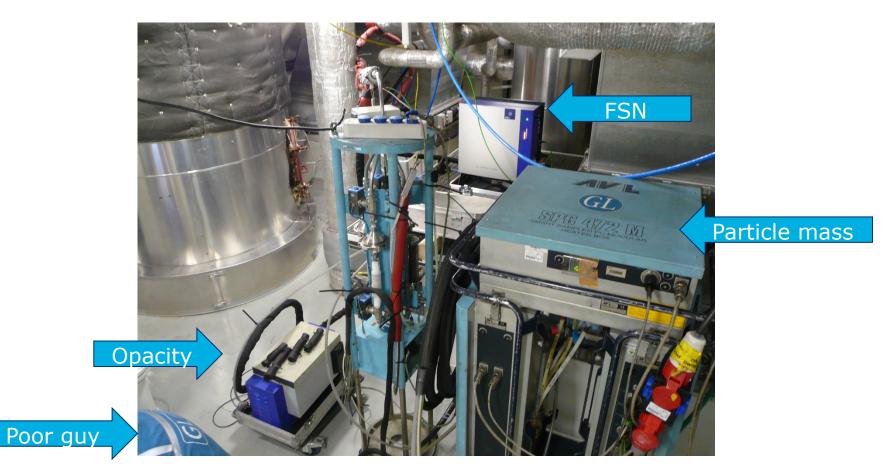
DNV·GL

MARITIME ADVISORY GERMANY

PM measurement

Insight in practical experience of DNVGL


Malte Zeretzke ITTC workshop 2015-09-16

Agenda

- ✓ Activities of DNVGL (test equipment + jobs of laboratory)
- \checkmark Measurement principles in short
- ✓ Sensitivities / biases (known and experienced)
- \checkmark Other obstacles from regulatory perspective
- ✓ Conclusions

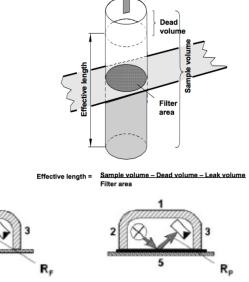
Equipment for PM measurement

Developed with DNVGL for HFO application only, 2 devices built

Jobs / experience

- Accredited as:
 - inspection body acc. to ISO 17020
 - laboratory acc. to ISO 17025
 - laboratory for Recreational Craft (94/25/EC)
- Notified body as Technical Service acc. to Rhine Vessel Inspection Regulations
- 20 years of experience
- Ca. 400 test bed measurements // 100 ships
- Regulations:
 - MARPOL Annex VI (NTC) // ISO 8178 // Constant lake
 - Nonroad mobile machinery // River rhine // EPA
- Frequent participation in research

Filter smoke number


- Measurement of loss of light reflection (not only absorption)
- No denominator
- Temperature > 65°C (condensation of water) evtl. dilution
- Scoot: MIRA Correlation (ISO 8178)
- Calibration: grey value discs / reference scoot

Positive:

- Cheap + Easy application
- Follows the impact principle of BC

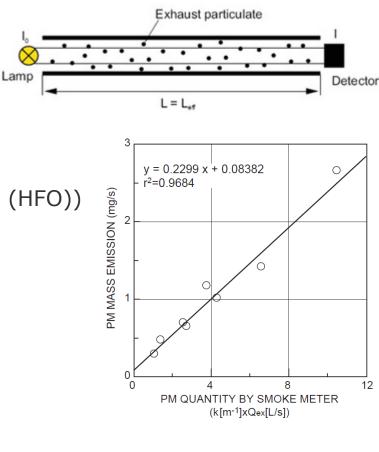
Challenges:

- Filter loading (concentration / sampling time)
- Other light absorbing material (Brown Carbon)
- Scattering (ash) + reflection (condensation of H2SOx @ 130°)

Source: 1+ 2: AVL

 $c_{\rm CW} = \begin{pmatrix} 0,00976983 \times SN + 0,0234416 \times SN^2 - 0,00728358 \times SN^3 \\ + 0.00164618 \times SN^4 - 0.0000895464 \times SN^5 \end{pmatrix} \times 1000$

Opacity meter


- Extinction (scattering + absorption)
- Temperature > 65°C (condensation of water)
- Calibration: Optical transmission filters
- Correlation: Example Horiba
- Measures:
 - Liquids (hydrocarbons, water, sulphuric acids (HFO))
 - Solids (oxides, soot)

Positive:

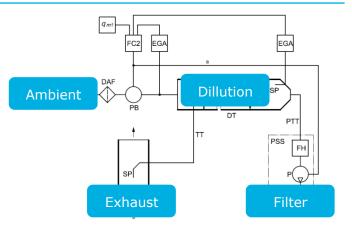
Fast (transient measurements)

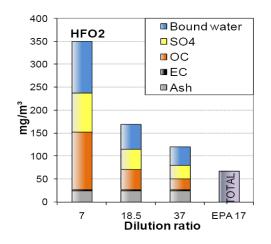
Obstacles:

- Scattering / absorption liquids/solids (a.m.)
- Discarded by PPR1

Source:1:AVL; 2: Horiba

Principles

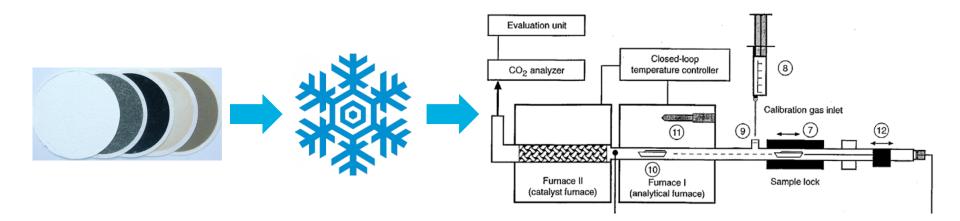

- Measurement of increase of filter mass
- Measurement of gas flow (denominator)
- Force condensation of HC components:
 - dilution + cooling $(47 \pm 5^{\circ}C)$
- Calibration: Scale


Positive:

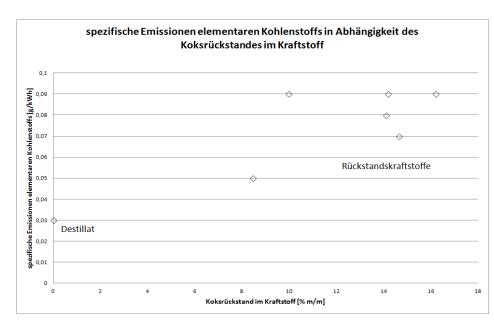
- Can be very accurate, later analyses of filter possible
- Conversion into: g/kWh or g/kg_fuel

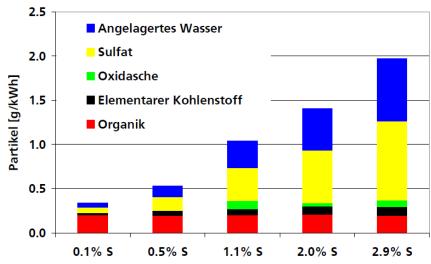
Obstacles:

- Sensitive to dilution ratio / ambient temperature
- Long time for detailed analyses (no results on site)



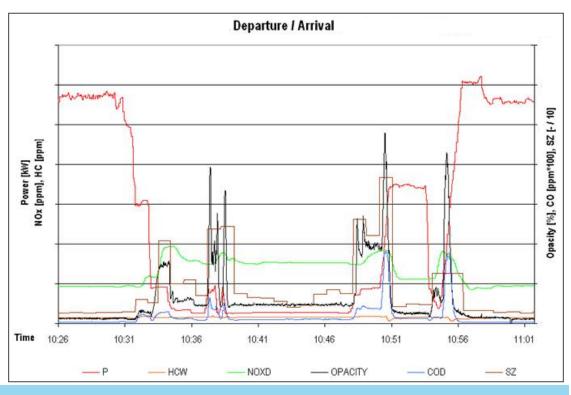
Source:1: ISO 8178; 2: Ristimaki


Chemical analyses based on VDI 2465 Part 1 + 2


- 1. Vaporization of hydrocarbons (inert gas) >> Measurement if FID
- 2. Extraction of remaining hydrocarbons in solvent (toluol + isopropanol) avoids charring and therefore overestimation of EC >> Analyses of the solved HC
- 3. Combustion of elemental carbon by adding oxygen + catalyst (Elemental carbon remains on filter (higher thermal stability + insoluble))
- 4. Measurement of CO2 by NDIR
- 5. Measurement of total change of mass for verification

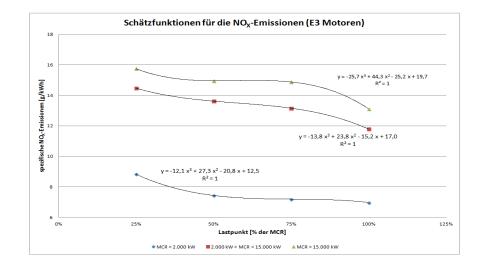
Example: Influence of fuel

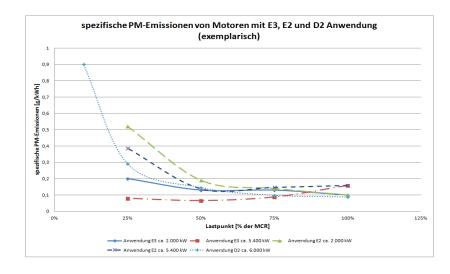
- 2 Stroke engine @ test plant
- All engine settings constant (100% MCR)
- Different fuels (MDO and HFO)
- Linear correlation PM / Sulphur
- Ashes from ISO 8217_2010

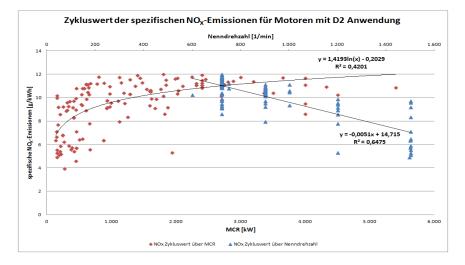


Example: Parallel measurement on ship

- Arrival and departure (High Speed DE)
- HC and CO indicator for quality of combustion
- Qualitative correlation of FSN and Opacity
- No quantitative correlation to mass by application of known correlation functions


Example: Deviation from nominal test curve


Messungen neben der nominellen Propellerkurve		Torque	Speed	СО	нс	РМ	EG Temp
100%	Grenzen des Motorkennfelds	32% 45%	63% 71%	50% 41%	-49% -21%	36% 29%	7% 6%
75%	Drückungsgren. 681	68% 90%	82% 90%	33% 19%	-26% 0%	8% 19%	5% 0%
50%	Drücku. × 45% × 45% × 47% × 32% × 27%	90% 78%	100% 98%	-28% -37%	3% 8%	-2% 0%	-2% -5%
0%	75% 100%	68% 47%	91% 86%	-2% -51%	-1% 17%	14% 54%	-3% -7%
	n/n _{nenn}	45% 27%	80% 74%	-19% -143%	7% 27%	20% -18%	-3% -9%


- PM: Significant increase from nominal curve (up to + 50%)
 - Assumption: caused by BC / Brown carbon (constant ash and sulphur content)
- Negative correlation of PM and HC positive to CO

Emission factors

- archive between 2000 and 2010
- 248 Engines
- 493 test cycles
- more than 2.000 load points

On board measurement – classificatory perspective

- In harbour measurement not possible
- Sea voyages typically 1 2 weeks
- Stability / accuracy of load points
- Determination of denominator challenging / not possible (power for kWh / fuel flow for mass)
- Availability of fuel oil (if standardized)
- Legal: Calibration of equipment (analysers AND power / SFOC measurement)

Conclusions

- 1. Different principles deliver different results, same methods tend to bias same (agree on one principle, not necessary to deliver real figure see CLD)
- 2. Test conditions + procedures are to be well defined for comparison of engines
 - > Sensitivities are to be well known
 - > Test conditions to be monitored in order to make use of results (correction?)
- 3. Feasibility of later certification to be considered for current research work
 - > Standard (e.g. ISO) required for regulatory application
 - > Also denominator is challenging
 - > conduction of measurement and availability of ship own equipment

Questions!

Malte Zeretzke Malte.zeretzke@dnvgl.com +49 40 36149 2751

www.dnvgl.com

SAFER, SMARTER, GREENER