
International Workshop Greenhouse gas reduction potential and costs of light-duty vehicle technologies

prepared for:

Brussels, 01.02.2012

FEV Agenda

- FEV Introductions
- FEV Company Profile
- EPA Work Scope & Key Deliverables
- EPA Cost Analysis Methodology
- ICCT Work Scope & Key Deliverables
- ICCT Cost Analysis Methodology (Phase 1)
 - Methodology Overview
 - Database Conversion Process
- ICCT Phase 1 Project Results
- ICCT Phase 2 Project Work Scope
 - Project Work Scope Overview
 - Technologies Under Evaluation

Q&A

FEV worldwide

... Turning innovative ideas into reality

Company profile

- Founded in 1978
- Independent family-owned company
- Working for major car and engine manufacturers worldwide
- Close collaboration with the Technical University in Aachen
- 2,100 employees
- > 110 engine / powertrain test cells
- Innovative: >1300 patents

Engineering services and products

- Automotive and commercial vehicles
 - Engine and powertrain
 - Vehicle integration, application and electronics
 - Test systems
- Advanced applications in aeronautics and transportations
- Clean energy, energy industry

Executive board

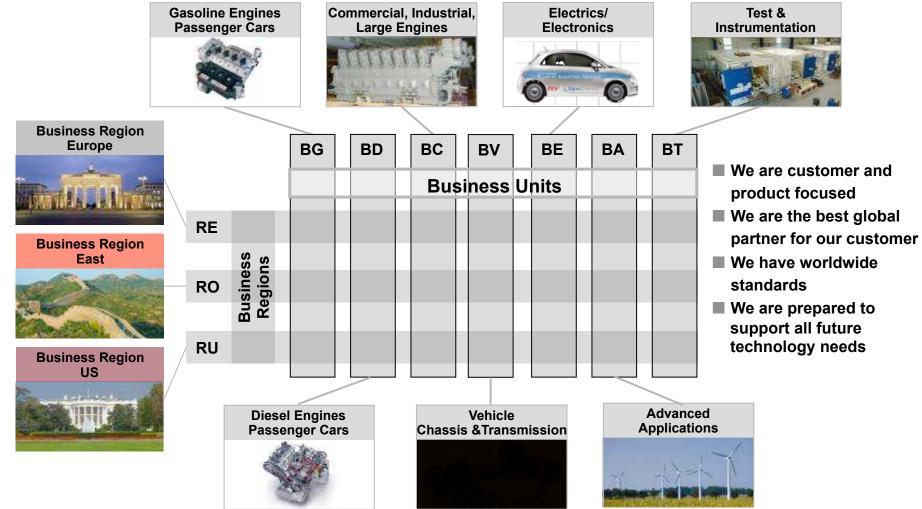
The FEV group is privately held and managed by a board of five chief executives.

In front:

Prof. Dr.-Ing. Stefan Pischinger President and CEO of the FEV Group

From left to right:

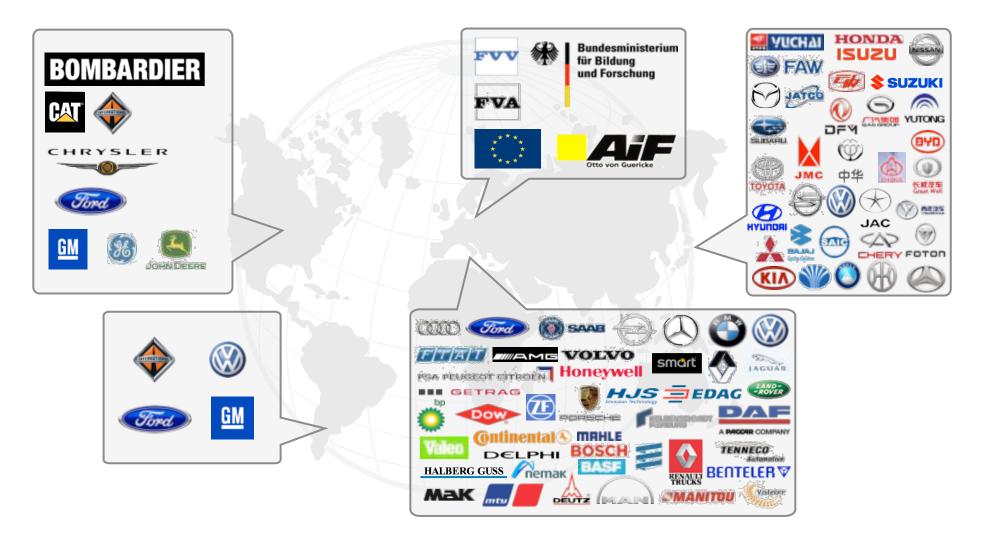
Dr.-Ing. Markus Schwaderlapp Executive Vice President


Gary W. Rogers Executive Vice President

Rainer Paulsen Executive Vice President

Dr.-Ing. Ernst Scheid Executive Vice President

FEV's organizational structure FEV's areas of expertise



FEV's areas of expertise

Powertrain development worldwide

EPA Work Scope Definition

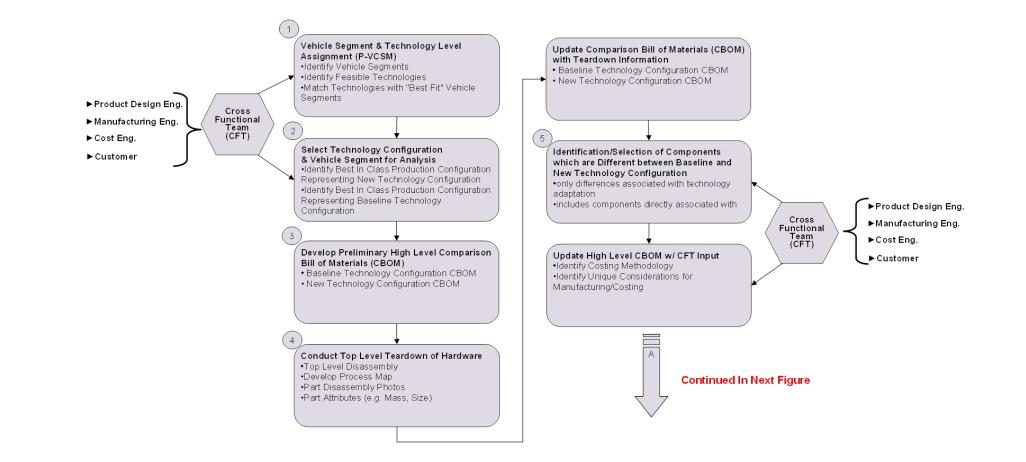
- The United States Environmental Protection Agency (EPA) contracted with FEV, Determine incremental direct manufacturing costs for a set of advanced light-duty vehicle technologies.
- The technologies selected are on the leading edge for reducing emissions of greenhouse gases in the future, primarily in the form of tailpipe carbon dioxide (CO2).
- In contrast to comparable cost analyses done in the past, which rely heavily on supplier price quotes for key components, this study is based to a large degree on teardowns of vehicles or vehicle systems.
- Each new technology configuration selected (i.e., the advance technology offering) is evaluated against a baseline vehicle technology configuration (i.e., current technology becoming the standard in the industry) having similar overall driving performance.
- When conducting the cost analysis for each technology configuration, a number of assumptions and boundary conditions are required upfront in the analysis prior to the start of any costing work. The same assumptions and boundary conditions are applied to both the new and baseline technology configurations establishing a consistent framework for all costing, resulting in a level playing field for comparison.

Evaluating Technology Costs

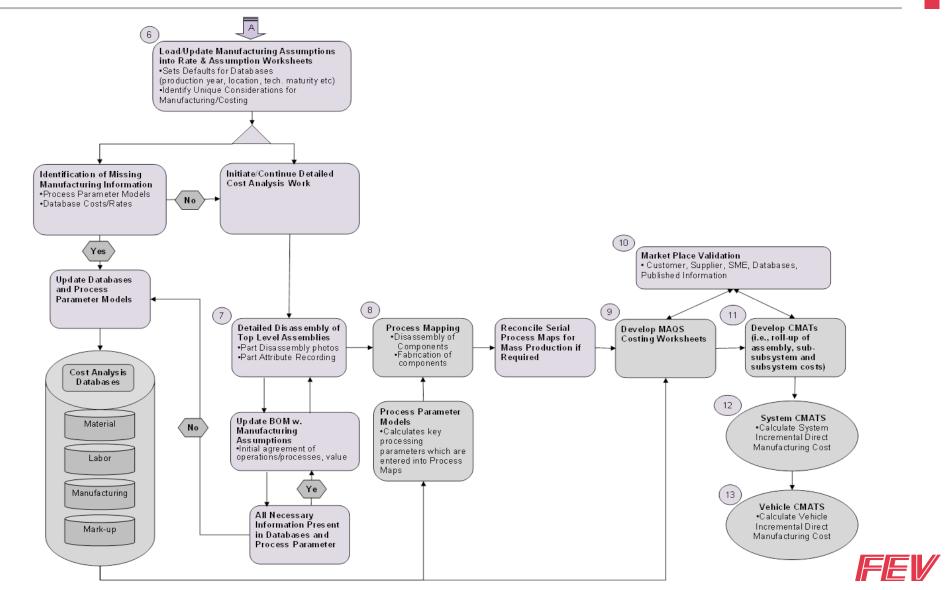
Prior Method For Evaluating Cost Differences

Key Objective & Deliverables

- Detailed direct manufacturing cost analysis should use tools and processes similar to those used by OEMs and suppliers in the automotive industry
- Transparency-- methodologies, assumptions, and inputs should be well documented, clearly explained, and releasable to the public, except to the extent that those essential inputs must include confidential business information.
- Sensitivity to key inputs-- the analysis shall allow subsequent adjustment of key parameters which may be highly volatile in the future (for example commodity prices such as copper, or energy inputs).

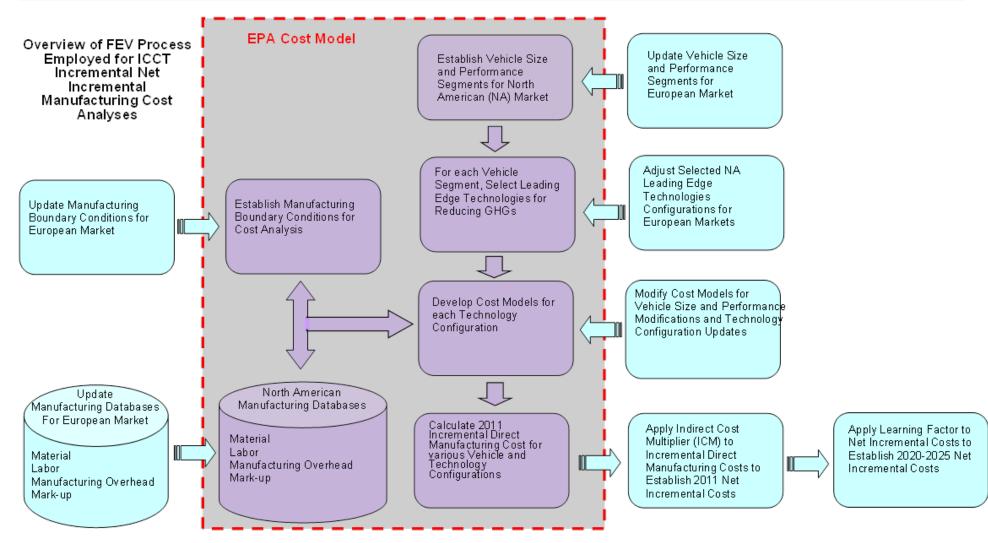

Detailed, Transparent and Flexible Cost Analysis

MATERIAL		LA	BOR			MA	NUF	ACTU	RING	OVE	RHEAD	
High Pressure Fuel Pump Example	Material	Labor	Burden	тмс	Scrap	SG&A	Profit	ED&T	Total Mark-up		1	↓ \$54.12
T1 or OEM Total Manufacturing Cost:	\$16.99	\$8.01	\$24.95	\$49.94	\$0.30	\$2.09	\$1.64	\$0.15	\$4.18		▶ 3	\$54.12
T1 or OEM Mark-Up Rates:					0.70%	7.00%	8.00%	4.00%	19.70%			
(SAC) &T1 or OEM Mark-Up Values:					\$0.38	\$3.79	\$4.33	\$2.16	\$10.66			
Base Cost Impact to Vehicle:	\$16.99	\$8.01	\$24.95	\$49.94	\$0.68	\$5.88	\$5.97	\$2.32	\$14.84			\$64.79
										kaging Cost:	\$0.11	
									Net C	ost Impa	ct to Vehicle:	\$64.90



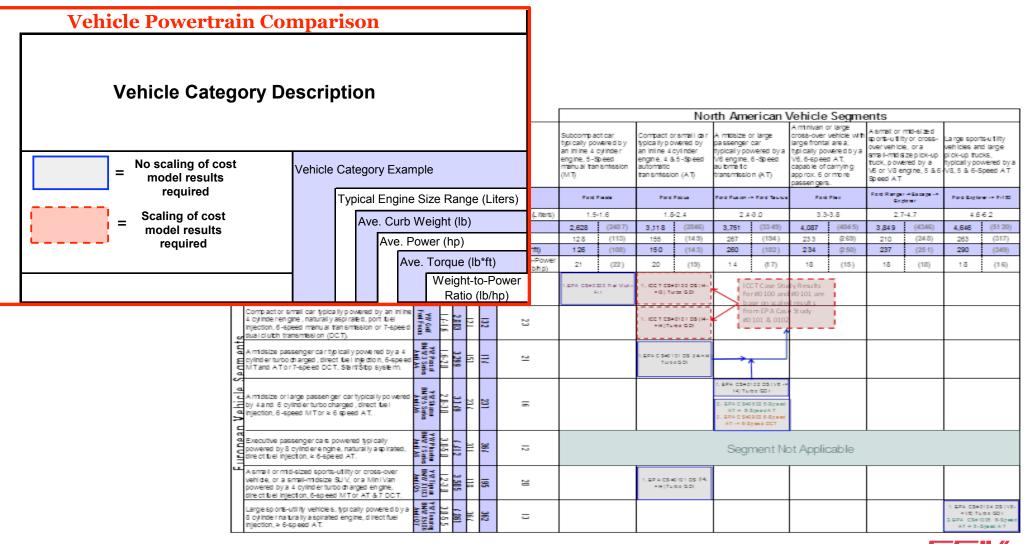
EPA Cost Analysis Methodology (Part 1 of 2)

EPA Cost Analysis Methodology (Part 2 of 2)

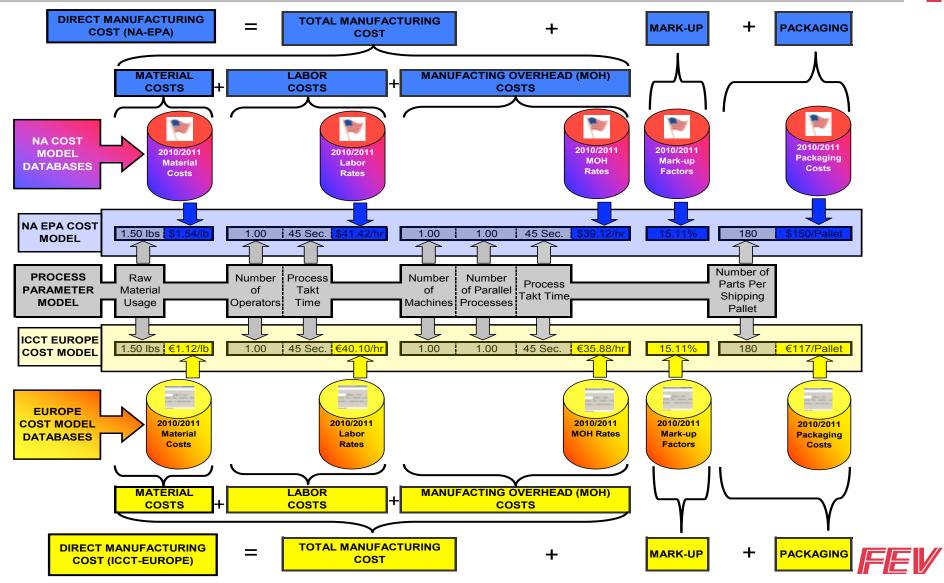


ICCT Phase 1 Work Scope Summary

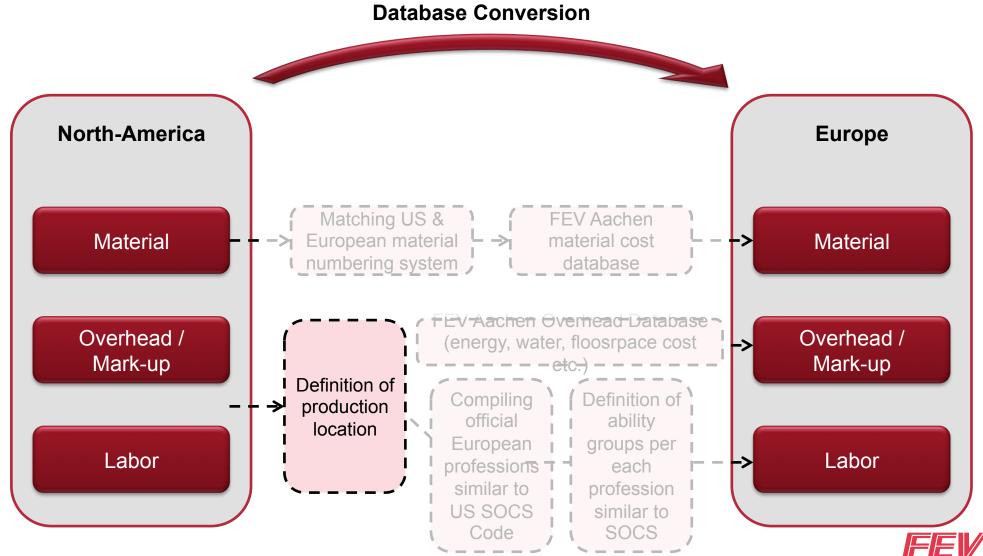
- Transferring and conversion of information and results from existing EPA advance vehicle powertrain cost analysis studies, which were based on US market trends and manufacturing cost structures, into comparable European cost studies.
- This would require adjustments to the existing cost analyses relative to accounting for differences in European vehicle powertrain market trends and European manufacturing cost structures.



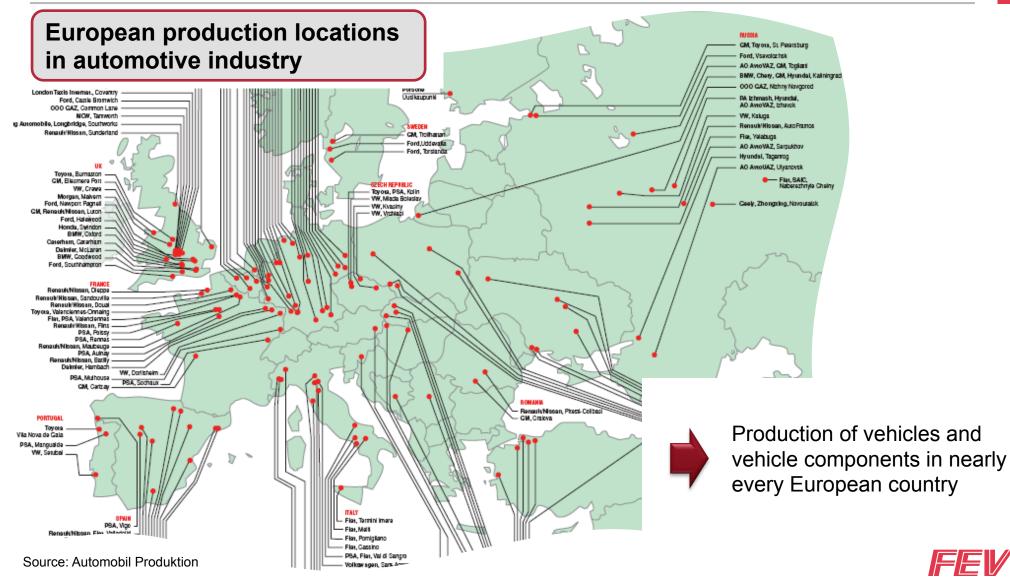
ICCT Cost Analysis Methodology



Vehicle Segment Conversion



Cost Model Conversions

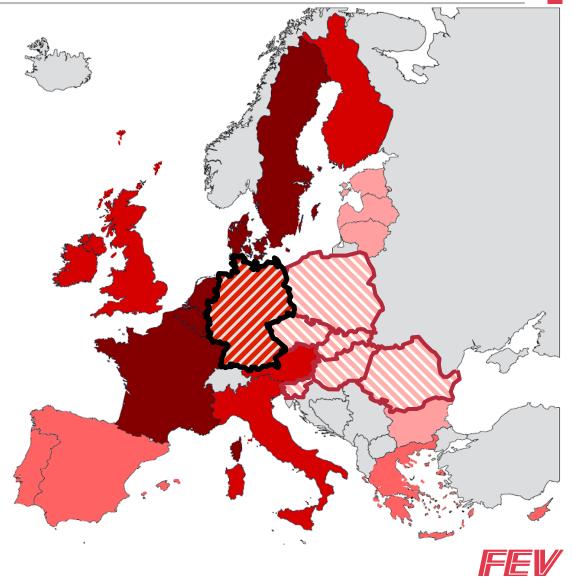


Database Conversion

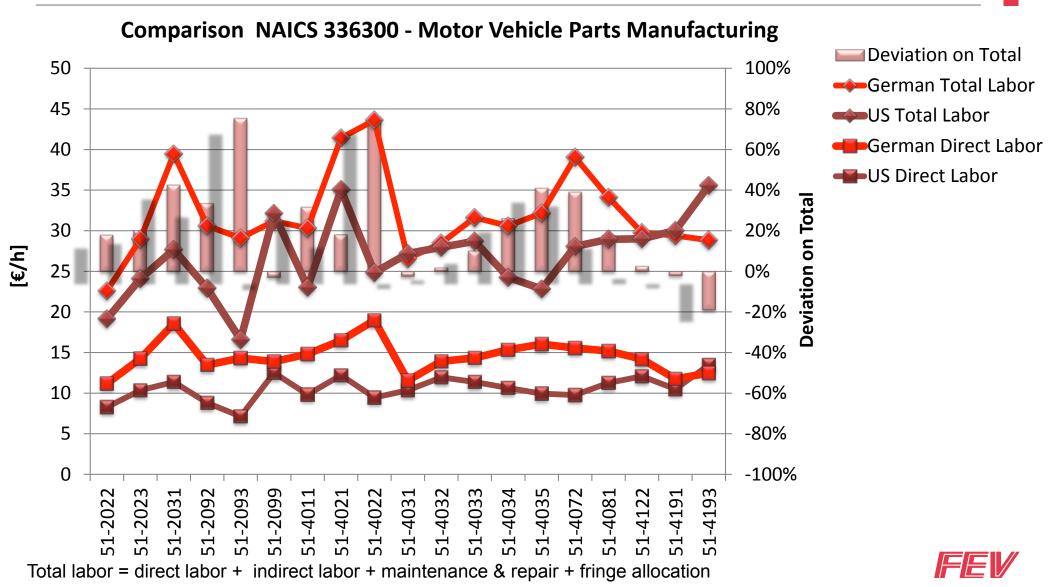
SOCS = Standard Occupation Classification System

Definition of Production Location for Labor cost determination

Definition of Production Location for Labor cost determination


Labor cost in Europe

1 to 10 €/h
10 to 20 €/h
25 to 30 €/h
30 €/h and more


Big differences in labor costs across Europe

Approach to meet European average

- Consideration of German labor costs as representative of Western European conditions
- Definition of one percental relation between German labor costs and an average of Eastern European countries

Summary of ICCT Phase 1 Results: Engines

Technology	D	se Study #	Baseline Technology Configuration	New Technology Configuration	European Market Segment	European Vehicle Segment	Calculated Incremental <u>Direct</u> Manufacturing Cost	Net Incremental Manufacturing Costs (<u>Direct + Indirect Costs</u>) with Applicable Learning Applied			
Te		Case				Example	2010/2011 Production Year	2012	2016	2020	2025
	D٥١	wnsize	d, Turbocharged, Gasoline	Direct Injection Internal C	ombustion Eng	gines					
	1	0100	1.4L, I4, 4V, DOHC, NA, PFI, dVVT, ICE	1.0L, I3, 4V, DOHC, Turbo, GDI, dVVT, ICE	Subcompact	VW Polo	€ 230	€ 371	€ 327	€ 267	€ 237
	2	0101	1.6L, I4, 4V, DOHC, NA, PFI, dVVT, ICE	1.2L, I4, 4V, DOHC, Turbo, GDI, dVVT, ICE	Compact/ Small	VW Golf	€ 360	€ 505	€ 460	€ 398	€ 367
Engine	3		2.4L, I4, 4V, DOHC, NA, PFI, dVVT, ICE	1.6L, I4, 4V, DOHC, Turbo, GDI, dVVT, ICE	Midsize	VW Passat	€ 367	€ 520	€ 473	€ 407	€ 375
Ēŋ	4		3.0L, V6, 4V, DOHC, NA, PFI, dVVT, ICE	2.0L, I4, 4V, DOHC, Turbo, GDI, dVVT, ICE	Midsize/Large	VW Sharan	€ 80	€ 245	€ 194	€ 123	€ 89
	5		5.4L, V8, 3V, SOHC, NA, PFI, sVVT, ICE	3.5L V6, 4V, DOHC, Turbo, GDI, dVVT, ICE	Large SUV	VW Touareg	€ 648	€ 946	€ 854	€ 726	€ 664
	Var	iable V	alve Timing and Lift, Fiat Mu	Itiair System							
	6	0200	1.4L, I4, 4V, DOHC, NA, PFI, dVVT, ICE	1.4L, I4, 4V-MultiAir, SOHC, NA, PFI, ICE	Subcompact	VW Polo	€ 107	€ 159	€ 145	€ 126	€ 117

Summary of ICCT Phase 1 Results: Transmissions

Technology	Q	se Study #	Baseline Technology Configuration	New Technology Configuration	European Market Segment	Vehicle Segment	Calculated Incremental <u>Direct</u> Manufacturing Cost	Net Incremental Manufacturing Costs (<u>Direct + Indirect Costs</u>) with Applicable Learning Applied			
Te		Ca			Example		ample 2010/2011 Production Year		2016	2020	2025
s	1	0802	12 5-Speed AT 6-Speed AT I		Midsize/Large	VW Sharan	(€ 79)	€ 19	€ 10	€1	(€6)
Transmissions	2	0803	6-Speed AT	8-Speed AT	Large SUV	VW Touareg	€ 43	€ 59	€ 54	€ 47	€ 44
Tra	3	0902	6-Speed AT	6-Speed Wet DCT	Midsize/Large	VW Sharan	(€ 121)	€ 47	€ 32	€ 12	€2

Summary of ICCT Phase 1 Results: Power-Split (4 Vehicle Segments Shown)

Technology	Q	Case Study #	Baseline Technology Configuration	New Technology Configuration	European Market Segment	European Vehicle Segment Example	Calculated Incremental <u>Direct</u> Manufacturing Cost 2010/2011	Net Incremental Manufacturing Costs (<u>Direct + Indirect Costs</u>) with Applicable Learning Applied			
Te		Ca				Example	Production Year	2012	2016	2020	2025
	1	0500	Subcompact car typically powered by an inline 4 cylinder engine, naturally aspirated, port fuel injection, 5-speed manual transmission (MT).	Power-split HEV System Power: 64.6kW ICE Power: 52.7kW (I4 -> I3) Traction Motor: 43.2kW Generator: 30.3kW Li-Ion Battery: 140V, 0.743kWh	Subcompact	VW Polo	€ 1,674	€ 4,235	€ 3,254	€ 2,434	€ 2,000
	2	0501	Compact or small car typically powered by an inline 4 cylinder engine, naturally aspirated, port fuel injection, 6-speed manual transmission or 7-speed dual clutch transmission (DCT).	Power-split HEV System Power: 77.8kW ICE Power: 63.6kW (I4 - DS I4) Traction Motor: 52.0kW Generator: 36.5kW Li-Ion Battery: 162V, 0.857kWh	Compact/ Small	VW Golf	€ 1,866	€ 4,685	€ 3,609	€ 2,702	€ 2,225
Power-Split HEV	3	0502	A midsize passenger car typically powered by a 4 cylinder turbocharged, direct fuel injection, 6-speed MT and AT or 7-speed DCT, Start/Stop system.	Power-split HEV System Power: 101.2kW ICE Power: 82.6 kW (I4 -> DS I4) Traction Motor: 67.7kW Generator: 47.5kW Li-Ion Battery: 188V, 0.994kWh	Midsize	VW Passat	€ 2,056	€ 5,223	€ 4,009	€ 2,997	€ 2,459
Power-S	4	0503	A midsize or large passenger car typically powered by 4 and 6 cylinder turbocharged, direct fuel injection, 6-speed MT or \geq 6 speed AT.	Power-split HEV System Power: 151.1 kW ICE Power: 123.4 kW (V6 -> 14) Traction Motor: 101kW Generator: 70.9kW Li-Ion Battery: 211V, 1.118kWh	Midsize/Large	VW Sharan	€ 1,998	€ 5,312	€ 4,019	€ 2,985	€ 2,419

A small or mid-sized sports-utility Power-split HEV or cross-over vehicle, or a small-System Power: 114.6 kW midsize SUV, or a Mini Van 5 0505 powered by a 4 cylinder turbocharged engine, direct fuel injection, 6-speed MT or AT & 7 DCT.

ICE Power: 93.6 kW (I4 -> DS I4) Traction Motor: 76.6kW Generator: 53.8kW Li-Ion Battery: 199V, 1.053 kWh Small/Midsize VW Tiguan SUV/COV

€ 2,150 € 5,456 € 4,189

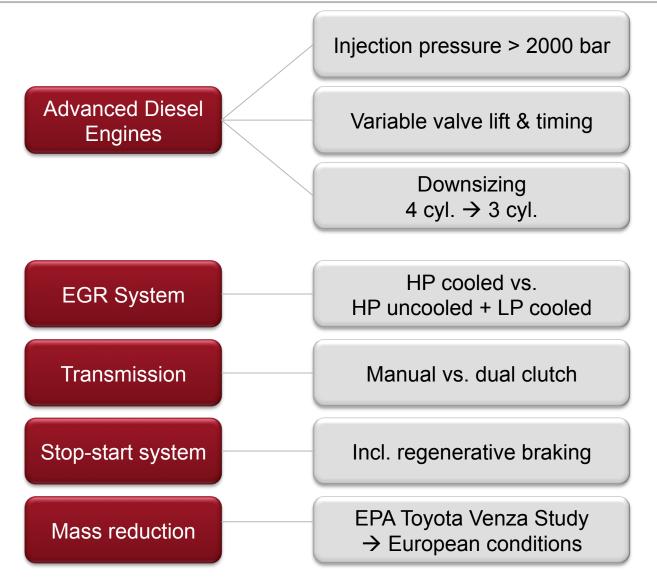
€ 3,131 © by FEV – all rights reserved. Confidential – no passing on to third parties

24

Summary of ICCT Phase 1 Results: P2 (4 Vehicle Segments Shown)

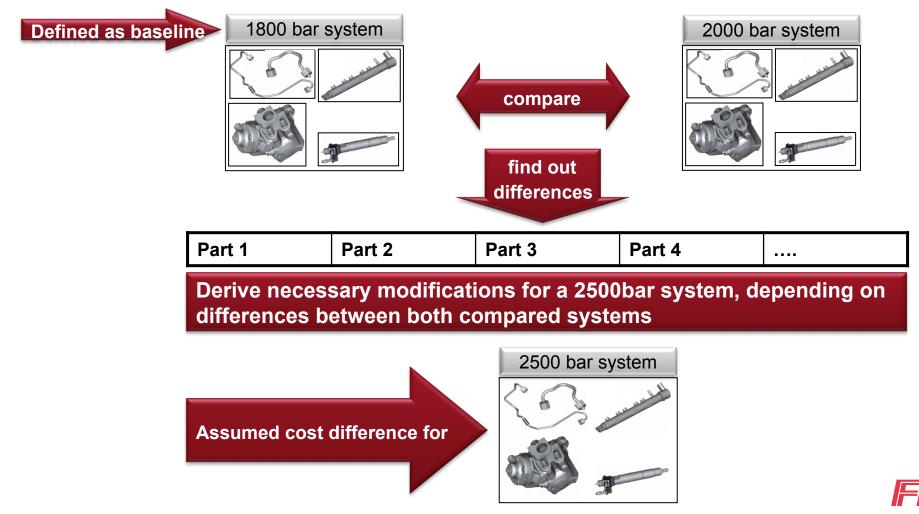
Technology	Q	Case Study #	Baseline Technology Configuration	New Technology Configuration	European Market Segment	European Vehicle Segment Example	Calculated Incremental <u>Direct</u> Manufacturing Cost 2010/2011	Net Incremental Manufacturing Costs (<u>Direct + Indirect Costs</u>) with Applicable Learning Applied			
Ĕ		ö					Production Year	2012	2016	2020	2025
	1	0700	Subcompact car typically powered by an inline 4 cylinder engine, naturally aspirated, port fuel injection, 5-speed manual transmission (MT).	P2 HEV System Power: 64.6 kW ICE Power: 51.7 kW (I4 -> I3) Traction Motor: 12.9 kW Li-Ion Battery: 140V, 0.743kWh	Subcompact	VW Polo	€ 1,615	€ 4,143	€ 3,170	€ 2,366	€ 1,937
	2	0701	Compact or small car typically powered by an inline 4 cylinder engine, naturally aspirated, port fuel injection, 6-speed manual transmission or 7-speed dual clutch transmission (DCT).	P2 HEV System Power: 77.8 kW ICE Power: 62.3 kW (I4 -> DS I4) Traction Motor: 16 kW Li-Ion Battery: 162V, 0.857kWh	Compact/ Small	VW Golf	€ 1,820	€ 4,643	€ 3,559	€ 2,658	€ 2,179
EV	3	0702	A midsize passenger car typically powered by a 4 cylinder turbocharged, direct fuel injection, 6-speed MT and AT or 7-speed DCT, Start/Stop system.	P2 HEV System Power: 101.2kW ICE Power: 80.9 kW (I4 -> DS I4) Traction Motor: 20.23 kW Li-Ion Battery: 188V, 0.994kWh	Midsize	VW Passat	€ 1,972	€ 5,092	€ 3,888	€ 2,899	€ 2,369
P2 HEV	4	0703	A midsize or large passenger car typically powered by 4 and 6 cylinder turbocharged, direct fuel injection, 6-speed MT or \geq 6 speed AT.	P2 HEV System Power: 151.1 kW ICE Power: 120.9 kW (V6 -> I4) Traction Motor: 30 kW Li-Ion Battery: 211V, 1.118 kWh	Midsize/Large	VW Sharan	€ 1,824	€ 5,041	€ 3,768	€ 2,784	€ 2,232
	5	0705	A small or mid-sized sports-utility or cross-over vehicle, or a small- midsize SUV, or a Mini Van powered by a 4 cylinder turbocharged engine, direct fuel injection, 6-speed MT or AT & 7 DCT.	P2 HEV System Power: 114.6 kW ICE Power: 91.7 kW (I4 -> DS I4) Traction Motor: 22.9 kW Li-Ion Battery: 199V, 1.053kWh	Small/Midsize SUV/COV	VW Tiguan	€ 2,047	€ 5,296	€ 4,041	€ 3,013	€ 2,460
			Large sports-utility vehicles	P2 HEV System Power: 271 8kW				© by FEV –	all rights reserve	ed. Confidential	– no passing

		Large sports-utility vehicles,	P2 HEV System Power: 271.8kW				© by FEV – a	II rights reserve	d. Confidential -	- no passing on to third parties
6	0706	typically powered by a 8 cylinder naturally aspirated engine, direct fuel injection, \geq 6-speed AT.	IĆE Power: 271.8 kW (No Change to V8) Traction Motor: 54.3 kW Li-Ion Battery: 269V, 1.427kWh	Large SUV	VW Touareg	€ 2,670	€ 6,836	€ 5,234	€ 3,908	€ 3,200


25

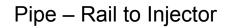
ICCT Phase 2 Project Scope Review

- Advanced diesel engines with high pressure injection system (>2000 bar), variable valve lift and cam timing capable of meeting Euro 6 emission standards or better.
 - Includes Engine Downsizing
- High pressure uncooled and low pressure cooled EGR in a charge air cooling system compared with cooled high pressure EGR.
 - Includes investigation on future gasoline engine EGR system alternatives
- Dual dry clutch transmission compared with manual transmission, each with 6 gears.
- Stop-start system (including regenerative braking capability) typically used on European vehicles.
- Transferring and conversion of information and results from the EPA Toyota Venza mass-reduction and cost analysis into a comparable European mass and cost study.


ICCT Phase 2 Project Scope Review

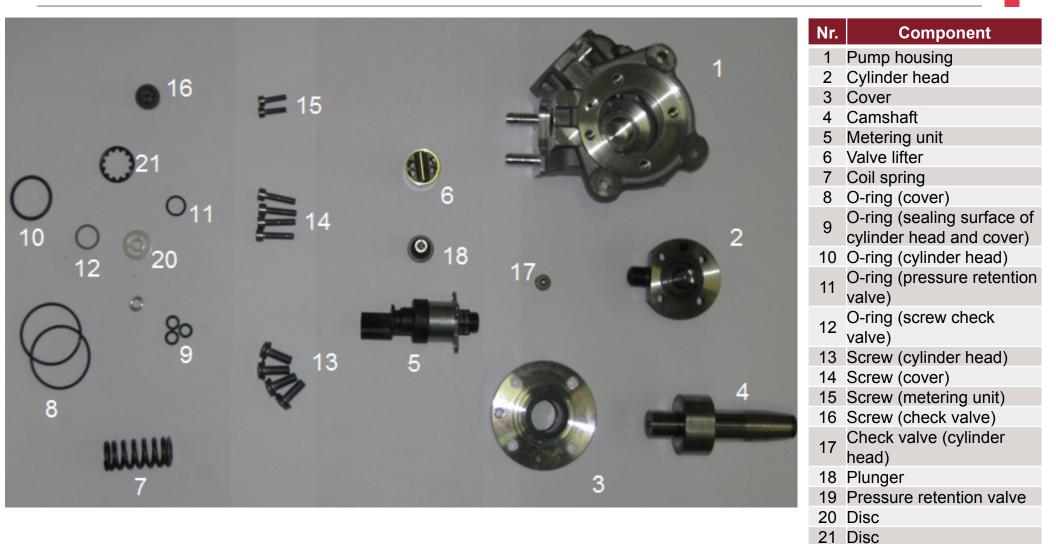
Phase 2 – Injection System Analysis: Approach

Target: Evaluation of cost difference between baseline and 2500bar system



Phase 2 – Injection System Analysis: Main Components

Pipe - Pump to Rail

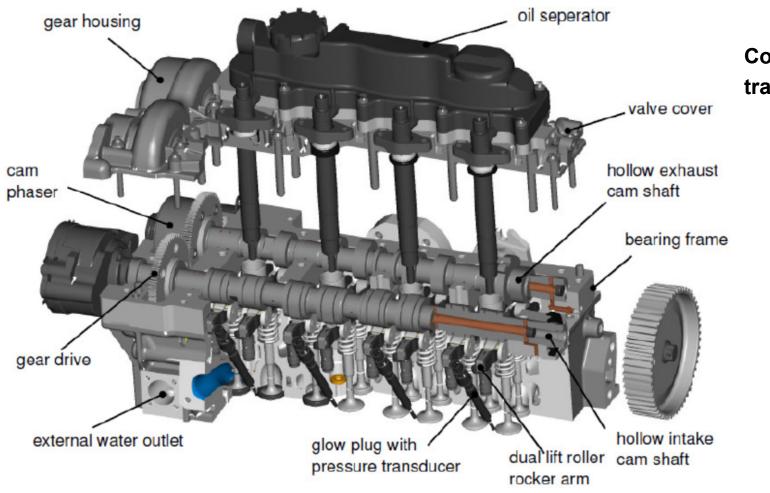


Phase 2 – Injection System Analysis: High Pressure Pump Teardown

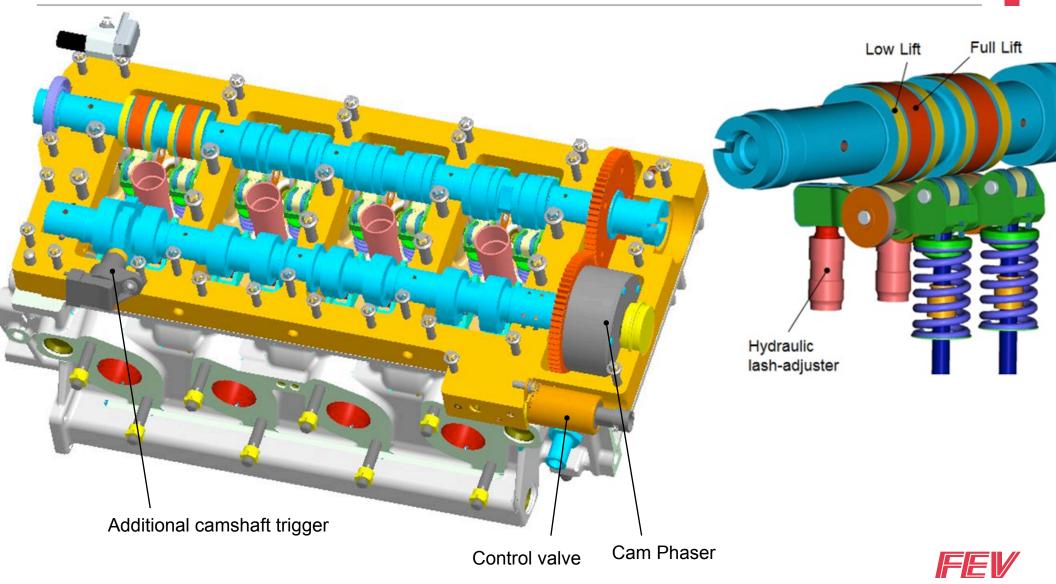
© by FEV – all rights reserved. Confidential – no passing on to third parties 30

Nr. Component Nozzle module incl. 1 --Nozzle body --Nozzle needle 23 2 3 -- Supporting 4 --Needle bushing 5 -- Nozzle spring Servo valve plate incl. 6 --Plate --Servo valve 7 8 --Servo valve spring Adapter plate 9 10 -- Positioning pins Coupler Module incl. 11 -- Tube Spring 12 -- Driving piston 13 -- Driven piston incl. Spring 14 -- Spring driven piston 15 -- Adapter plate 25 16 --Coupler body 17 Clamping nut 18 Adjustment plate coupler 19 Injector body 20 Piezo module 17 21 Edgefilter 22 Seal ring 23 Connector body incl. 24 -- Return line connector 25 Thread seal

Phase 2 – Injection System Analysis: Fuel Injector Teardown


Phase 2 – Injection System Analysis: Fuel Rail Teardown

Phase 2 - Variable Valve Train Analysis: FEV HECS Concept


Target:

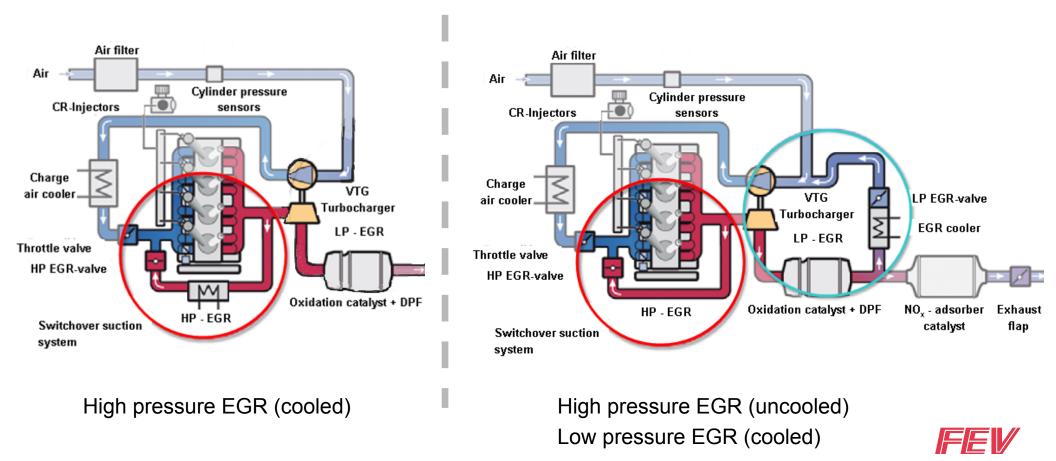
Cost Comparison of non-variable vs. variable valve train at diesel engines

Considered variable valve train concept: FEV HECS

Phase 2 - Variable Valve Train Analysis: Dual Lift Rocker

Target:

Cost Comparison of I4 Turbo Diesel engine vs. downsized I3 Turbo Diesel Engine with same power


Definition of baseline and downsized engine:

	Baseline Engine (I4)	Downsized Engine (I3)
Displacement	21	1,5 I
Power Output	105 kW	105 kW
Power Output per liter	52,5 kW/l	70 kW/I
Max. Torque	320 Nm	320 Nm
BMEP	20 bar	27 bar
Compression ratio	16,5	15,5
Injection System	1800 bar Piezo	2500 bar Piezo
EGR-System	HD-EGR	HD-EGR
Intercooler	Yes	Yes (10% more cooling power)
Swirl Flap Mechanism	No	Yes
Peak Firing Pressure	150 bar	180 bar
Cylinder Block Material	Aluminum	Aluminum
Cylinder Head Material	Aluminum	Aluminum

Target:

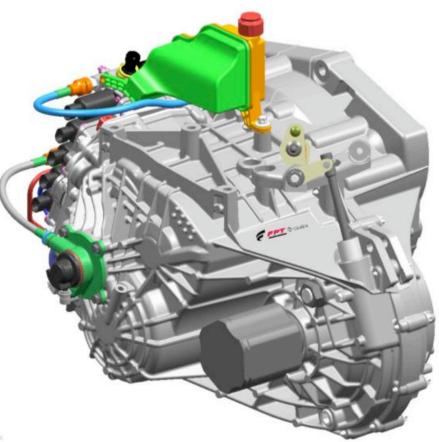
Cost Comparison of high pressure EGR vs. combined high and low pressure EGR system

Phase 2 – EGR-System comparison: overview system hardware



Phase 2 – EGR-System comparison : Pipes

Phase 2 – EGR-System comparison: Coolers and valves


© by FEV – all rights reserved. Confidential – no passing on to third parties

Phase 2 – Transmission Analysis

Target:

Cost Comparison of manual 6 speed vs. dual clutch 6-Speed transmission (dry clutch)

Dry DCT

Manual

Phase 2 – Transmission Analysis

Gears, Shafts -

Housing, Clutches, Actuation System

Commonly found start-stop system in European

1. Belt Driven starter generator

4. Integrated Starter Generator

2. Enhanced starter

3. Direct Starter

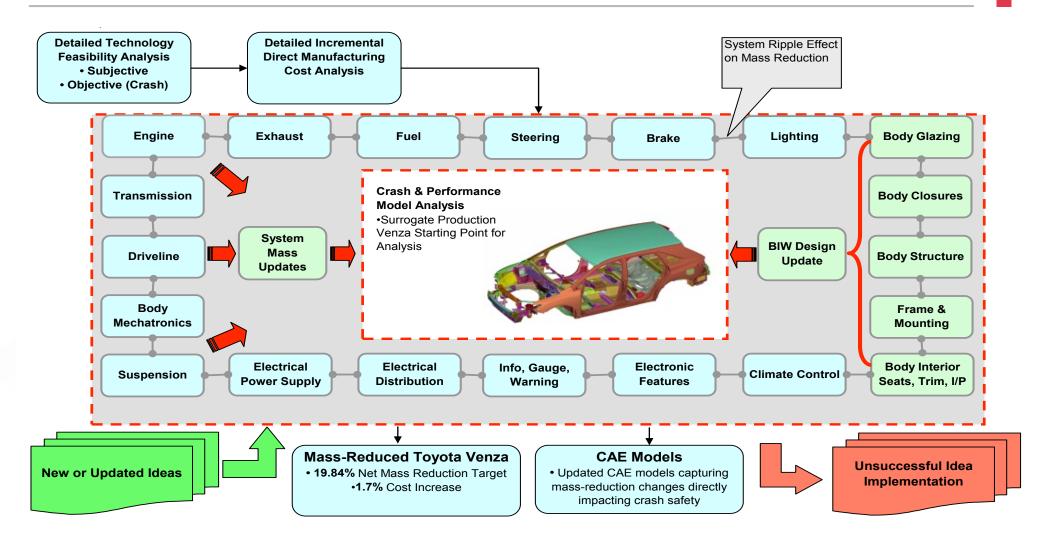
Figure: Start-Stop System i-StARS of Valeo

Market:

Manual

Mercedes-Benz A 150 Blue Efficiency (Compact Car)

Starter/Generator	Belt-Driven /Valeo (StARS)	
Type / Supplier:		
Functional Scope	StARS Micro-Hybrid System	
	Stop in neutral, keep brake pedal	
	pushed (Driver-Detection) step off	
	brake pedal starts the engine again	
	Engine off below 8kph	
Battery System	AGM-Battery (Varta)	
Additional Sensors		
Modified Compo-		
nents		
Engine	I-4 1.2 Diesel , 1991 cm ³ , 60 kW	
	I-4 1.5 Gasoline , 1498 cm³, 70 kW	
	I-4 1.8 Diesel , 1699 cm³, 85 kW	
Transmission	5-speed, manual	
SOP	2009	



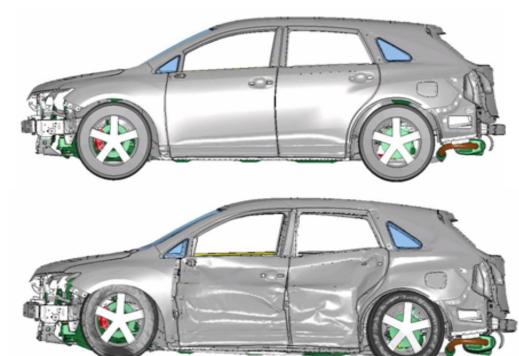
Phase 2 - Toyota Venza Mass-Reduction and Cost Analysis

- The primary objective of this contract is continue the design concepts of the 2010 Lotus report of the Low Development concept vehicle with 20% vehicle mass reduction along with other recent relevant studies
- The contractor should continue the work started on Lotus's research building on the original assessments to prove concept, cost effectiveness, manufacturing feasibility, and crashworthiness that can, at minimum, meet the performance functions of the original baseline vehicle (2009 Venza) while controlling for both variable and in-direct cost to maintain affordability (10% Max Cost Increase @ 20% Mass Reduction)
- Specifically, the contractor shall use advanced design, material and manufacturing processes that will likely be available in the time frame of the 2017 model year and beyond for the Low Development concept vehicle to optimize and develop an engineering design with sufficient details such that computer modeling can be performed to demonstrate crashworthiness of the vehicle concept in addition to detailed incremental cost estimate for the design,

Phase 2 – Venza Mass Reduction and Cost Analysis

Phase 2 - Venza Mass-Reduction and Cost Analysis

Phase 2 - FMVSS 214 Side Impact BASELINE Results


Comparisons of Deformed Shape

Test Results - NHTSA No: MB5128

CAE Analysis Results

This concludes the FEV portion of the workshop.

FEV would like to thank you for your time.

