
 - <u>Tier 2</u> 汽油: 2006年平均硫含量30 ppm, 上限80
 - <u>Tier 2 柴油: 硫含量上限15 ppm,道路柴油自2006年10月起实施,非道路柴油自2010年中期开始实施,船舶/铁路用柴油自2012年中期开始实施</u>
 - Tier 3 汽油: 将于2017年开始实施平均硫含量10 ppm限值
- 加州 (CARB)
 - 1996年之前: 汽油硫含量上限300 ppm
 - II阶段新配方汽油: 1996年平均硫含量30 ppm, 上限 80 ppm
 - Ⅲ阶段新配方汽油: 自2004年起平均硫含量15 ppm, 60, 30, **& 20 ppm硫含量上限标准** 分别自2004, 2006, **和 2012年**开始实施
 - 2006年中期: 道路/非道路柴油燃料硫含量上限15 ppm
 - 2007年 船舶/铁路 柴油燃料硫含量上限15 ppm

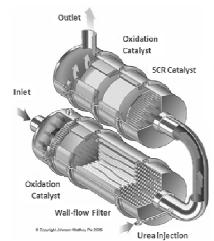




柴油颗粒过滤器(DPFs)

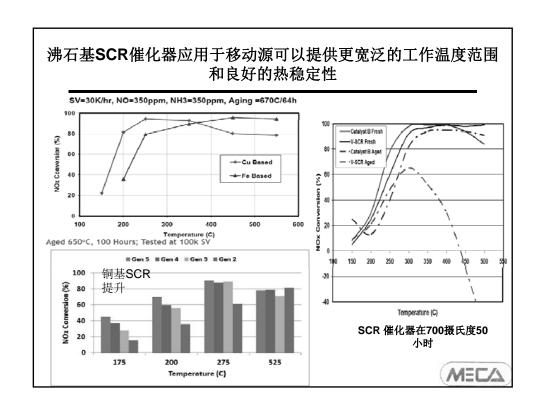
- ●壁流式陶瓷滤芯对大部分颗粒物具有 较高的捕集效率
- 捕集到的碳烟需要定期燃烧(再生)来 解决发动机的背压
- ●2000年开始商业化应用于欧洲的轻型 柴油车,在美国从2006年开始应用于轻 型柴油车,2007年开始应用于始于卡车/巴士,2013年开始应用于欧VI卡车/巴士-全球数以千万计的车辆在使用DPF
- 捕集碳烟和无机颗粒,会造成发动机磨损,润滑油消耗,因此需要定期保养(过滤器清洁)

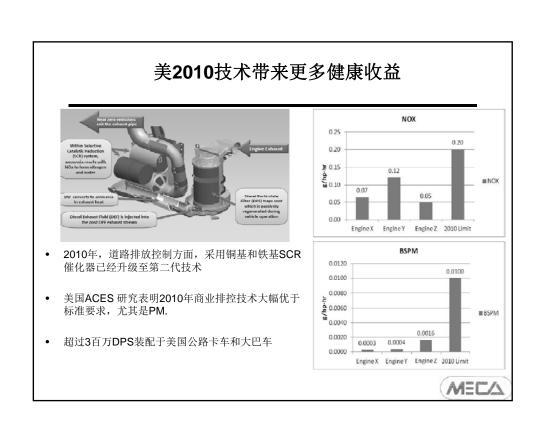
DPF清灰所需的过滤器清洁设备及服务

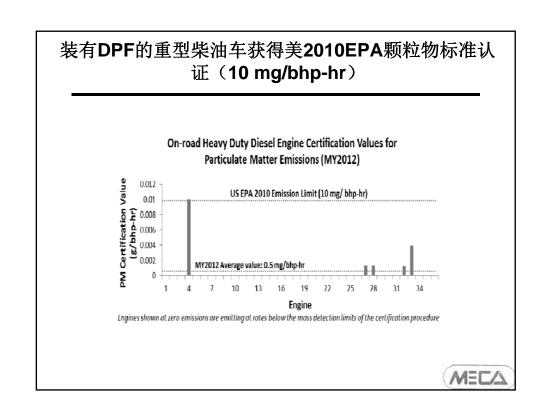

- 灰分主要由润滑添加剂产生,导致发动机背压增加,使用低灰油可以减少过滤器灰分产生
- 发动机的维护对过滤器耐久性很重要(喷射系统, EGR, 涡轮增压器)
- 典型过滤器维护在长途运输卡车行驶20万英里后进行(作业车辆行驶里程可以 降低一些)

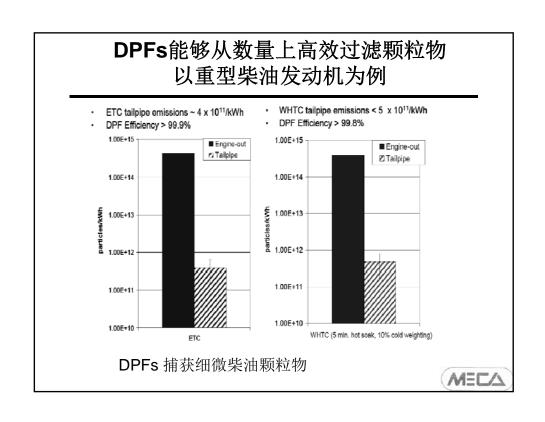
• 重型卡车: DOC+DPF+SCR 配置 • 中型卡车: DOC+SCR+DPF的设计, 用于控制冷启动NOx

- aqueous uned

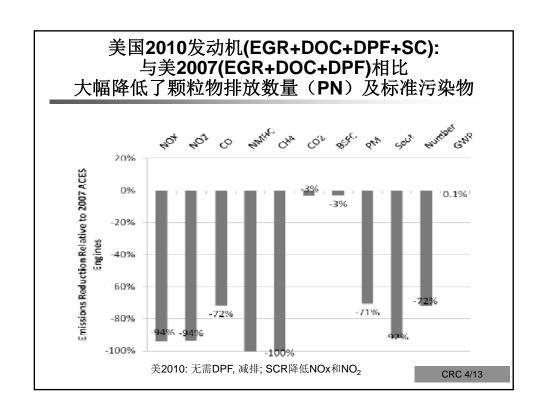

 Pressure and Temperature Sensor


 DEF Injector


 Diesel Oxidation Catalyst

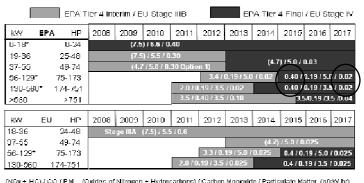

 Selective Catalyst Reduction Catalyst

 Diesel Particulate Filter
 - 32.5%的尿素/水达到规定标准 (API组织质量认证)
 - SCR后置氧化功能可将氨逃逸降低至最小 化
 - 其他功能包括还原剂搅拌机、热电偶、氮氧 化物传感器


美2007重型车排放标准显著降低PM, CO及有毒碳氢化合物

	2007 EPA Standard (g/hp-hr)	Average ACES Engine Emissions (g/hp-hr)	ACES Emissions % Reduction Relative to the 2007 Certification Standard	
CO	15.5	0.33	98	
NMHC	0.14	0.0064	95	
PM	0.01	0.0011	89	
NO_X	1.2 a	1.075	10	
^a Average value between 2007 and 2009, with full enforcement in 2010 at 0.20 g/hp-hr				

Compounds	% Lower Than 2004 Engine Technology			
	16-Hour Cycle	CARBx-ICT		
Single Ring Aromatics	82%	69%		
PAH	79%	26%		
Nitro PAH	81%	19%		
Alkanes	85%	84%		
Polar	81%	12%		
Hopanes/Steranes	99%	99%		
Carbonyls	98%	78%		
Inorganic Ions	38%	100%		
Metals and Elements	98%	90%		
Organic Carbon	96%	78%		
Elemental Cartxon	99%	100%		
Dioxins/Furans ^u	99%	N/A		
* Neistne In TEILI I ngne Lechnology				

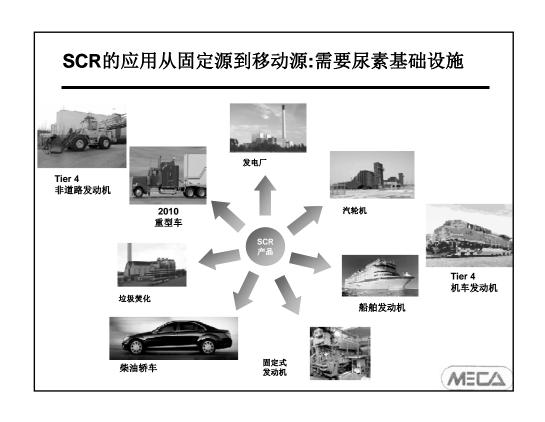

Source: CRC Phase 1 ACES Report; 2010+ Engines Delivering Even Lower Toxic HC Emissions than 2007 Engines

美国Tier4和欧IV非道路柴油机械的控制范围更大

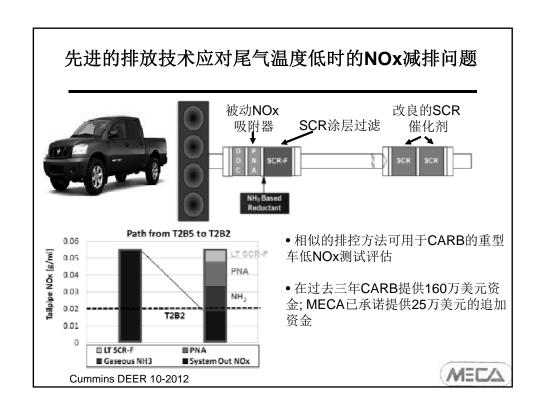
(NOx+HC)/CO/FM (Oxides of Nitrogen + Hydrosarbons) / Carbon Monoxide / Particulate Matter (g/kW hr)
NOx/HC/CO/FM Oxides of Nitrogen / Hydrosarbons / Carbon Monoxide / Particulate Matter (g/kW-hr)
* Combines regulatory powerbands with same emission levels

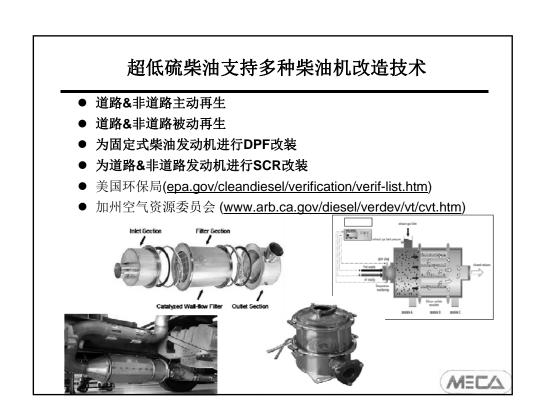
Tier4后期包括各种排控解决方案: EGR+DOC, EGR+DPF, DPF+SCR, DOC+SCR

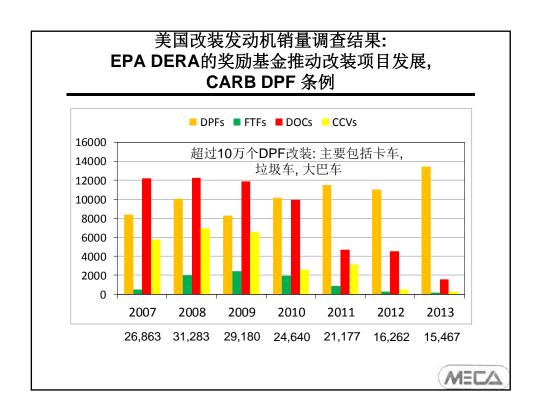
欧洲考虑一个与欧6相类似的5阶段标准:包括PN限值欧洲3B/4阶段和美国Tier4采用非道路瞬态循环(NRTC)


非道路限值严格 度提高**50%**

PM (g/kWh) 0.020 非道路 与

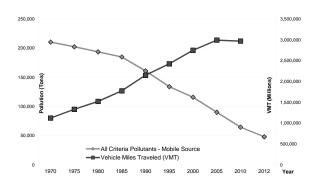

0.013 道路


NOx (g/kWh) 0.40 非道路 与 0.26 道路



成功改造方案的技术层面考虑

- 车辆改造前应进行适当维护
- 技术应用 匹配正确的技术到特定的设备和应用程序中
- 正确的专业安装 安全安装设备(解决可见性问题)
- 车载监控 在性能方面提供重要的使用反馈(不要忽略警示灯)
- 维护 车辆/设备和改造设备需要检查和维护


改造方案的成功需要车辆拥有人,运营商及技术支持单位共 同合作实现 MECA

EPA & CARB 车辆方案致力于排放达标

- 重柴道路机动车
 - 严格的新车排放检验程序
 - 车载诊断系统监控重要相关排放组件
 - 发动机生产企业使用PEMs设备进行在用车检测
 - 召回以解决重要排放相关问题
- 柴油机改造
 - 明确检验要求,其包括1000小时耐久性测试和在用车 检测

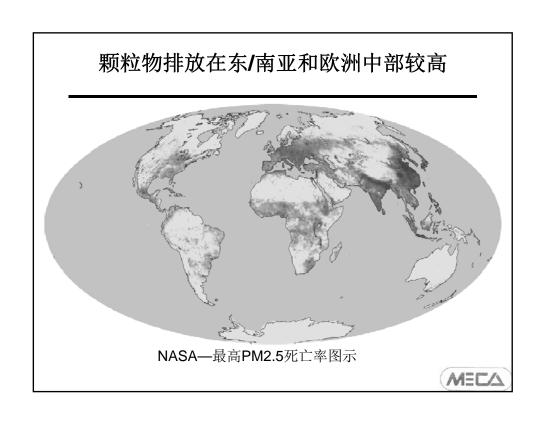
排控技术产业的成功历史

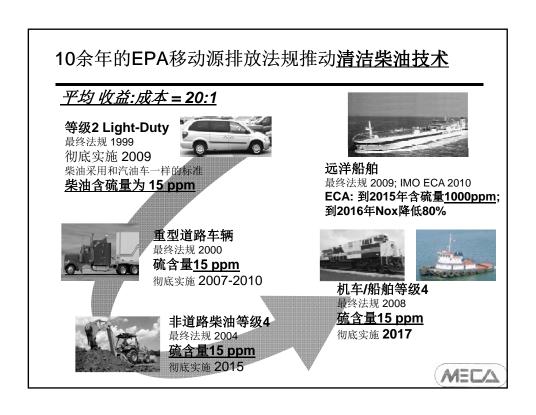
- ▶ 自1970年以来,汽车和卡车的用量提升了三倍然而其排放总量 却下降了75%
- 如没有廉价可靠的排放控制等其他设备 人们对于汽车的依赖 将造成严重的城镇交通堵塞和空气污染

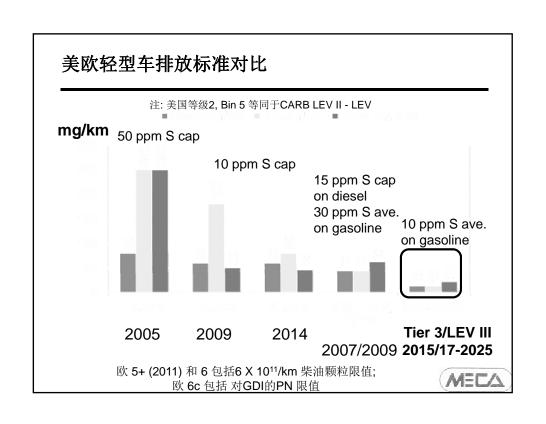
小结

- 美国已经成功实施清洁燃料/清洁机动车方案,其健康收益 达数十亿美元
- 利用柴油机颗粒过滤器&选择性催化还原排控技术达到美国 2010重柴排放标准
- 将清洁柴油机技术运用于非道路方面,使其达到美国等级4 达标方案 – 多样化的排放系统配置
- 超低硫柴油的应用,使美国超过10万台柴油发动机进行了 DPF改造


www.meca.org


经重新设计的排控技术资源网站

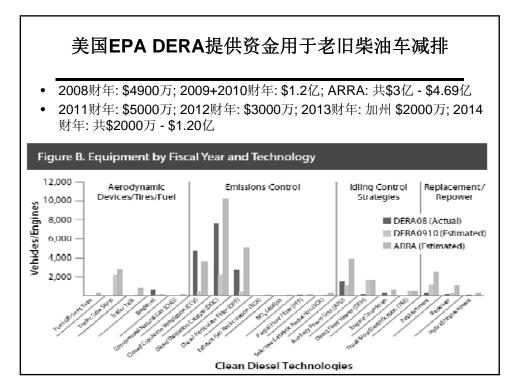


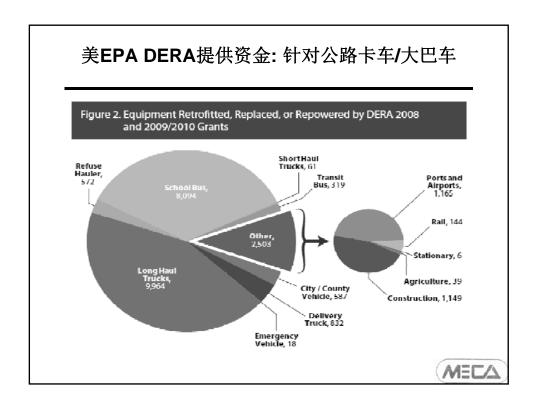

- 最新细微颗粒物报告摘要(中文版)
- 排控白皮书及情况说明
- 改造技术描述
- 案例报告
- 法规信息

其他主要市场的燃料硫含量限值

欧盟

- 欧3: 汽油 150 ppm 上限; 柴油 350 ppm 上限
- 欧4: 汽油 50 ppm 上限; 柴油 50 ppm 上限
- 欧5: 汽油 10 ppm 上限; 柴油 10 ppm 上限


● 日本


- 2004年之前: 汽油 100 ppm上限; 柴油 500 ppm上限
- 2004: 汽油 100 ppm上限; 柴油 50 ppm上限
- 2005: 汽油 10 ppm上限; 柴油 10 ppm上限

● 中国

- 柴油 350 ppm上限于2013年7月在全国实施; 汽油 150 ppm上限于2010年在全国实施
- 汽油和柴油 50 ppm上限于2014年底实施
- 汽油和柴油 10 ppm上限于2017年底实施

重要的道路改装经验, 非道路经验增加

- 超过30万道路DPF改装,世界范围内超过5万非道路DPF 改装,在美国超过10万DPF改装
- 世界范围内超过1百万DOC改装
- 道路机动车改装技术的重要经验
 - 校车,公交车,长短途卡车,垃圾车,多用途运载车
- 丰富的改装经验用于大量非道路设备
 - 施工设备
 - 港口车辆/设备
 - 船舶和机车发动机
 - 用于发电的固定式内燃机

