

Test Experience for Harbor craft and Ocean Going Vessels to 2011

Ocean Going Vessels: main engines Feb 04 Container Ship I Oct 06 Container Ship IV Feb 07 Oil tanker July 07 Container Ship I Sept 07 Container Ship IV Sept 08 Container Ship IV Jun 09 Container Ship IV Aug 09 Container Ship IV Apr 10 Container Ship V Sept 10 Container Ship VI (Tier1) Ocean Going Vessels: auxiliary engines Feb 04 Container Ship I May 05 Container Ship II July 05 Container Ship II Oct 05 Container Ship II Dec 05 Container Ship II Dec 05 Container Ship III Mar 06 Container Π Ship

Oct 06 Container Ship IV Nov 06 RORO Feb 07 Oil tanker Apr 10 Container Ship V Ocean Going Vessels: auxiliary boiler Feb 07 Oil tanker Sept 07 Container ship IV Harbor Craft: main & auxiliary engines Mar 06 Ferry exhaust control Jun 06 Shuttle: Biodiesel Aug 06 Activity studies Sept 06 Dredger: engine control Oct 06 Dredger: exhaust control Oct 08 Workboat: T2 & biodiesel Feb 09 Ferry: T2 & biodiesel -Sept 09 AZ Shuttle: T2 & biodiesel Oct 10 First hybrid tug Sept 11 Great Lakes vessel + algal fuel Dec 11 Retrofit tug

Developing Emission Factors

• Required for inventory and...

College of Engineering- Center for Environmental Research & Technology

- Planning air quality control strategies
- Assessing air quality control effectiveness

 $E = EF \times P \times LF \times Activity \times (1 - Control)$

Where, E total emissions from a source (g/day)

- EF Emission Factor (g/kW-hr)
- P Maximum rated power (kW)
- LF Load factor (fraction of maximum rated power)Activity is expressed in hours per dayControl is emissions reductions due to control technology

Discussion Topics

- Develop test protocols for measuring emission factors for:
 - Regulated emissions (criteria pollutants)
 - Greenhouse gases
 - Non-regulated emissions:
 - e.g., hazardous air pollutants (HAPs)
- Measure the efficiency of control technology
- Frontier measurements: in-use or real time emissions; health effects, ...

Measuring Emission Factors

- Pre-meeting with vessel crew to review:
 - Safety and environmental policies
 - Location of sample ports
 - Identification of utilities and ratings for electrical and compressed air
 - Location of fueling sites if fuel study
- First test day:
 - Install emission equipment
 - Measure engine map & check emission equipment.
- Specify engine operating conditions & test matrix
- Fix test schedule of the time at various loads.

Measuring Emission Factors

- Propulsion engine operation (AE different)
 - Near term: follow ISO 8178-4 cycle for comparison
 - Longer term: follow actual in-use conditions
- Gases monitored by ISO/EPA methods - NO, Chemiluminescence detector
 - NO_{x} $- CO, CO_{2}$
 - HCs

- Non dispersive infrared GC/FID
- SOx Calculate from fuel
- Particulate matter (PM)
 - Use ISO 8178-1 partial dilution method for mass
 - Other methods used for PM speciation.
- Emission factor determined from power setting, calculated mass flow & emission concentration.

PM Measurements of Diesel Exhaust is Complex

Emission Measurement System

7

Learned Lesson : Measure PM without a Transfer Tube

JCR College of Engineering- Center for Environmental Research & Technology

Study 1: Test Engines for Ocean Going Vessel

- Main Engine (ME)
 - Sulzer 6RTA72
 - 21000 hp, ~90 rpm
 - Displacement: 1,018 liters/ cylinder X 6 cylinders
- Auxiliary Engine (AE)
 - Wartsila Vasa 6R22/26
 - $-900 \text{ kW}, \sim 1500 \text{ rpm}$
 - Displacement: 9.88 liters/ cylinder X 6 cylinders
- Boiler
 - ADM 707
 - Dry weight: 70.2 ton

Test at Loads of International Standard Cycles

• Test Cycle for Main Engines

Mode	1	2	3	4
Power (%)	100	75	50	25
Speed (%)	100	91	80	63
Weighting Factor	0.2	0.5	0.15	0.15

ISO 8178 -E3

• Test Cycle for Auxiliary Engines

ISO 8178 - D2

Mode number	Engine Speed	Observed Torque (rpm)	Minimum time in mode (min)	Weighting factors
1	Rated	100	5.0	0.05
2	Rated	75	5.0	0.25
3	Rated	50	5.0	0.30
4	Rated	25	5.0	0.30
5	Rated	10	5.0	0.10

Ship Emission Factors: PM Fractions

- Hydrated sulfate (75%) + EC (5%) + OC (25%) ≈ PM
- Sulfur from fuel to Sulfate Conversion

•Main Engine : 1.4% to 5% as engine load increased from 25% to 75%

•Auxiliary Engine : 1.9% to 3.9% as engine load increased from 25% to 85%

CR College of Engineering- Center for Environmental Research & Technology Compare PM Emission Factor: Measured vs. Estimated

¹ from CARB "Emissions Estimation Methodology for Ocean-Going Vessels," October, 2005 (transit/maneuvering modes, corr. from 2.5 wt. % to 2.85 wt.% S fuel)

2 from US EPA "Current Methodologies and Best Practices in Preparing Port Emission Inventories," January, 2006 (corr. from 2.7 wt.% to 2.85 wt.% S fuel)

3 from reference (2), corr. to 13% load

4 from Environ/EPA calculation based on brake-specific fuel consumption and 2.85 wt. % S fuel

Emission Factors: Aldehydes & Ketones

Formaldehyde Acetaldehyde Acetone Acrolein Propionaldehyde Crotonaldehyde Methacrolein MEK Butyraldehyde Benzaldehyde Valeraldehyde Hexaldehyde

Ship Emission Factors: PAHs

PAH distribution is similar to heavy-duty trucks burning conventional diesel fuel

Study 2: Benefits of Hybrid Tug

Operating Modes

C R College of Engineering- Center for Environmental Research & Technology

- Shore Power
- Dock
- Standby
- Transit
- Ship Assist
- Barge Move

College of Engineering- Center for Environmental Research & Technology Goal 1: Measure Activity via Data Logging an Operating Hybrid Tug

Total Sample Time ~46 days including a 1.5 days (~10 Ship Assists) of data logging **without use of a Battery**.

Goal 2: Measure Emissions of Tug Engines

Emission Factors for Certification Cycle

In-use or Real-world Testing

Study 3: In-use Gas & PM Emissions Main Propulsion Engine (OGV)

Study 4: Emissions for Ferry on Biodiesel

In-Use Emissions for Biodiesel

Going into tidal & river flow of a bay increases emissions for vessel at constant speed.

With increasing load, ultrafine particles disappear

Biodiesel

Particle Size Distribution

Biodiesel facilitates formation of nucleation mode particles B0 and B20 OC/EC ratios: ~ 2.5 @ 25% load, ~1.0 @ other loads B50 OC/EC ratio: ~4.5 @ 25% load, ~1.4 @ other loads

Study 5: Simultaneous Ship & Airborne Emission Measurements

Size Segregated Speciated PM

Chemically Resolved Mass Distribution for Ship Exhaust Aerosol*

Summary

- Findings to date:
 - Developed gaseous and PM monitoring equipment suitable for marine vessels.
 - Gaseous and PM emission factors in the field are repeatable and match manufacturer values.
 - Exploratory research on in-use emissions is promising.
- Future work:
 - Carry out more real-time/in-use measurements.
 - Measure emissions related to climate change
 - Develop projects with health experts

Take Home Ideas

- Pre-test inspection and meeting is essential
 - Discuss proposed test matrix with operating crew
 - Identify sampling ports and utilities
- Anticipate difficulty

College of Engineering- Center for Environmental Research & Technology

- Operational and safety concerns may limit testing
 Have back up plans for critical equipment
- Maximize sampling opportunities
 - Rare opportunity with important source
 - Minor incremental cost of extra sample media and instruments
- Look to new trends
 - New fuels, black/brown carbon, aftertreament

Thank You; Any Questions?

