Technical Training on California and US Federal Light-Duty Vehicle Criteria and Greenhouse Gas Emission Standards

> Allen Lyons April 2015 Mexico City

Status and Timing of California /US Emission Standards

Status and Timing of California/US Emission Standards

- NMOG+NOx fleet average emission standards
 - o LEV III phase-in 2015-2025
 - o Tier 3 phase-in 2017-2025
- Both programs require all vehicles to meet LEV
 III/Tier 3 requirements by 2022
 - o E10 certification fuel, 15 year/150K mile durability
 - Prior to 2022, fleet composed of vehicle meeting either LEV II/Tier 2 or LEV III/Tier 3 requirements
 - Beginning in 2017, Tier 3 designates vehicles meeting Tier 2 requirements as interim Tier 3 vehicles
- GHG Emission standards
 - o LEV III/Federal GHG standards phase-in 2017-2025
 - o Same CO₂, CH₄, and N₂O standards
 - Differences in compliance demonstration

Federal GHG and Fuel Economy Regulations

- Federal law limits NHTSA fuel economy rulemakings to not more than five years at a time.
- Accordingly, NHTSA has adopted fuel economy requirements for 2022-2025 that are "augural."
 - meaning that they represent NHTSA's current best estimate of what levels of stringency might be maximum feasible in those model years.
 - o NHTSA to formally adopt final fuel economy requirements for 2022-2022
- ARB, USEPA and NHTSA currently conducting a midterm review of 2022-2025 GHG and fuel economy requirements

Mid-Term Review of GHG and Fuel Economy Requirements

- The mid-term evaluation reflects the rules' long time frame and, for NHTSA, the agency's statutory obligation to conduct a *de novo* rulemaking in order to establish final standards for MYs 2022–2025.
- Technical Assessment Report reflecting results of mid-term review to be published in mid 2016
- NHTSA must provide 18 month lead-time when adopting final fuel economy requirements for 2022-2025.

Mid-Term Review of 2022-2025 GHG and Fuel Economy Standards

- The review shall take into account
 - (i)The availability and effectiveness of technology, and the appropriate lead time for introduction of technology;
 - (ii) The cost on the producers or purchasers of new motor vehicles or new motor vehicle engines;
 - o (iii) The feasibility and practicability of the standards;
 - (iv) The impact of the standards on reduction of emissions, oil conservation, energy security, and fuel savings by consumers;
 - o (v) The impact of the standards on the automobile industry;
 - o (vi) The impacts of the standards on automobile safety;
 - (vii) The impact of the greenhouse gas emission standards on the Corporate Average Fuel Economy standards and a national harmonized program; and
 - o (viii) The impact of the standards on other relevant factors

Extensive Work in Progress by ARB and Federal Partners

Refinement of Vehicle Simulation and Models

Update Technology Assumptions and Costs

Testing and benchmarking of advanced engines and drivetrains

Teardowns of new vehicle technologies

Load and mass reduction studies

Review of market acceptance of emerging GHG technologies

Consumer Response

Vehicle attribute and safety analysis

Vehicle Safety

LEV III Structure and Overview

LEV III Structure and Review (Certification Fuel)

- Certification fuel
 - o LEV III and Tier 3 certification fuel similar
 - o Both require 9.6-10% ethanol
 - o Federal fuel has higher RVP 9.0 vs 7.0
 - o Federal fuel has wider limits on some fuel parameters
- California allows use of federal certification fuel

LEV III Structure and Overview (Certification Fuel)

Property	CARB E10	Unit	EPA E10	Unit
R+M/2	87.0 - 88.4 91 (min)*	_	87.0 - 88.4	_
	07.0-00.4 91 (IIIII)	-	91 (min)*	
Sensitivity	7.5 min	-	7.5 min	-
RVP	6.9-7.2	psi	8.7-9.2	psi
RVP Cold CO	-	-	11.2-11.8	psi
RVP High Altitude	-	-	7.6-8.0	psi
Distillation				
10% evap	130-150	٥F	120-140	°F
50% evap	205-215	٥F	190-210	٥F
90% evap	310-320	٥F	315-335	٥F
FBP	390 max	٥F	380-420	٥F
Residue	2.0 max	vol. %	2.0 Max	millimeter
Total Aromatic Hydrocarbons	19.5-22.5	vol. %	21.0-25.0	vol. %
Aromatics, MSAA hydrocarbons	13-15	vol. %	-	-
Olefins	4.0-6.0	vol. %	4-10	vol. %
МТВЕ	0.05 max	vol. %	-	-
Ethanol	9.6-10.0	vol. %	9.6-10.0	vol.%
Oxygen	3.3-3.7	wt. %	-	-
Sulfur	8-11	ppm by wt	8.0-11.0	mg/kg
Benzene	0.6-0.8	vol. %	0.6-0.8	vol.%
Lead	0-0.01 max	g/gal	0.0026 max	g/liter
Phosphorus	0.005 max	g/gal	0.0013	g/liter
	Sufficient to meet			
Performance Additives	requirements of Title 13,	-	-	-
	CCR 2257			
Copper Corrosion	No. 1 max	-	No. 1 max	-
Solvent-Washed Gum Content	3.0 max	mg/100 ml	3.0 Max	mg/100 ml
Oxidation Stability	1000 min	minute	1000 min	minute
Specific Gravity	Report	-	Report	g/cm ³
Net Heat of Combustion	Report	-	Report	MJ/kg
Carbon	Report	wt. %	Report	mass %
Hydrogen	Report	wt. %	Report	mass %

* Octane value for vehicles requiring use of premium gasoline

LEV III Structure and Overview (Commercial Fuel)

- California allows use of a predictive model to govern composition of commercial gasoline.
- The Predictive Model is a set of mathematical equations that relate emission rates of exhaust hydrocarbons, oxides of nitrogen (NOx), and combined exhaust toxic species to the values of the eight gasoline properties regulated under CaRFG3.
- Allows producers to certify alternative formulations of gasoline by comparing the emission predictions for a candidate set of property limits to the predictions for the flat or averaging limits.
- The model allows a producer to use one or more limits greater than flat or averaging limits in exchange for compensating reductions in other limits.
 - o Flat limit: Option 1 limits apply to all gasoline supplied by producer
 - Averaging limit: Option 2 Gasoline batches above averaging limits must be offset by batches below averaging limits
 - o Cap limits: Gasoline must not exceed cap limits at any time

LEV III Structure and Overview (Commercial Fuel)

Property	Flat Limits	Averaging Limits	Cap Limits ⁽¹⁾
Reid Vapor Pressure, psi, max	7.00		6.40-7.20 ⁽²⁾
Benzene, vol%, max	0.8	0.70	1.10
Sulfur, ppmw, max	20	15	30
Aromatic HC, vol%, max	25	22	35.0
Olefins, vol%, max	6.0	4.0	10.0
Oxygen, wt%	1.8 to 2.2		$1.8 - 3.5^{(3)}$
T50 (temp. at 50% distilled) °F, max	213	203	220
T90 (temo. At 90% distilled) °F, max	305	295	330

(1) Cap limits apply to all gasoline at any place in the marketing system and are not adjustable

(2) The 7.20 psi RVP cap limit only applies during the RVP regulatory control period (Summertime). The minimum 6.40 psi RVP limit applies year round.

(3) The 1.8 wt. percent minimum applies only during the winter and only in certain areas California Environmental Protection Agency

• O Air Resources Board

LEV III/Tier 3 Diesel Certification Fuel Specifications

	California	Federal		
Property, unit	Liı	nit		
Cetane Number	47-55	40-50		
Distillation				
Initial Boiling Point, °F	340-420	340-400		
10% point, °F	400-490	400-460		
50% point, °F	470-560	469-540		
90% point, °F	550-610	560-630		
End Point, °F	580-660	610-690		
API Gravity	33-39	32-37		
Nitrogen content, ppmw	100-500			
Total Sulfur, ppm	7-15	7-15		
Total Aromatic Hydrocarbons, vol%	8-12	100 (g/kg)		
Polycyclic Aromatic Hydrocarbons (PAH), wt.%	1.4			
Flashpoint, °F	130	129		
Viscosity @ 40 °F, centistrokes	2.0-4.1	2.0-3.2		

California Commercial Diesel Fuel Specifications

Property, Units	Specificatio n	Designated Equivalent Limits		
Sulfur content, ppm	15	15		
	10	21.0		
Aromatic hydrocarbon content, vol%	Small refiner: 20	15		
API Gravity	N/A	36.9 (min)		
Lubricity, microns	520	520		
<i>Below are additional parameters specified fo (alternative formulations)</i> ⁽²⁾	r Certified Diesel I	Formulations		
Polynuclear Aromatic Hydrocarbon content (PAH) wt.%		3.5		
Nitrogen content, ppm		500		
Cetane number		55 (min)		

California Environmental Protection Agency

• O Air Resources Board

LEV III Structure and Overview (Vehicle Definitions)

- Passenger Car (PC)
 - LEV III "Any motor vehicle designed primarily for transportation of persons and having a design capacity of 12 persons or less."
 - NOM 042 "Car, or its derivative, except for all-purpose vehicle and trailer or utility designed for transport up to 10 people."

Light-Duty Truck (LDT)

- LEV III "Any motor vehicle rated at 8,500 pounds gross vehicle weight or less, that is designed primarily for purposes of transportation of property or is a derivative of such a vehicle, or is available with special features enabling off-street or off-highway operation and use."
 - LDT1 "A light-duty truck with a loaded vehicle weight of 0-3750 pounds."
 - LDT2 "A light-duty truck with a loaded vehicle weight of 3751 to a gross vehicle weight rating of 8,500 pounds."
 - o Includes federal LDT2, LDT3, and LDT4 truck categories
- o NOM 042
 - Light trucks (CL1)
 - "Light trucks (group one) with gross vehicle weight of up to 2,722 kg and test weight (PP) up to 1,701 kg."
 - Light Trucks (CL2)
 - "Light trucks (group two) with gross vehicle weight of up to 2,722 kg and test weight (PP) greater than 1,701 and up to 2,608 kg."
 - Light Trucks (CL3)
 - "Light trucks (group three) with gross vehicle weight greater than 2,722 and up to 3,857 kg and test weight (PP) of up to 3,857 kg."
 - Light trucks (CL4)
 - "Light trucks (group four) with gross vehicle weight greater than 2,722 and up to 3,857 kg and test weight (PP1) greater than 2,608 and up to 3,857 kg."

LEV III Structure and Overview (Vehicle Definitions)

- Medium-Duty Passenger Vehicle (MDPV)
 - Any heavy-duty vehicle (as defined in this subpart) with a gross vehicle weight rating (GVWR) of less than 10,000 pounds that is designed primarily for the transportation of persons. The MDPV definition does not include any vehicle which:
 - (1) Is an "incomplete truck" as defined in this subpart; or
 - (2) Has a seating capacity of more than 12 persons; or
 - (3) Is designed for more than 9 persons in seating rearward of the driver's seat; or
 - (4) Is equipped with an open cargo area (for example, a pick-up truck box or bed) of 72.0 inches in interior length or more. A covered box not readily accessible from the passenger compartment will be considered an open cargo area for purposes of this definition.
- Medium-Duty Vehicle (MDV)
 - "Any heavy-duty vehicle having a manufacturer's gross vehicle weight rating (GVWR) between 8,501 and 14,000 pounds."
- Heavy-Duty Vehicle
 - "Any motor vehicle having a manufacturer's gross vehicle weight rating greater than 8,500 pound, except passenger cars."

LEV III Structure and Overview (Vehicle Test Weights)

- Loaded vehicle weight (LVW)
 - Applies to passenger cars, light-duty trucks and medium-duty passenger vehicles
 - o Curb weight plus 300 pounds
 - Curb weight "The actual or the manufacturer's estimated weight of the vehicle in operational status with all standard equipment, and weight of fuel at nominal tank capacity, and the weight of optional equipment computed in accordance with §86.082-24."
- Adjusted Loaded Vehicle Weight (ALVW)
 - o Applies to medium-duty vehicles, except MDPVs
 - o "The numerical average of vehicle curb weight and GVWR."
- Gross Vehicle Weight Rating (GVWR)
 - "The value specified by the manufacturer as the maximum design loaded weight of a single vehicle."
 - o Also referred to as gross vehicle weight (GVW) in the test procedures

LEV III Structure and Overview (Vehicle Classes)

Vehicle Class	Weigh	Range*				
Passenger Cars	All weights					
Light-Duty truck 1 (LDT1)	0-3750 lbs. LVW	0-1701 kg LVW				
Light-Duty truck 2 (LDT2)	3751 lbs. LVW – 8,500 lbs GVWR	1701 kg LVW - 3856 kg GVWR				
Medium-Duty Passenger Vehicle (MDPV)	8,501-10,000 lbs GVWR	3,856-4536 kg GVWR				
Madium Duty Vahiela	8,501-10,000 lbs GVWR	3,856-4536 kg GVWR				
Medium-Duty venicie	10,001-14,000 lbs GVWR	4536-6350 kg GVWR				

LEV III Structure and Overview: Criteria

(Fleet Average and Bins for PC, LDT1, LDT2, and MDPV)

- Fleet average
 - Emissions measured on FTP or Urban cycle
 - o Declines every year
 - Sales weighted emissions must meet fleet average
 - Fleet average below requirement earns credits
 - Fleet average above requirement accrues debits
- Standards or Bins
 - Individual Test Groups certify to standards
 - Used to comply with fleet average

150,000 mile New Vehicle Fleet Average Emission Requirement (NMOG+NOx g/mi)												
Category	Year	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
PC/LDT1		0.100	0.093	0.086	0.079	0.072	0.065	0.058	0.051	0.044	0.037	0.030
LDT2		0.119	0.110	0.101	0.092	0.083	0.074	0.065	0.056	0.047	0.038	0.030

LEV III FTP Emission Standards (150,000 Durability)

Emission Category	NMOG+NOx (g/mi)	CO (g/mi)	Formaldehyde (mg/mi)
LEV160	0.160	4.2	4
ULEV125	0.125	2.1	4
ULEV70	0.070	1.7	4
ULEV50	0.050	1.7	4
SULEV30	0.030	1.0	4
SULEV20	0.020	1.0	4

LEV III: Reducing Criteria Emissions

75% Reduction in fleet average emissions 2015-2025

LEV III Particulate Matter Standards

1 mg/mi PM standard in 2025 maintains current PM emission level of well controlled PFI engines 12 10 8 6 4 2 0 Current Standard LEV III Standard (2017) LEV III Standard (2025)

California Environmental Protection Agency
 Air Resources Board

LEV III Structure and Overview: Criteria (Test Cycles - FTP or Urban)

O Air Resources Board

LEV III Structure and Overview: Criteria

(Relation to Tier 3)

California Environmental Protection Agency

[•] O Air Resources Board

LEV III Structure and Overview: Criteria (Fleet Average and Bins for MDV)

- Fleet average
 - Emissions measured on FTP or Urban cycle
 - o Declines every year
 - Sales weighted emissions must meet fleet average
 - Fleet average below requirement earns credits
 - Fleet average above requirement accrues debits

FLEET AVERAGE NON-METHANE ORGANIC GAS PLUS OXIDES OF NITROGEN EXHAUST MASS EMISSION REQUIREMENTS FOR MEDIUM-DUTY VEHICLES

(150,000 mile Durability Vehicle Basis)								
Model Year	Fleet Average	Fleet Average NMOG + NOx						
	(g/)	mi)						
	MDVs	MDVs						
	8,501 - 10,000 lbs.	10,001-14,000 lbs.						
	GVWR	GVWR						
2016	0.333	0.548						
2017	0.310	0.508						
2018	0.278	0.451						
2019	0.253	0.400						
2020	0.228	0.349						
2021	0.203	0.298						
2022+	0.178	0.247						

LEV III Structure and Overview: Criteria (Fleet Average and Bins for MDV)

	LEV III Exhaust Mass Emission Standards for New 2015 and Subsequent Model Medium Duty Vehicles									
	Vehicle Type	Durability Vehicle Basis (mi)	Vehicle Emission Category ²	NMOG + Oxides of Nitrogen ⁴ (g/mi)	Carbon Monoxide (g/mi)	Formaldehyde (mg/mi)	Particulates ¹ (g/mi)			
Standards or	MDVs		LEV395	0.395	6.4	6	0.12			
Bins	8501 - 10,000 lbs. GVWR,		ULEV340	0.340	6.4	6	0.06			
o Individual Test	Vehicles in this category are tested at their adjusted loaded vehicle weight	150,000	ULEV250	0.250	6.4	6	0.06			
Groups certify			ULEV200	0.200	4.2	6	0.06			
to standards			SULEV170	0.170	4.2	6	0.06			
o Used to			SULEV150	0.150	3.2	6	0.06			
comply with	MDV		LEV630	0.630	7.3	6	0.12			
fleet average	MDVs 10,001-14,000 lbs. GVWR		ULEV570	0.570	7.3	6	0.06			
	XY 1 · 1 · · · · ·	150.000	ULEV400	0.400	7.3	6	0.06			
	are tested at their adjusted	150,000	ULEV270	0.270	4.2	6	0.06			
	loaded vehicle weight		SULEV230	0.230	4.2	6	0.06			
			SULEV200	0.200	3.7	6	0.06			

LEV III Structure and Overview: Criteria (Credits/Debits)

Credits

- o Expressed in units of NMOG+NOx g/mi
- o Carry forward 5 years/carry back 3 years
- o Can be banked by manufacture for use in future years
- o Can be traded or sold to other manufacturers

LEV III Structure and Overview: Criteria Credit/Debit Calculation –Example 1

o 2020 NMOG+NOx fleet average requirement – PC/LDT1 0.065 g/mi, LDT2 0.074 g/mi

o Manufacturer fleet – 50% PC/LDT1/50% LDT2

	Sampl	e Manufactur	er 2020 Fleet Compositi	on	
Categor y	Emissio n Category	Number of Vehicles	Sales Weighted Fleet Average Emissions (g/mi)	Credits/Debits (g/mi)	
	LEV160	1,000			
	ULEV12 5	2,500			
PC/LDT 1	ULEV70	16,500	0.0(1	150	
	ULEV50	25,000	0.061		
	SULEV3 0	5,000			
	SULEV20	0			
	LEV160	3,050			
	ULEV12 5	2,470			
LDTO	ULEV70	41,480	0.077	150	
	ULEV50	3,000	0.077	-120	
	SULEV3 0	0			
	SULEV20	0			

In this case, credits earned from PC/LDT1 offset debits accrued from LDT2. The manufacturer earns no credits to carry forward or debits to be offset in future years.

Fleet average emissions calculation: [(#LEV160 x 0.160)+(#ULEV125 x 0.125)+(#ULEV70 x 0.070)+(#ULEV50 x 0.050)+(#SULEV30 x 0.030)+(#SULEV20 x 0.020)]/Total Vehicles

Credit/Debit calculation: (Fleet average requirement – Manufacturer fleet average emissions) x Total vehicles

LEV III Structure and Overview: Criteria Credit/Debit Calculation – Example 2

- Example credit/debit calculation
 - 2020 NMOG+NOx fleet average requirement PC/LDT1 0.065 g/mi, LDT2 0.074 g/mi
 - o Manufacturer fleet -50% PC/LDT1/50% LDT2

Sample Manufacturer 2020 Fleet Composition										
Categor y	Emissio n Category	Number of Vehicles	Sales Weighted Fleet Average Emissions (g/mi)	Credits/Debits (g/mi)						
	LEV160	1,000								
	ULEV12 5	1,000								
PC/LDT	ULEV70	28,250	0.0(5	0						
1	ULEV50	19,750	0.065	0						
	SULEV3 0	0								
	SULEV20	0								
	LEV160	3,050								
	ULEV12 5	2,470								
LDTO	ULEV70	41,480	0.077	150						
	ULEV50	3,000	0.077	-120						
	SULEV3 0	0								
	SULEV20	0								

California Environmental Protection Agency

In this case, the manufacturer carries forward 150 g/mi NMOG+NOx debits.

If not offset in 2023, manufacturer subject to civil penalties equal to 150/0.070 = 2158 non-compliant vehicles.

0.070 = 2020 manufacture total fleet average requirement.

Civil penalty for non-compliant vehicles can be up to \$5,000 per vehicle.

Fleet average emissions calculation: [(#LEV160 x 0.160)+(#ULEV125 x 0.125)+(#ULEV70 x 0.070)+(#ULEV50 x 0.050)+(#SULEV30 x 0.030)+(#SULEV20 x 0.020)]/Total Vehicles

Credit/Debit calculation:

(Fleet average requirement – Manufacturer fleet average emissions) x Total vehicles

LEV III Structure and Overview: Criteria (Possible Compliance Scenario)

Declining fleet average requirement forces manufacturers to certify an increasing fraction of their vehicles to more stringent emission standards

•28

LEV III Structure and Overview: Criteria (Relation to Tier 3)

• Similarities

- o Same fleet average requirement 2017-2025
 - California phases-in 2015-2025
- o 150,000 mile durability
- o Same emission standards or Bins
- o E10 certification fuel
 - California and federal require E10 certification fuel
 - o Reciprocity between California/Federal certification fuel

LEV III Structure and Overview: Criteria (Relation to Tier 3)

• Differences

- o Eight year credit life
 - Could delay meeting federal 0.030 NMOG+NOx fleet average requirement to 2030
- o Certification fuel Reid Vapor Pressure (RVP)
 - California 6.9-7.2 psi; Tier 3 8.7-9.2 psi

Gasoline Passenger Cars and Light-Duty Trucks

Additional Emission Control Technology Requirements												
		From	ULEV12	5 to SUL	EV30		From LEV160 to SULEV30					
Technology component	PC/LDT1 (No of cylinders)		LDT2 (No of cylinders)		PC/LDT1 (No of cylinders)			LDT2 (No of cylinders)				
	4	6	8	4	6	8	4	6	8	4	6	8
Greater catalyst loading	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Optimized close- coupled catalyst(s)	0%	0%	0%	0%	0%	0%	50%	60%	75%	50%	60%	75%
Secondary air	0%	25%	75%	0%	25%	75%	0%	25%	75%	0%	25%	75%
HC adsorber (active)	0%	0%	0%	0%	0%	15%	0%	0%	0%	0%	0%	15%
Optimized thermal mass manifold	25%	25%	25%	25%	25%	25%	25%	25%	25%	25%	25%	25%
Low thermal mass turbocharger	0%	0%	0%	0%	0%	15%	0%	0%	0%	0%	0%	15%
Evap equip	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%

O Air Resources Board

Gasoline Passenger Cars and Light-Duty Trucks

		From LEV160 to SULEV30						
	Technology Component	P	C/LD7	Г1	LDT2			
			6-cyl	8-cyl	4-cyl	6-cyl	8-cyl	
	Greater catalyst loading	\$47	\$62	\$78	\$47	\$62	\$78	
	Optimized close-coupled catalyst(s)	\$8	\$19	\$35	\$8	\$19	\$35	
	Secondary air	\$0	\$19	\$58	\$0	\$19	\$58	
Systems with additional	HC adsorber (active)	\$0	\$0	\$17	\$0	\$0	\$17	
technology costs	Optimized thermal management	\$6	\$6	\$6	\$6	\$6	\$6	
	Low thermal mass turbocharger	\$0	\$0	\$0	\$0	\$0	\$0	
	Evap equip	\$13	\$13	\$13	\$13	\$13	\$13	
	Total incremental cost	\$73	\$119	\$207	\$73	\$119	\$207	
	Total incremental price	\$87	\$142	\$248	\$87	\$142	\$248	

O Air Resources Board

Gasoline Passenger Cars and Light-Duty Trucks

	Technology Component		From ULEV125 to SULEV30						
			C/LD7	[1	LDT2				
			6-	8-	4-	6-	8 out		
		cyl	cyl	cyl	cyl	cyl	o-cyi		
	Greater catalyst loading	\$23	\$31	\$39	\$23	\$31	\$39		
	Optimized close-coupled			¢ባ	¢ባ	¢ባ	¢O		
	catalyst(s)		ЪÛ	ΦU	ЪÛ	φU	φU		
	Secondary air	\$0	\$19	\$58	\$0	\$19	\$58		
Systems with additional	HC adsorber (active)	\$0	\$0	\$17	\$0	\$0	\$17		
technology costs	Optimized thermal management	\$6	\$6	\$6	\$6	\$6	\$6		
	Low thermal mass turbocharger		\$0	\$0	\$0	\$0	\$0		
	Evap equip		\$13	\$13	\$13	\$13	\$13		
	Total incremental cost	\$42	\$69	\$134	\$42	\$69	\$134		
	Total incremental price	\$50	\$83	\$161	\$50	\$83	\$161		

Gasoline Medium-Duty Vehicles

		Cost of Techr	nology Needed		
	Technology Component	8,501-10,000 lbs	10,001-14,000 lbs		
	Technology Component	GVWR	GVWR		
		8-cy	linder		
	Greater catalyst loading	\$40	\$40		
	Optimized close-coupled catalyst(s)	\$0	\$0		
Systems with	Secondary air	\$0	\$0		
additional technology costs	HC adsorber (active)	\$0	\$0		
	Optimized thermal management	\$6	\$6		
	Low thermal mass turbocharger	\$0	\$0		
	Evaporative equipment	\$17	\$17		
Total incremental direct cost		\$62	\$62		
	Total incremental vehicle price	\$75	\$75		

Diesel Medium-Duty Vehicles

		Cost of Techr	ology Needed
	Technology Component	8,501-10,000 lbs	10,001-14,000 lbs
	Technology Component	GVWR	GVWR
		8-cy]	linder
	Greater catalyst loading	\$0	\$0
	Optimized close-coupled catalyst(s)	\$0	\$0
Systems with additional	Secondary air	\$0	\$0
	HC adsorber (active)	\$0	\$0
technology costs	Optimized thermal management	\$6	\$6
	Low thermal mass turbocharger	\$0	\$0
	Evaporative equipment	\$0	\$0
	SCR optimization	\$40	\$40
	Total incremental direct cost	\$45	\$45
	Total incremental vehicle price	\$54	\$54
California Environmental	Protection Agency		

O Air Resources Board

LEV III Structure and Overview: Criteria

(Particulate Matter Standards)

- Testing showed GDI engines emitted high PM levels relative to current PFI engine technology
- 3 mg/mi phase-in 2017-2021
- 1 mg/mi PM standard phase-in 2025-2028 maintains current PM emission level of well controlled PFI engines
- Board interested in moving up 1 mg/mi standard phase-in earlier
 - o Staff to review feasibility of earlier phase-in
- Manufacturers demonstrate compliance by testing 25% of their test groups each year
- Medium-duty vehicles
 - o Phase-in 2017-2021
 - o 8,501-10,000 lbs GVW 8 mg/mi
 - o 10,001-14,000 lbs GVW 10 mg/mi

California Environmental Protection Agency
 Air Resources Board

• 36

Highway Emission Standard

Must not exceed FTP NMOG+NOx standard

Highway Cycle Duration: 765 seconds Distance: 10.26 miles (16.45 km) Average speed: 48.3 mph (77.7 km/h) Maximum speed: 59.9 mph (96.4 km/h) Maximum acceleration: 3.3 mp/h-s (1.5 m/s²)

ECE Part 2 Duration: 400 seconds Distance: 4.32 miles (6.95 km) Average speed: 48.3 mph (62.6 km/h) Maximum speed: 74.6 mph (120 km/h) Maximum acceleration: 1.9 mp/h-s (0.85 m/s²)

LEV III Structure and Overview: Criteria (Test Cycles - SFTP)

- Supplemental FTP emission standards (150,000 miles)
- Assures emission control under high speed/high acceleration and air conditioning operation
- Two compliance options
 - Stand alone emission standards
 - Primarily for low volume manufacturers
 - Composite emissions over FTP, USO6 and SCO3 test cycles
 - Vehicles certified to LEV III FTP requirements must meet LEV III SFTP requirements

High speed/high acceleration Duration: 596 seconds Distance 8.01 (12.8 km) Average speed: 48.4 mph (77.9 km/h) Maximum speed: 80.3 mph (129.2 km/h) Maximum acceleration: 8.4 mp/h-s (3.8 m/s²)

California Environmental Protection Agency

SFTP NMOG+NOx and CO Stand-Alone Exhaust Emission Standards for								
2015 and	2015 and Subsequent Model LEV III Passenger Cars, Light-Duty Trucks, and							
	Ν	ledium-Duty	Passenger Vehicles					
	Durability	Vehicle	US06 Test		SC03 Test	ţ		
Vehicle	Vehicle Basis	Emission	(g/mi)		(g/mi)			
Туре	(mi)	Category ¹	NMOG + NOx	CO	NMOG + NOx	CO		
All PCs; LDTs 0- 8,500 lbs. GVWR; and		LEV	0.140	9.6	0.100	3.2		
MDPVs Vehicles in these	150.000	ULEV	0.120	9.6	0.070	3.2		
categories are tested at their loaded vehicle	150,000	SULEV	0.060	9.6	0.020	3.2		
weight (curb weight plus 300 pounds).		SULEV	0.050	9.6	0.020	3.2		

SFTP NMOG+NOx and CO Composite Emission Standards for 2015 and Subsequent Model Passenger Cars, Light-Duty Trucks, and Medium-Duty Passenger Vehicles (g/mi) ¹											
Model Year	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025+
All PCs; LDTs 8,500 lbs. GVWR	Sales	-Weight	ed Fleet	Average	e NMOG	G+NOx C	Composi	te Exhai	ist Emis	sion Stan	dards
or less; and MDPVs ³	0.140	0.110	0.103	0.097	0.090	0.083	0.077	0.070	0.063	0.057	0.050
Vehicles in this category are tested at their loaded vehicle weight (curb weight plus 300 pounds) except LEV II vehicles, which are subject to the test weights specified in §1960.1(r), title 13, CCR.	CO Composite Exhaust Emission Standard ⁷										
	4.2										

Composite Emission Value = 0.28 x US06 + 0.37 x SC03 + 0.35 x FTP

- 50°F FTP emission standards
 - Assures emission control during low summer morning temperatures on ozone formation days
 - o 2 times FTP standard
 - Higher multiples provided for alcohol fueled vehicles
- 20°F FTP CO emission standards

Vehicle Type	Carbon Monoxide
All PCs, LDTs 0-3750 lbs. LVW	10.0
LDTs 3751 lbs. LVW - 8500 lbs. GVW; MDPVs 10,000 lbs. GVW and less	12.5

LEV III Structure and Overview: Criteria

(High Altitude Emission Requirements)

- High altitude means a test condition of 1,620 meters (5,315 feet) ± 100 meters (328 feet)
- Low altitude FTP emission standards apply at high altitude
- The manufacturer must submit a Statement of Compliance in the application for certification which attests to the fact that they have assured themselves that the engine family does not unnecessarily reduce emission control effectiveness of vehicles operating at high altitude or other conditions not experienced within the US06 (aggressive driving) and SC03 (air conditioning) test cycles.
- In lieu of testing vehicles a manufacturer may provide a statement in its application for certification that, based on the manufacturer's engineering evaluation of appropriate highaltitude emission testing, all light-duty vehicles, light-duty trucks, and complete heavy-duty vehicles comply with the emission standards at high altitude.
- Does not apply to SFTP standards (USO6 and SCO3)
- Evaporative standards apply at high altitude
- For vehicles that comply with the cold temperature NMHC standards described in §86.1811-10(g) and the CO₂, N₂O, and CH₄ exhaust emission standards described in §86.1818-12, manufacturers must submit an engineering evaluation indicating that common calibration approaches are utilized at high altitudes (except when there are specific high altitude calibration needs to deviate from low altitude emission control practices). Any deviation from low altitude emission control practices must be included in the auxiliary emission control device (AECD) descriptions submitted at certification.

- Evaporative emission standards
 - Zero fuel evaporative emissions
 - o Phase-in from 2015-2022
- Two compliance options
 - Option 1: Whole vehicle plus fuel-only evaporative standards
 - Option 2: Whole vehicle with fleet average compliance and canister bleed test

Evaporative Standard Implementation Schedule

Model year	Minimum percentage of vehicle fleet
2015 to 2017	Average of previous
2015 to 2017	3 model year PZEVs
2018 to 2019	60
2020 to 2021	80
2022 and subsequent	100

Option 1: Evaporative Emission Standards

Hydrocarbon emission standards				
Dumning lago	Three-day diurnal + hot soak, and			
	two-day diurnal + hot soak			
(grams per	Whole vehicle	Fuel only		
miles)	(grams per test)	(grams per test)		
0.05	0.350	0.0		
0.05	0 500	0.0		
0.05	0.500	0.0		
0.05	0.750	0.0		
0.05	0.750	0.0		
0.05	0.750	0.0		
0.05	0.750	0.0		
0.05	0.750	0.0		
0.05	0.750	0.0		
	Hydr Running loss (grams per miles) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	Hydrocarbon emission starRunning loss (grams per miles)Three-day diurnal two-day diurnal 		

Option 1 evaporative emission standards must be met by all vehicle models

Option 2: Whole-Vehicle Evaporative Emission Standards with a Fleet Average Option and a Canister Bleed Test Requirement

Hydrocarbon emission standards

Option 2 allows manufacturers to demonstrate compliance with the proposed diurnal plus hot soak emission standard through fleet averaging. For example, if a manufacturer's evaporative fleet average certification emission level for a particular emission standard category equals, or is less than, the applicable emission standard, the manufacturer would be in compliance for that given emission standard category. A credit/debit scheme similar to the FTP fleet average requirement is provided. I.e., evaporative credits can be carried forward for five years; debits must be offset within three years.

	Ilyulocal	bon chiission star	luarus
Vehicle type	Running loss	Highest diurnal plus	Canister bleed
	(grams per test)	hot soak	(grams per
		(grams per test)	test)
Passenger car; and Light-duty truck 6,000 lbs. GVWR and under, and 0 – 3,750 lbs. LVW	0.05	0.300	0.020
Light-duty truck 6,000 lbs. GVWR and under, and 3,751 – 5,750 lbs. LVW	0.05	0.400	0.020
Light-duty truck 6,001 - 8,500 lbs. GVWR; and Medium-duty passenger vehicle	0.05	0.500	0.020
Medium-duty vehicles (8,501 – 14,000 lbs. GVWR); and Heavy-duty vehicle (over 14,000 lbs. GVWR)	0.05	0.600	0.030

California ZEV Program

Requires large volume automobile manufacturers to produce zero emitting passenger vehicles

Battery Electric Vehicles (BEV)

Hydrogen Fuel Cell (FCEV)

May substitute some with near-zero emission vehicles

Plug-in Hybrid Electric Vehicles (PHEV)

Conventional Hybrids

Clean Gasoline Vehicles

LEV III Structure and Overview: Criteria (Summary)

- LEV III program drives criteria emissions to near-zero levels by 2025
- The program is structured to assure that vehicle emissions are controlled under all vehicle operating conditions.
 - Assurance provided by multiple test cycles and their applicable emission standards
- Long-term phase-in provides manufactures with certainty re: emission requirements.
- Long lead time and fleet average requirement provide manufacturers with the flexibility to incorporate more effective emission control systems across their product line during the normal roll out new vehicle models

California Environmental Protection Agency

OB Air Resources Board

LEV III Structure and Overview (Criteria and GHG References)

- LEV III*
 - o Clean version of regulations
 - <u>http://www.arb.ca.gov/msprog/levprog/test_proc.htm</u>
 - o Board hearing documents, including ISOR and FSOR
 - <u>http://www.arb.ca.gov/regact/2012/leviiighg2012/leviiighg2012.htm</u>
- Tier 3 criteria and GHG
 - Code of Federal Regulations, Title 40, Part 86 "Control of Emissions from New and In-Use Highway Vehicles and Engines"
 - <u>http://www.ecfr.gov/cgi-bin/text-idx?SID=6ec7e678d4099b14b25291062fe86dba&tpl=/ecfrbrowse/Title40/40cfr86_main_02.tpl</u>
 - Code of Federal Regulations, Title 40, Part 600 "Fuel Economy and Greenhouse Gas Exhaust Emissions of Motor Vehicles"
 - <u>http://www.ecfr.gov/cgi-bin/text-</u> idx?SID=5b42e2bc13f79fa352b77cd60ae3ec85&tpl=/ecfrbrowse/Title40/40cfr600_main_02.tpl

*Minor changes to LEV III were adopted October 2014. These have not been approved by the Office of Administrative Law but can be found at:

http://www.arb.ca.gov/regact/2014/leviii2014/leviii2014.htm

