# 2025 GHG Structure and Overview

Allen Lyons April 2015 Mexico City



#### 2025 GHG Structure and Overview (Vehicle Categories)

- Passenger Cars/2wd SUVs
- Light-duty Trucks

   LDT1, LDT2 and MDPVs











#### 2025 GHG Structure and Overview (Vehicle GHG Sources)



# 2025 GHG Structure and Overview (GHG Pollutants Regulated)

- Carbon Dioxide (CO<sub>2</sub>)
  - Emissions from fuel consumed to provide vehicle propulsion and drive accessory loads
- Methane (CH<sub>4</sub>)
  - o By product of fuel combustion
- Nitrous Oxide (N<sub>2</sub>O)
  - Incomplete reduction of engine out nitrogen oxide (NO) emissions
  - o Primarily emitted during catalyst warm-up
- Hydroflourocarbons (HFC)
  - o Air Conditioning refrigerants

| Climate<br>Pollutants | Lifetime<br>(years) | Global<br>Warming<br>Potential<br>100 years |
|-----------------------|---------------------|---------------------------------------------|
| CO <sub>2</sub>       | ~150                | 1                                           |
| CH <sub>4</sub>       | 12                  | 25                                          |
| N <sub>2</sub> O      | 114                 | 298                                         |
| HFC134a               | 14                  | 1300                                        |

#### 2025 GHG Structure and Overview (Test Cycles)

- Compliance based on composite FTP and Highway test cycles
  - o 0.45 x FTP plus 0.55 x highway





#### 2025 GHG Structure and Overview (CO<sub>2</sub> Footprint Curves)



California Environmental Protection Agency
 D Air Resources Board

#### 2025 GHG Structure and Overview (CO<sub>2</sub> Footprint Curves)



California Environmental Protection Agency
 D Air Resources Board

# 2025 GHG Structure and Overview (CO<sub>2</sub> Footprint Curves)

|        | Passenger Car CO <sub>2</sub> Footprint Curves |       |       |       |       |       |       |       |       |
|--------|------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Coeff. | 2017                                           | 2018  | 2019  | 2020  | 2021  | 2022  | 2023  | 2024  | 2025  |
| а      | 4.53                                           | 4.35  | 4.17  | 4.01  | 3.84  | 3.69  | 3.54  | 3.4   | 3.26  |
| b      | 8.9                                            | 6.5   | 4.2   | 1.9   | -0.4  | -1.1  | -1.8  | -2.5  | -3.2  |
| С      | 195.0                                          | 185.0 | 175.0 | 166.0 | 157.0 | 150.0 | 143.0 | 137.0 | 131.0 |
| d      | 263.0                                          | 250.0 | 238.0 | 226.0 | 215.0 | 205.0 | 196.0 | 188.0 | 179.0 |

Target  $gCO_2/mile = (a \times f) + b$ 

Where: f is vehicle footprint in  $ft^2$  and coefficients a and b are selected from table. Coefficients c and d are lower and upper CO<sub>2</sub> values representing the flat portions of the footprint curves.

|        | Light-Duty Truck CO <sub>2</sub> Footprint Curves |       |       |       |       |       |       |       |       |
|--------|---------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Coeff. | 2017                                              | 2018  | 2019  | 2020  | 2021  | 2022  | 2023  | 2024  | 2025  |
| а      | 4.87                                              | 4.76  | 4.68  | 4.57  | 4.28  | 4.09  | 3.91  | 3.74  | 3.58  |
| b      | 38.3                                              | 31.6  | 27.7  | 24.6  | 19.8  | 17.8  | 16    | 14.2  | 12.5  |
| С      | 238.0                                             | 227.0 | 220.0 | 212.0 | 195.0 | 186.0 | 176.0 | 168.0 | 159.0 |
| d      | 347.0                                             | 342.0 | 339.0 | 337.0 | 335.0 | 321.0 | 306.0 | 291.0 | 277.0 |

a =slope (CO<sub>2</sub> g/mi per square foot) b = intercept (CO<sub>2</sub> g/mi) c = lower limit (CO<sub>2</sub> g/mi) d = upper limit (CO<sub>2</sub> g/mi)

# 2025 GHG Structure and Overview (Fleet Averaging)

- GHG emissions (CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O) for each vehicle model calculated from composite FTP and highway emission values
  - o 0.45 x FTP + 0.55 x highway
- Each vehicle model assigned target CO<sub>2</sub> emissions based on its footprint
  - o Footprint defined as wheelbase times average of front and rear track width
- Each manufacturer has a "target" fleet average CO<sub>2</sub> emission standard based on the sales weighted footprint of their vehicle fleet
  - Separate target fleet average CO<sub>2</sub> standard for passenger car and light-truck fleets
- Compliance with CO<sub>2</sub> standards based on sales weighted fleet average measured CO<sub>2</sub> emissions

#### 2025 GHG Structure and Overview (Credits/Debits)

- Credits are earned when a manufacturers' sales weighted fleet average measured CO<sub>2</sub> emissions are lower than their target fleet average CO<sub>2</sub> standard
- Credits can be carried forward five years and carried back three years
- Credits may be banked for future use or traded or sold to another manufacturer
- Credits earned in one category may be used to offset debits accrued in another category

   i.e., credits earned by passenger cars may offset debits accrued by light-trucks
- Debits are accrued when a manufacturers' sales weighted fleet average CO<sub>2</sub> emissions exceed their target fleet average CO<sub>2</sub> emission standard

#### 2025 GHG Structure and Overview (Fleet Averaging)

| Manufactu     | Manufacturer A 2017 Model Year Passenger Car Fleet Average CO <sub>2</sub> Emissions |                              |                                                             |                                                               |  |  |
|---------------|--------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|--|--|
| Vehicle Model | Sales                                                                                | Footprint (ft <sup>2</sup> ) | Model Target CO <sub>2</sub><br>(g/mi)                      | Measured CO <sub>2</sub> (g/mi)                               |  |  |
| A             | 3,500                                                                                | 42.0                         | 199                                                         | 201                                                           |  |  |
| В             | 2,000                                                                                | 44.5                         | 210                                                         | 209                                                           |  |  |
| С             | 5,300                                                                                | 46.0                         | 217                                                         | 219                                                           |  |  |
| D             | 4,200                                                                                | 48.2                         | 227                                                         | 225                                                           |  |  |
|               | Total                                                                                | Sale Weighted<br>Footprint   | Sales Weighted<br>Target Fleet CO <sub>2</sub><br>Emissions | Sales Weighted<br>Measured Fleet CO <sub>2</sub><br>Emissions |  |  |
|               | 15,000                                                                               | 45.5                         | 215                                                         | 215                                                           |  |  |

| Manufact      | Manufacturer A 2017 Model Year Light-Truck Fleet Average CO <sub>2</sub> Emissions |                              |                                                             |                                                               |  |
|---------------|------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|--|
| Vehicle Model | Sales                                                                              | Footprint (ft <sup>2</sup> ) | Model Target CO <sub>2</sub><br>(g/mi)                      | Measured CO <sub>2</sub> (g/mi)                               |  |
| A             | 3,200                                                                              | 42.6                         | 246                                                         | 239                                                           |  |
| В             | 2,300                                                                              | 49.8                         | 281                                                         | 287                                                           |  |
| С             | 6,000                                                                              | 57.0                         | 311                                                         | 308                                                           |  |
| D             | 4,100                                                                              | 64.2                         | 340                                                         | 349                                                           |  |
|               | Total                                                                              | Sale Weighted<br>Footprint   | Sales Weighted<br>Target Fleet CO <sub>2</sub><br>Emissions | Sales Weighted<br>Measured Fleet CO <sub>2</sub><br>Emissions |  |
|               | 15,600                                                                             | 54.9                         | 302                                                         | 302                                                           |  |

In this case, manufacturer A meets its fleet target  $CO_2$  emissions for both its Passenger Car and Light-Truck fleets because vehicle models that exceed their target  $CO_2$  are offset by vehicle models with lower  $CO_2$  emissions than their target.

#### 2025 GHG Structure and Overview (Fleet Averaging)

| Manufactu     | Manufacturer A 2017 Model Year Passenger Car Fleet Average CO <sub>2</sub> Emissions |                              |                                                |                                                  |  |  |
|---------------|--------------------------------------------------------------------------------------|------------------------------|------------------------------------------------|--------------------------------------------------|--|--|
| Vehicle Model | Sales                                                                                | Footprint (ft <sup>2</sup> ) | Model Target CO <sub>2</sub><br>(g/mi)         | Measured CO <sub>2</sub> (g/mi)                  |  |  |
| A             | 3,500                                                                                | 42.0                         | 199                                            | 201                                              |  |  |
| В             | 2,000                                                                                | 44.5                         | 210                                            | 209                                              |  |  |
| С             | 5,300                                                                                | 46.0                         | 217                                            | 219                                              |  |  |
| D             | 4,200                                                                                | 48.2                         | 227                                            | 225                                              |  |  |
|               | Total                                                                                | Sale Weighted<br>Footprint   | Sales Weighted<br>Target Fleet CO <sub>2</sub> | Sales Weighted<br>Measured Fleet CO <sub>2</sub> |  |  |
|               | 15,000                                                                               | 45.5                         | 215                                            | 215                                              |  |  |

| Manufact      | Manufacturer A 2017 Model Year Light-Truck Fleet Average CO <sub>2</sub> Emissions |                              |                                        |                                 |  |
|---------------|------------------------------------------------------------------------------------|------------------------------|----------------------------------------|---------------------------------|--|
| Vehicle Model | Sales                                                                              | Footprint (ft <sup>2</sup> ) | Model Target CO <sub>2</sub><br>(g/mi) | Measured CO <sub>2</sub> (g/mi) |  |
| A             | 3,200                                                                              | 42.6                         | 246                                    | 252                             |  |
| В             | 2,300                                                                              | 49.8                         | 281                                    | 287                             |  |
| С             | 6,000                                                                              | 57.0                         | 311                                    | 318                             |  |
| D             | 4,100                                                                              | 64.2                         | 340                                    | 361                             |  |
|               |                                                                                    | Salo Woightod                | Sales Weighted                         | Sales Weighted                  |  |
|               | Total                                                                              | Sale Weighteu                | Target Fleet CO <sub>2</sub>           | Measured Fleet CO <sub>2</sub>  |  |
|               |                                                                                    | Footprint                    | Emissions                              | Emissions                       |  |
|               | 15,600                                                                             | 54.9                         | 302                                    | 311                             |  |

In this case, manufacturer A earns no credits for its passenger car fleet but accrues debits equal to 143,400 g/mi  $CO_2$  for its light-truck fleet. Therefore, the manufacturer would be subject to penalties for 475 (143,400/302) noncompliant vehicles if debits not offset within three years.

Fleet average emissions calculation: [(Model A CO<sub>2</sub> x Model A sales)+(Model B CO<sub>2</sub> x Model B sales)+(Model C CO<sub>2</sub> x Model C sales)+(Model D CO2 x Model D sales)]/Total Vehicles

Credit/Debit calculation: (Fleet average requirement – Manufacturer fleet average emissions) x Total vehicles



#### 2025 GHG Structure and Overview (Methane and Nitrous Oxide Standards)

- Separate CH<sub>4</sub> and N<sub>2</sub>O standards
  - o CH<sub>4</sub> standard 30 mg/mi
  - o N<sub>2</sub>O standard 10/mg/mi
- CH<sub>4</sub> and N<sub>2</sub>O fleet averaging program
  - o Manufacturer may choose to include adjusted  $CH_4$  and/or  $N_2O$  emissions with their fleet average  $CO_2$  emissions
    - Emissions adjusted by their GWP ( $CH_4 25$ ,  $N_2O 298$ )
    - This option provided for vehicles failing to meet CH<sub>4</sub> or N<sub>2</sub>O standards

#### 2025 GHG Structure and Overview (Methane and Nitrous Oxide Standards)

- Credits available for several technologies that are not measured over the GHG and fuel economy test cycles
  - Improved air conditioning systems
    - Low leak systems
    - More efficient systems
    - Low GWP refrigerant use
  - o Thermal control technologies
  - o Off-cycle technologies
  - o Hybrid trucks



# 2025 GHG Structure and Overview (GHG Air Conditioning Credits)

| The total credit value for<br>an air conditioning<br>system may not be<br>greater than 5.0 grams<br>per mile for any<br>passenger car or 7.2<br>grams per mile for any<br>light-duty truck or<br>medium-duty passenger<br>vehicle. Can be used<br>until model year 2020. | Air Conditioning Technology                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Passenger<br>Cars (g/mi) | Light-Duty Trucks<br>and MDPV (g/mi) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------|
|                                                                                                                                                                                                                                                                          | Reduced reheat, with externally-controlled, variable-displacement compressor ( <i>e.g.</i> a compressor that controls displacement based on temperature setpoint and/or cooling demand of the air conditioning system control settings inside the passenger compartment).                                                                                                                                                                                                           | 1.5                      | 2.2                                  |
|                                                                                                                                                                                                                                                                          | Reduced reheat, with externally-controlled, fixed-displacement or pneumatic variable displacement compressor ( <i>e.g.</i> a compressor that controls displacement based on conditions within, or internal to, the air conditioning system, such as head pressure, suction pressure, or evaporator outlet temperature).                                                                                                                                                             | 1.0                      | 1.4                                  |
|                                                                                                                                                                                                                                                                          | Default to recirculated air with closed-loop control of the air supply (sensor feedback to control interior air quality) whenever the ambient temperature is 75 °F or higher: Air conditioning systems that operated with closed-loop control of the air supply at different temperatures may receive credits by submitting an engineering analysis to the Administrator for approval.                                                                                              | 1.5                      | 2.2                                  |
|                                                                                                                                                                                                                                                                          | Default to recirculated air with open-loop control air supply (no sensor feedback) whenever the ambient temperature is 75 °F or higher. Air conditioning systems that operate with open-loop control of the air supply at different temperatures may receive credits by submitting an engineering analysis to the Administrator for approval.                                                                                                                                       | 1.0                      | 1.4                                  |
|                                                                                                                                                                                                                                                                          | Blower motor controls which limit wasted electrical energy ( <i>e.g.</i> pulse width modulated power controller).                                                                                                                                                                                                                                                                                                                                                                   | 0.8                      | 1.1                                  |
|                                                                                                                                                                                                                                                                          | Internal heat exchanger ( <i>e.g.</i> a device that transfers heat from the high-pressure, liquid-phase refrigerant entering the evaporator to the low-pressure, gas-phase refrigerant exiting the evaporator).                                                                                                                                                                                                                                                                     | 1.0                      | 1.4                                  |
|                                                                                                                                                                                                                                                                          | Improved condensers and/or evaporators with system analysis on the component(s) indicating a coefficient of performance improvement for the system of greater than 10% when compared to previous industry standard designs).                                                                                                                                                                                                                                                        | 1.0                      | 1.4                                  |
|                                                                                                                                                                                                                                                                          | Oil separator. The manufacturer must submit an engineering analysis demonstrating<br>the increased improvement of the system relative to the baseline design, where the<br>baseline component for comparison is the version which a manufacturer most recently<br>had in production on the same vehicle design or in a similar or related vehicle model.<br>The characteristics of the baseline component shall be compared to the new<br>component to demonstrate the improvement. | 0.5                      | 0.7                                  |

California Environmental Protection Agency

# 2025 GHG Structure and Overview (GHG Air Conditioning Credits)



Cycle performed with A/C on, then with A/C off, total test time 4 h

AC17, a new drive cycle for A/C fuel consumption, required from 2017-2025. The AC17 regulation prescribes a lengthy test as of 2017 for improved AC efficiency, although some engineering analysis is permitted in lieu of baseline test data. For 2020-2025, AC17 test data must be used to demonstrate reduced  $CO_2$  emissions in order to receive AC efficiency credits. by performing baseline and improved vehicle tests.

# 2025 GHG Structure and Overview (GHG Air Conditioning Credits)

Low global warming potential refrigerant replacement (GWP) – replaces conventional refrigerant HFC-134a with lower global warming potential refrigerants such as HFO-1234yf, CO<sub>2</sub>, HFC-152a. Technologies are provided a system of credits, up to approximately 14-17 gCO<sub>2</sub>e/mile for cars and trucks.

| Refrigerant     | GWP   |
|-----------------|-------|
| HFC–134a        | 1,430 |
| HFC–152a        | 124   |
| HFO-1234yf      | 4     |
| CO <sub>2</sub> | 1     |



#### 2025 GHG Structure and Overview (Thermal Control Credits)

The maximum credit allowed for thermal control technologies is limited to 3.0 g/mi for passenger cars and to 4.3 g/mi for light-duty trucks and medium-duty passenger vehicles. The maximum credit allowed for glass or glazing is limited to 2.9 g/mi for passenger cars and to 3.9 g/mi for light-duty trucks and medium-duty passenger vehicles.

| Thermal Control<br>Technology | Credit value:<br>Passenger Cars<br>(g/mi) | Credit Value: Light-Duty<br>Trucks and Medium-Duty<br>Passenger Vehicles (g/mi) |
|-------------------------------|-------------------------------------------|---------------------------------------------------------------------------------|
| Glass or glazing              | ≤2.9                                      | ≤3.9                                                                            |
| Active seat ventilation       | 1.0                                       | 1.3                                                                             |
| Solar reflective paint        | 0.4                                       | 0.5                                                                             |
| Passive cabin ventilation     | 1.7                                       | 2.3                                                                             |
| Active cabin ventilation      | 2.1                                       | 2.8                                                                             |

# 2025 GHG Structure and Overview (Off-Cycle Credits)

A manufacturer may generate a CO<sub>2</sub> gram/mile credit for certain technologies as specified in the table, provided that each technology is applied to the minimum percentage of the manufacturer's total U.S. production of passenger cars, light-duty trucks, and mediumduty passenger vehicles specified in the table in each model year for which credit is claimed. A manufacturer may earn up to 10 g/mi CO<sub>2</sub> credit for any passenger car or lightduty truck.

| Off-Cycle<br>Technology              | Passenger Cars<br>(g/mi) | Light-Duty Trucks<br>and Medium-Duty<br>Passenger Vehicles<br>(g/mi) | Minimum percent<br>of U.S. production |
|--------------------------------------|--------------------------|----------------------------------------------------------------------|---------------------------------------|
| Active<br>aerodynamics               | 0.6                      | 1.0                                                                  | 10                                    |
| High efficiency<br>exterior lighting | 1.1                      | 1.1                                                                  | 10                                    |
| Engine heat<br>recovery              | 0.7 per 100W of capacity | 0.7 per 100W of capacity                                             | 10                                    |
| Engine start-stop<br>(idle-off)      | 2.9                      | 4.5                                                                  | 10                                    |
| Active<br>transmission<br>warm-up    | 1.8                      | 1.8                                                                  | 10                                    |
| Active engine<br>warm-up             | 1.8                      | 1.8                                                                  | 10                                    |
| Electric heater<br>circulation pump  | 1.0                      | 1.5                                                                  | n/a                                   |
| Solar roof panels                    | 3.0                      | 3.0                                                                  | n/a                                   |
| Thermal control                      | ≤3.0                     | <u>≤</u> 4.3                                                         | n/a                                   |

# 2025 GHG Structure and Overview (Hybrid Truck Credits)

Full-size pickup trucks that are mild hybrid gasolineelectric vehicles and that are produced in the 2017 through 2021 model years are eligible for a credit of 10 grams/mile. To receive this credit, the manufacturer must produce a quantity of mild hybrid full-size pickup trucks such that the proportion of production of such vehicles, when compared to the manufacturer's total production of full-size pickup trucks, is not less than the amount specified in the table for each model year.



| Model year | Required minimum percent of |  |  |
|------------|-----------------------------|--|--|
|            | full-size pickup trucks     |  |  |
| 2017       | 30%                         |  |  |
| 2018       | 40%                         |  |  |
| 2019       | 55%                         |  |  |
| 2020       | 70%                         |  |  |
| 2021       | 80%                         |  |  |

 California has its own vehicle GHG and smog label, but allows use of the federal GHG and fuel economy label



California vehicle environmental label ratings

| Grams per mile CO <sub>2</sub> - | Global Warming Score |
|----------------------------------|----------------------|
| equivalent combined              |                      |
| Less than 200                    | 10                   |
| 200-239                          | 9                    |
| 240-279                          | 8                    |
| 280-319                          | 7                    |
| 320-359                          | 6                    |
| 360-399                          | 5                    |
| 400-439                          | 4                    |
| 440-479                          | 3                    |
| 480-519                          | 2                    |
| 520 and up                       | 1                    |

| California Emissions Category–<br>Federal Bins | NMOG + NOx<br>(g/mile) | Smog Score |
|------------------------------------------------|------------------------|------------|
| ZEV – Bin 1                                    | 0.0                    | 10         |
| PZEV                                           | 0.030                  | 9          |
| SULEV – Bin 2                                  | 0.030                  | 8          |
| Bin 3                                          | 0.085                  | 7          |
| Bin 4                                          | 0.110                  | 6          |
| ULEV                                           | 0.125                  | 5          |
| LEV – Bin 5                                    | 0.160                  | 4          |
| [LEV (option 1) – Bin 6] and<br>[SULEV (MDPV)] | 0.190 – 0.200          | 3          |
| Bin 7                                          | 0.240                  | 2          |
| ULEV (MDPV) – Bin 8a                           | 0.325                  | 1          |





**9 R**ating for vehicle tailpipe emissions of those pollutants that cause smog and other local air pollution. Displayed using a slider bar with a scale of 1 (worst) to 10 (best). The scale is based on the U.S. vehicle criteria emissions standards. For those vehicles that run on electricity, the tailpipe emissions are zero.

California Environmental Protection Agency

**10** Indicates that fuel economy and emissions may be different due to how a vehicle is driven and maintained, air conditioning use and other factors.

**11** A scan able **Q**R Code® link to helpful tools and additional information about the vehicle

**12** The label directs you to the fueleconomy.gov web site, where you can compare vehicles and enter personalized information (e.g., local gas prices and individual driving habits) to get the best possible cost and energy-use estimates.

1 Vehicle Technology & Fuel

**2.** Fuel Economy

**3** Indicates the category of the vehicle (e.g., Small SUV, Station Wagon, Pickup Truck, etc.) and the best and worst fuel economy within that category for the given model year. There are nine car categories, six truck categories, and a "special purpose vehicle"

**4** shows the estimated fuel cost over a five-year period for the vehicle compared to the average new vehicle

**5** Fuel consumption rate

**6** The annual fuel cost is based on two assumptions: an annual mileage of 15,000 miles and a projected gasoline price.

7 The new label assigns each vehicle a rating from 1 (worst) to 10 (best) for fuel economy and greenhouse gas (GHG) emissions (i.e., how much carbon dioxide the vehicle's tailpipe emits each mile), as shown below. There are two ratings that apply to each vehicle—one for fuel economy and one for greenhouse gas emissions—but gasoline vehicles will display only one rating. This is because carbon dioxide emissions are directly related to the amount of fuel consumed. This relationship varies from fuel to fuel, but both rating systems are based on gasoline vehicles, meaning that gasoline vehicles get the same rating for fuel economy and for greenhouse gas emissions.

 $\label{eq:combined_city/highway_CO_2} \underbrace{ tailpipe emissions}_2 tailpipe emissions are based on$ 

tested tailpipe  $CO_2$  emission rates. The rate of  $CO_2$  emissions is displayed in grams per mile.

Vehicle with lowest CO2 emissions

The label identifies the lowest tailpipe  $CO_2$  emissions of available vehicles. If there are electric or fuel cell vehicles on the market, which by definition have zero tailpipe emissions, this value will be zero grams per mile.

 Federal vehicle fuel economy and environmental label ratings

| Grams per<br>mile CO <sub>2</sub> -<br>equivalent<br>combined | Fuel<br>Economy<br>(mpg) | Global<br>Warming<br>Score |
|---------------------------------------------------------------|--------------------------|----------------------------|
| Less than 200                                                 | 45                       | 10                         |
| 200-243                                                       | 37-44                    | 9                          |
| 244-291                                                       | 31-36                    | 8                          |
| 292-335                                                       | 27-30                    | 7                          |
| 336-378                                                       | 24-26                    | 6                          |
| 379-456                                                       | 20-23                    | 5                          |
| 457-539                                                       | 17-19                    | 4                          |
| 540-613                                                       | 15-16                    | 3                          |
| 614-658                                                       | 14                       | 2                          |
| 659 and up                                                    | ≤13                      | 1                          |

| California Emissions Category–<br>Federal Bins | NMOG + NOx<br>(g/mile) | Smog Score |
|------------------------------------------------|------------------------|------------|
| ZEV – Bin 1                                    | 0.0                    | 10         |
| PZEV                                           | 0.030                  | 9          |
| SULEV – Bin 2                                  | 0.030                  | 8          |
| Bin 3                                          | 0.085                  | 7          |
| Bin 4                                          | 0.110                  | 6          |
| ULEV                                           | 0.125                  | 5          |
| LEV – Bin 5                                    | 0.160                  | 4          |
| [LEV (option 1) – Bin 6] and<br>[SULEV (MDPV)] | 0.190 – 0.200          | 3          |
| Bin 7                                          | 0.240                  | 2          |
| ULEV (MDPV) – Bin 8a                           | 0.325                  | 1          |

 Off-the-shelf low-GHG technology becomes commonplace



California Environmental Protection Agency
 Air Resources Board

| CO <sub>2</sub> Reduction from Individual Technologies from 2008 |                                      |              |                 |                            |                            |  |  |
|------------------------------------------------------------------|--------------------------------------|--------------|-----------------|----------------------------|----------------------------|--|--|
| Reference                                                        |                                      |              |                 |                            |                            |  |  |
| Area                                                             | Technology                           | Small<br>car | Mid-size<br>car | Small light-<br>duty truck | Large light-<br>duty truck |  |  |
|                                                                  | Engine friction reduction            | 3.5%         | 4.5%            | 3.4%                       | 4.2%                       |  |  |
|                                                                  | Cylinder deactivation                | -            | 6.1%            | 4.7%                       | 5.7%                       |  |  |
|                                                                  | Discrete cam phasing (DCP)           | 4.1%         | 5.2%            | 4.1%                       | 4.9%                       |  |  |
| Engine                                                           | Discrete variable valve lift (DVVL)  | 4.1%         | 5.2%            | 4.0%                       | 4.9%                       |  |  |
| Technologies                                                     | sGDI (18-bar, 33% downsize)          | 12.2%        | 14.2%           | 12.1%                      | 13.6%                      |  |  |
|                                                                  | sGDI+DCP+DVVL (18-bar, 33% TDS)      | 14.9%        | 17.5%           | 14.8%                      | 16.8%                      |  |  |
|                                                                  | cEGR sGDI+DCP+DVVL (27-bar, 56% TDS) | 21.4%        | 24.3%           | 21.2%                      | 23.5%                      |  |  |
|                                                                  | Compression-ignition DCP diesel      | 19.8%        | 21.3%           | 19.1%                      | 21.3%                      |  |  |
|                                                                  | Torque convertor lock-up             | 0.4%         | 0.5%            | 0.5%                       | 0.5%                       |  |  |
|                                                                  | Aggressive shift logic               | 2.0%         | 2.5%            | 1.9%                       | 2.4%                       |  |  |
|                                                                  | High efficiency gearbox              | 3.3%         | 3.9%            | 3.8%                       | 4.3%                       |  |  |
| Terrereiterien                                                   | Optimized shifting                   | 5.2%         | 6.6%            | 5.1%                       | 6.2%                       |  |  |
| Technologies                                                     | 6-speed automatic                    | 1.8%         | 2.2%            | 1.7%                       | 2.1%                       |  |  |
| reennologics                                                     | 8-speed automatic                    | 6.5%         | 7.8%            | 6.8%                       | 7.8%                       |  |  |
|                                                                  | Wet dual clutch 8-speed              | 9.7%         | 11.5%           | 10.5%                      | 11.9%                      |  |  |
|                                                                  | Dry dual clutch 8-speed              | 10.3%        | 12.2%           | 11.1%                      | 12.6%                      |  |  |
|                                                                  | Continuously variable                | 11.0%        | 6.3%            | 6.0%                       | / / /                      |  |  |

California Environmental Protection Agency
 D Air Resources Board

| $CO_2$ Reduction from Individual Technologies from 2008 |                                                     |                   |       |                              |                              |  |  |
|---------------------------------------------------------|-----------------------------------------------------|-------------------|-------|------------------------------|------------------------------|--|--|
| Reference                                               |                                                     |                   |       |                              |                              |  |  |
| Area                                                    | Technology                                          | logy Small<br>car |       | Small<br>light-duty<br>truck | Large<br>light-duty<br>truck |  |  |
|                                                         | Low drag brakes                                     | 0.8%              | 0.8%  | 0.8%                         | 0.8%                         |  |  |
|                                                         | Secondary axle disconnect                           | 1.2%              | 1.4%  | 1.4%                         | 1.6%                         |  |  |
|                                                         | Electric power steering                             | 1.5%              | 1.3%  | 1.2%                         | 0.8%                         |  |  |
|                                                         | Improved accessory efficiency                       | 3.3%              | 3.0%  | 2.6%                         | 3.5%                         |  |  |
| Vehicle Load<br>and Accessory<br>Technologies           | Mass reduction (-10% curb mass)                     | 5.1%              | 5.1%  | 5.1%                         | 5.1%                         |  |  |
|                                                         | Mass reduction (-20% curb mass)                     | 10.4%             | 10.4% | 10.4%                        | 10.4%                        |  |  |
|                                                         | Tire low rolling resistance (-10% $C_{rr}$ )        | 1.9%              | 1.9%  | 1.9%                         | 1.9%                         |  |  |
|                                                         | Tire low rolling resistance (-20% C <sub>rr</sub> ) | 3.9%              | 3.9%  | 3.9%                         | 3.9%                         |  |  |
|                                                         | Aerodynamics (-10% $C_{a}A$ )                       | 2.3%              | 2.3%  | 2.3%                         | 2.3%                         |  |  |
|                                                         | Aerodynamics (-20% $C_{a}A$ )                       | 4.7%              | 4.7%  | 4.7%                         | 4.7%                         |  |  |
|                                                         | 12V stop-start                                      | 6.1%              | 6.8%  | 5.6%                         | 6.5%                         |  |  |
| Hybrid system                                           | High-voltage belt-alternator system                 | 7.4%              | 7.6%  | 6.8%                         | 8.0%                         |  |  |
| l echnologies                                           | Parallel hybrid (23-40 kW)                          | 34.3%             | 34.6% | 32.8%                        | 31.9%                        |  |  |
| Reference                                               | Test weight (lb)                                    | 2625              | 3625  | 4000                         | 6000                         |  |  |
| Vehicle                                                 | Rated power (hp)                                    | 106               | 158   | 169                          | 300                          |  |  |
| Characteristics                                         | Rated torque (ft-lb)                                | 103               | 161   | 161                          | 365                          |  |  |

California Environmental Protection Agency

O Air Resources Board

Technology packages for GHG emission reduction from mid-size car (each successive package moving right includes applicable previous technologies)



#### Larger (more readable) version





Incremental Vehicle Price Increase in Year 2012 for CO<sub>2</sub>-reduction Technologies (\$)

| Area         | Technology                                        |      | Mid-size<br>car | Small<br>light-duty<br>truck | Large light-<br>duty truck |
|--------------|---------------------------------------------------|------|-----------------|------------------------------|----------------------------|
|              | Engine friction reduction (EFR)                   | 124  | 182             | 182                          | 240                        |
|              | Cylinder deactivation                             | -    | 214             | 214                          | 241                        |
|              | Discrete cam phasing (DCP)                        | 104  | 104             | 224                          | 224                        |
| Engine       | Discrete variable valve lift (DVVL)               | 178  | 259             | 259                          | 369                        |
| Technologies | sGDI (18-bar, 33% downsize)                       | 305  | 305             | 305                          | 459                        |
| Ū            | sGDI+DCP+DVVL (18-bar, 33% TDS*)                  | 578  | 578             | 578                          | 974                        |
|              | cEGR+sGDI+DCP+DVVL (27-bar, 56% TDS*)             | 1445 | 1445            | 1445                         | 2435                       |
|              | Compression-ignition diesel (with aftertreatment) | 3261 | 3994            | 3268                         | 4569                       |
|              | Torque convertor lock-up                          | 33   | 33              | 33                           | 33                         |
|              | Aggressive shift logic (ASL)                      | 36   | 36              | 36                           | 36                         |
|              | High efficiency gearbox (HEG)                     | 282  | 282             | 282                          | 282                        |
| Transmission | Optimized shifting                                | 38   | 38              | 38                           | 38                         |
| Technologies | 6-speed automatic                                 | -11  | -11             | -11                          | -11                        |
|              | 8-speed automatic                                 | 77   | 77              | 77                           | 77                         |
|              | Wet dual clutch 8-speed                           | 52   | 52              | 52                           | 52                         |
|              | Dry dual clutch 8-speed (8sp DCT)                 | -20  | -20             | -20                          | -20                        |
|              | Continuously variable                             | 243  | 284             | 284                          |                            |

California Environmental Protection Agency
 Air Resources Board

\*Turbo charged and downsized

#### Incremental Vehicle Price Increase in Year 2012 for CO<sub>2</sub>-reduction Technologies (\$)

| Area                                                                                                         | Technology                                                                                   | Small<br>car | Mid-size<br>car | Small light-<br>duty truck | Large light-duty<br>truck |
|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------|-----------------|----------------------------|---------------------------|
|                                                                                                              | Low drag brakes (LDB)                                                                        | 73           | 73              | 73                         | 73                        |
|                                                                                                              | Secondary axle disconnect (SAX)                                                              | 0            | 0               | 0                          | 108                       |
|                                                                                                              | Electric power steering (EPS)                                                                | 121          | 121             | 121                        | 121                       |
| Vahiala Lood                                                                                                 | Improved accessories (IAAC)                                                                  | 158          | 158             | 158                        | 158                       |
|                                                                                                              | Mass reduction (-10% curb mass)                                                              | 94           | 109             | 125                        | 171                       |
| Accessory<br>TechnologiesMass reduction (-20% curb mass)Tire low rolling resistance (-10% $C_{rr}$ ) (LRRT1) |                                                                                              | 417          | 482             | 552                        | 756                       |
|                                                                                                              |                                                                                              | 7            | 7               | 7                          | 7                         |
|                                                                                                              | Tire low rolling resistance (-20% $C_{rr}$ ) (LRRT2)                                         | 72           | 72              | 72                         | 72                        |
|                                                                                                              | Aerodynamics (-10% C <sub>d</sub> A) (Aero1)<br>Aerodynamics (-20% C <sub>d</sub> A) (Aero2) |              | 54              | 54                         | 54                        |
|                                                                                                              |                                                                                              |              | 234             | 234                        | 234                       |
| Hybrid System                                                                                                | 12V stop-start                                                                               | 573          | 650             | 650                        | 713                       |
|                                                                                                              | High-voltage belt-alternator                                                                 | 2,358        | 2,497           | 2,497                      | 2,774                     |
| Parallel hybrid (23-40 kW electric motor size)                                                               |                                                                                              | 4,408        | 4,997           | 4,824                      | 5,174                     |
| Reference                                                                                                    | Test weight (lb)                                                                             | 2,625        | 3,625           | 4,000                      | 6,000                     |
| Vehicle                                                                                                      | Rated power (hp)                                                                             | 106          | 158             | 169                        | 300                       |
| Characteristics                                                                                              | Rated torque (ft-lb)                                                                         | 103          | 161             | 161                        | 365                       |

Note: All potential incremental prices are in 2009 dollars and are from 2008 US baseline technology and include indirect cost multipliers for warranty, overhead, research and development, profit, etc; prices are for year 2012, and therefore time- and volume-based learning reduced incremental prices from 2012 through 2025 are not included.

California Environmental Protection Agency

#### 2025 GHG Structure and Overview

#### (Vehicle GHG Technology Costs)

Summary sample technology package effectiveness, price, lifetime savings, payback period for mid-size vehicle versus 2008 baseline technology

| Technology package                                                                                           | GHG<br>reduction<br>from<br>baseline | Incremental<br>price in<br>2012 | Incremental<br>price in<br>2020 | Incremental<br>price in<br>2025 | Lifetime<br>consumer<br>fuel<br>savings | Benefit/<br>cost | Consumer<br>payback period<br>(years) |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------|---------------------------------|---------------------------------|-----------------------------------------|------------------|---------------------------------------|
| Base: 3.3L 4V DOHC V6, 4sp AT                                                                                | 0.0%                                 | \$0                             | \$0                             | \$0                             | \$0                                     | -                | 0                                     |
| 4V DOHC V6, EFR2, LDB, ASL2, IACC, EPS, Aero1, LRRT1,<br>HEG, 6sp DCT, 5% mass                               | 27.3%                                | \$782                           | \$676                           | \$627                           | \$7,263                                 | 11.6             | 1                                     |
| 4V DOHC I4, EFR2, LDB, ASL2, IACC, EPS, Aero1, LRRT1,<br>HEG, DCP, GDI, TDS18, 6sp DCT, 5% mass              | 37.4%                                | \$1,365                         | \$1,101                         | \$1,039                         | \$9,953                                 | 9.6              | 1                                     |
| 4V DOHC I4, EFR2, LDB, ASL2, IACC, EPS, Aero1, LRRT1,<br>HEG, DCP, GDI, TDS18, 8sp DCT, 5% mass              | 39.4%                                | \$1,519                         | \$1,234                         | \$1,153                         | \$10,479                                | 9.1              | 1                                     |
| 4V DOHC I4, EFR2, LDB, ASL2, IACC2, EPS, Aero2, LRRT2,<br>HEG, DCP, GDI, TDS18, 8sp DCT, 5% mass             | 42.6%                                | \$1,825                         | \$1,491                         | \$1,367                         | \$11,341                                | 8.3              | 1                                     |
| 4V DOHC I4, EFR2, LDB, ASL2, IACC2, EPS, Aero2, LRRT2,<br>HEG, DCP, GDI, TDS18, 8sp DCT, 10% mass            | 44.2%                                | \$1,915                         | \$1,562                         | \$1,431                         | \$11,761                                | 8.2              | 1                                     |
| 4V DOHC I4, EFR2, LDB, ASL2, IACC2, EPS, Aero2, LRRT2,<br>HEG, DCP, GDI, TDS18, 8sp DCT, 15% mass            | 45.8%                                | \$2,094                         | \$1,717                         | \$1,556                         | \$12,187                                | 7.8              | 1                                     |
| 4V DOHC I4, EFR2, LDB, ASL2, IACC2, EPS, Aero2, LRRT2,<br>HEG, DCP, GDI, SAX, TDS18, 8sp DCT, 15% mass       | 46.1%                                | \$2,202                         | \$1,804                         | \$1,636                         | \$12,277                                | 7.5              | 1                                     |
| 4V DOHC I4, EFR2, LDB, ASL2, IACC2, EPS, Aero2, LRRT2,<br>HEG, DCP, DVVL, GDI, SAX, TDS18, 8sp DCT, 15% mass | 46.6%                                | \$2,381                         | \$1,946                         | \$1,767                         | \$12,393                                | 7.0              | 2                                     |
| 4V DOHC I4, EFR2, LDB, ASL2, IACC2, EPS, Aero2, LRRT2,<br>HEG, DCP, GDI, TDS24, EGR, 8sp DCT, 10% mass       | 48.0%                                | \$2,540                         | \$2,140                         | \$1,891                         | \$12,770                                | 6.8              | 2                                     |
| 4V DOHC I4, EFR2, LDB, ASL2, IACC2, EPS, Aero2, LRRT2, HEG, DCP, GDI, TDS24, EGR, 8sp DCT, 15% mass          | 49.5%                                | \$2,719                         | \$2,295                         | \$2,015                         | \$13,166                                | 6.5              | 2                                     |
| 4V DOHC I4, EFR2, LDB, ASL2, IACC2, EPS, Aero2, LRRT2,<br>HEG, DCP, GDI, SAX, TDS24, EGR, 8sp DCT, 15% mass  | 49.8%                                | \$2,827                         | \$2,382                         | \$2,096                         | \$13,250                                | 6.3              | 2                                     |

Notes: 6sp = 6sp transmission (DCT-wet for vehicle type 3); 8sp = 8 speed DCT-wet; Aero = aerodynamic treatments; ASL = aggressive shift logic; AT = auto trans; DCP = dual cam phasing; DCT = dual clutch trans; DOHC = dual overhead cam; EFR = engine friction reduction; EGR = exhaust gas recirculation; EPS = electric power steering; GDI = stoich gasoline direct injection; HEG = high efficiency gearbox; IACC = improved accessories; LDB = low drag brakes; LRRT = lower rolling resistance tires; SAX = secondary axle disconnect; TDS18/24/27 = turbocharged & downsized 18 bar BMEP/24 bar BMEP/27 bar BMEP. "1" and "2" suffixes to certain technologies indicate the first level versus the second level of the technology.

- California Environmental Protection Agency
  - **O** Air Resources Board

- Regulations impose increasing costs from 2016 to 2025 •
  - o Incremental 2025 price increase to consumers: \$1,900/vehicle
  - o At \$1,900/vehicle, vehicle prices would increase by about 8%
  - Fuel savings are 3 times greater than cost; payback period is within 3 years



#### 2025 GHG Structure and Overview (California Consumer Impact)

- Average 2025 vehicle consumer impact:
  - Consumer savings greatly outweigh the cost (by 3-to-1 margin)
  - o "Off the lot" savings from the first month
  - o Overall payback within first vehicle purchaser

|                                  | Incremental technology price | \$1,900 |
|----------------------------------|------------------------------|---------|
| Lifetime effect<br>per vehicle   | Lifetime savings             | \$5,900 |
|                                  | Net lifetime savings         | \$4,000 |
|                                  | Payback period               | 3 years |
| Monthly effects                  | Increased monthly payment    | \$35    |
| for financed<br>vehicle purchase | Monthly fuel savings         | \$48    |
|                                  | Net monthly savings          | \$12    |

Note: values may not match due to rounding

#### 2025 GHG Structure and Overview (California Economic Impact)

- The regulations impact the economy in several ways
  - o Increased vehicle prices, reduced fuel expenditures
  - Fuel savings spent throughout other sectors of the economy
- Projected impacts in year 2030
  - o Positive effect on overall California economy

|                         | Economic benefits<br>from Advanced<br>Clean Car program | Improvement from<br>baseline California<br>economic activity |
|-------------------------|---------------------------------------------------------|--------------------------------------------------------------|
| Overall economic output | \$14 billion                                            | 0.3%                                                         |
| Personal income         | \$6 billion                                             | 0.2%                                                         |
| Employment              | 37,000                                                  | 0.2%                                                         |

# LEV III Criteria and GHG Program

- Good for public health and environment
  - o Reduces GHG and smog forming emissions

#### Good for consumers

- o Preserves consumer choice
- o Net savings
- Good for California economy
  - o Increases jobs and personal income