

Assessment of CO₂ Emissions from Heavy Duty Vehicles VECTO Inputs Overview

Giorgos Fontaras

Ispra, 10/2013

- HDVs account for
 - About 6% of total EU GHG emissions
 - About 25% of total GHG road transport emissions
 - Freight transport (trucks) main source of HDV emissions
 - Passenger transport: buses and coaches
- Roadmap for low carbon economy in 2050 :
 - Reduce GHG emissions by 80% to 95% by 2050 (Base 1990)
 - Transport sector foreseen to reduce emissions between -54 and -67% by 2050
- White Paper on Transport:
 - Assumes 60% reduction in GHG emissions by 2050 (Base 1990)
 - 20% by 2030 (Base 2008)

- Need for an HDV CO₂ monitoring scheme for Europe
- Heavy Duty Vehicles is a complex sector, "not 2 vehicles identical"
- European manufacturers are amongst global leaders
- Lack of data to support policy, need for monitoring data collection
- Tool to be used by EC, TA authorities and possibly by OEMs
- Close collaboration between DG-CLIMA, JRC and ACEA
- Major markets outside Europe already adopted initiatives (mainly simulation based)

- Approaches explored :
 - measurement on chassis dynamometer
 - measurement with PEMS
 - vehicle simulation
- Selected option:

- Model based simulation for the whole vehicle (truck and trailer) and component testing
- Methodology considers:
 - engine, driving resistances of whole vehicle (rolling, aerodynamic), lacksquaregearbox, axles, most relevant auxiliaries, driver model, specific mission profiles-cycles

- Vehicle Energy Consumption calculation **TO**ol
- Initially to cover:
 - Delivery trucks (long haul and regional-city)
 - Coaches
 - Effort to include city buses
- Effort to standardize:
 - Measurement protocols for input data generation
 - Individual component simulation models
 - Mission profiles and cycles
 - Evaluation / validation approaches

Simulator (Vehicle Energy consumption Calculation Tool – VECTO):

- Backward simulation; Forward control loops included for target speed cycles, driver model operation, look ahead breaking, eco-roll, over-speeding
- Programming language: Visual Basic .NET
- Simulation of engine power and engine speed
- Interpolation of fuel consumption from engine map

Engine Module: VECTO relevant Input data (draft)

Component	Data	Unit	component specific	Default data	Comments	to be reported to TS	TS to be incorporated	CoP procedure
General	Vehicle class	[-]	х		classification according to HDV CO2 vehicle segmentation matrix			
	Vehicle curb weight	[kg]	Х					
	Trailer or body curb weight	[kg]		Х	specified for each vehicle class			
	Gross vehicle weight	[kg]	Х					
	Axle load distribution	[%]		Х	specified for each vehicle class			
	Chassis length	[m]	х		only for busses (→ number of passengers)			
	Chassis width	[m]	х		only for busses (→ number of passengers)			
Engine	Displacement	[ccm]	Х					
	Rated power	[kW]	Х					
	Idling speed	[rpm]	Х					
	Rated speed	[rpm]	Х					
	Engine rotational inertia incl. flywheel	[kgm ²]		Х	calculated from engine displacement			
	Steady state fuel map		х		fuel consumption [g/h] = f (engine speed [rpm], engine torque [Nm])			
	Full-load curve		х		full-load torque = f (engine speed [rpm])			
	Drag curve		Х		drag torque = f (engine speed [rpm])			
	Test result WHTC hot		х		fuel consumption [g/h] = f (engine speed [rpm], engine torque [Nm]) in 10Hz time resolution			

- Fuel consumption map → actual engine fuel consumption measured over different steady state conditions
- For each engine hardware and ECU calibration software combination a fuel map has to be measured
- All measurements performed according to (EC) 595/2009 on type approval of motor vehicles and engines and UN/ECE Regulation No 49.06
- Power consumption of engine auxiliaries (eg oil pump, coolant pump, fuel delivery pump, high pressure pump, alternator) to be covered by the map
- Issues that may arise because of the steady state approach:
 - Possible inconsistencies between engine certified CO₂ (WHTC hot part) and the steady state fuel map
 - transient engine behaviour not considered
- Solution → use of "WHTC correction factor" calculated on the basis of the actual WHTC measurement

Engine Module: The engine map

- Minimum 10 engine speeds shall be measured. The four base speeds shall be: n_{idle}, n_{pref} - n_{pref} *0.04, n_{pref} + n_{pref} *0.04, n₉₅
- The remaining 6 engine speeds determined by splitting the two ranges $(n_{idle} \text{ to } n_{pref} -4 \% \text{ and } n_{pref} +4 \% \text{ to } n_{95})$ into a minimum of 4 equidistant sections
- Torque step width: clustering range 0 maximum torque into 10 equidistant sections
- Fill up the range below the mapping curve.
- When exceeding mapping curve the full load torque becomes applicable.

• Engine only operation is simulated over the 3 parts of WHTC

 \rightarrow fuel consumption calculated from the steady state fuel map ("backward calculation")

• Measured specific FC per part in [g/kWh] is then divided by the simulated value

 \rightarrow 3 different correction factors (CFs) calculated

- Total factor (CF_{Tot-i}) weighted average depending on mission profile "i"
 - Produced by VECTO by mission profile specific weighting factors (WFi),
 - CF_{Tot-i} = CF_{Urb} x WF_{Urb-i} + CF_{Rur} x WF_{Rur-i} + CF_{MW} x W_{FMW-i}

Engine module: Validation of WHTC correction factors

FC interpolated (1Hz) from engine map derived from ~90 steady state points. Additional correction based on correction factors derived from the simulation of WHTC

Transmission: VECTO relevant Input data (draft)

			component	Default		to be	TS to be	CoP
Component	Data	Unit	specific	data	Comments	reported to 15	incorporated	procedure
	Type rotational inertia			v	calculated based on wheel dimension of			
	i yie iotational merua			л	each axle			
	Tyre RRC (trailer)			Х	if applicable			
	Tvre rotational inertia (trailer)			Х	if applicable			
					Manual transmission (MT), Automated			
Transmission	Transmission trans		v		manual transmission (AMT) or			
Transmission	Transmission type	[-]	~		Automatic Transmission with Torque			
					converter (AT)			
					for each gear: torque loss $[Nm] = f$			
	Torque loss map (mechanical)		х	Х	(clutch output speed [rpm], clutch			
					output torque [Nm])			
	Gear ratio	[-]	Х		for each gear			
					if applicable:			
					torque ratio $[-] = f(TC \text{ speed ratio } [-])$			
	Torque converter (TC) characteristics		х	X(?)	reference torque at reference speed [Nm]			
					= f(TC speed ratio [-])			
					if applicable;			
	Torque converter reference speed	[rpm]	х		(1000 rpm defined as standard?)			
	Contractor	n		v	for transmissions w/o TC set to zero;			
	Gearbox mertia	[kgm-]		х	transmissions with TC: open			
Detender	Patandar tana		v		none (or transmission internal) / primary			
Relarder	Retarder type	[-]	л		/ secondary			
	Ratardar losses		v	v	if applicable: retarder losses $[Nm] = f$			
	1001aruer 103505		~	~	(retarder speed [rpm])			

• 3 different methods for assessing transmission losses

Option 1: Fall back values based on the maximum rated torque of the transmission

- Option 2: Torque independent losses (measured), torque dependent losses (calculated). Electric machine & torque sensor before transmission (output shaft free-rotating)
- Option 3: Measurement of total torque loss. Electric machines and torque sensors in front and behind transmission

- Fall back values based on the maximum rated torque of the transmission
- The torque loss T_{I,in} on the input shaft of the transmission is calculated:

$$T_{l,in} = T_{d0} + T_{d1000} \cdot \frac{n_{in}}{1000rpm} + f_T \cdot T_{in}$$

Where $T_{l,in}$ torque losses at input shaft T_{dx} drag torque at x RPM n_{in} speed of input shaft f_t equals 1-efficiency (fixed depending on direct / non direct gear) T_{in} torque at input shaft

$$\rightarrow T_{dx}(T_{max}) = T_{d0} = T_{d1000} = T_{const} \cdot \frac{T_{maxin}}{2000Nm}$$

- Torque independent losses (measured),
- Torque dependent losses (calculated)
- Electric machine and torque sensor in front of transmission (output shaft free rotating)
- The torque loss T_{I,in} on the input shaft of the transmission is:

$$T_{l,in}(n_{in}, T_{in}, gear) = T_{idle}(n_{in}, gear) + (1 - \eta_T(gear)) \cdot T_{in}$$

- $T_{idle} \rightarrow Drag torque from testing at 0 load [Nm] (measured component)$
- Gear dependent efficiency $\eta_T \rightarrow$ calculated for each gear separately (calculated component)

$$\eta_T = \eta_{m,splitter} \cdot \eta_{m,main} \cdot \eta_{lowrange} \cdot \eta_{bearings}$$

• Fixed values or specific formulas for subcomponents

- Measurement of total torque loss
- Electric machines and torque sensors at both sides of transmission
- General model as in option 2

$$T_{l,in}(n_{in}, T_{in}, gear) = T_{idle}(n_{in}, gear) + (1 - \eta_T(gear)) \cdot T_{in}$$

- The torque loss measured for (speed of the input shaft):
 - 600, 800, 1000, 1200, 1400, 1700, 2000, 2400, 2800, 3200, ... rpm up to the maximum speed according to the specifications of the transmission (or higher).
- At each speed, torque measured for (input torques):
 - 0, 200, 400, 600, 800, 1000, 1200, 1400, 1700, 2000, 2400, 2800, 3200, 3600, 4000,
 ... Nm up to the maximum input torque according to the specifications of the transmission (or higher

- 2 different methods for assessing retarder losses
 - Option 1: standard technology specific table value for drag torque losses
 - Option 2: measurement of drag torque in deactivated mode
- Option 1: $T_{l,Ret,input/prop} = 10 + 2 \cdot \left(\frac{n_{input/prop}}{1000}\right)^2$

- Option 2:
- Retarder losses measured in combination with transmission testing
 →The transmission losses already include the retarder losses.
- If retarder individual component, retarder losses determined by subtracting gearbox losses measured with and without the retarder over one gear ratio

Input: Aerodynamic drag - rrc

- Constant speed test (at 2 velocities)
 - torque meter rim
 - anemometer
 - correction for gradient and for vehicle speed variations
 - correction for ambient p,T
 - $F = F0 + Cd * A * v^2 * \rho/2$

Important tire and vehicle conditioning for accurate Cd*A results.

RRC calculated in these tests not to be used. Official value to be used for monitoring purposes

• Implementation of gear shift strategy proposed by ACEA for manual and automated manual transmissions

Up- and down-shift polygons

Torque [Nm]	Downshift [rpm]	Upshift [rpm]
-500	650	900
0	650	900
500	700	950

<u>Default-Option: skipping of gears:</u> Criteria:
1) rpm is still over DownShift-rpm and
2) torque reserve is above a user-defined value (e.g. 20%)
<u>Additional parameter for avoidance of ocillating shifts:</u>
minimum time between two gear shifts (e.g. 3s)

- AMT = MT with different polygons and early upshifting
- Skipping gears possible based on torque reserve criteria, starting from gear >1
- Automatic GB model under development based on input received from OEMs and GB manufacturers

→ Different representative cycles per vehicle category and mission profile including target speed phases and road gradients

Driver model:

Acceleration: limited by full load and max. driver demand

Gear selection with torque interruption

Overspeed function optional eco-roll or none

"Look ahead" braking

<u>Cycles</u>: *Trucks*: Long haul, Regional delivery, urban delivery, Municipal utility, Construction *Busses*: Urban bus (heavy urban, urban, suburban), Interurban bus, Coach

CONCLUSIONS & FOLLOW UP

Conclusions

- The declaration method (DM) proposed can provide results representative of the real world performance
- Accurate input data essential, positive feedback regarding the quality of developing measurement methods
- Simulator presents satisfactory accuracy within a +-~3% from measurements
- Adequate performance compared to existing commercial tools, at least when those operate in backward / chassis dyno mode
- First quantification of uncertainties in the order of 2%.
- Good results from engine mapping approach & other modeling concepts introduced

- Finalize & validate topics remaining open (gearbox and driveline efficiency quantification, auxiliary units power consumption, automatic gear shifting strategies, mobile air conditioning simulation for city buses)
- Accurate quantification of uncertainties for different vehicle types
- Apply the method to additional vehicle types / components, generate data. Lay down the foundations for a full scale application on different vehicles (pilot phase)
- Shift to forward simulation tool, attempt to merge with HILs simulator used for Hybrid HD powertrains

- CO2 calculation + reporting (monitoring)
- HDV CO2 Type Approval (certification)
- HDV Labelling (option to be assessed)
- Design/ performance requirements for components (option to be assessed)
- Establishment of emission reduction objectives (option to be assessed)
- Application of other policy instruments

Thank you for your attention

georgios.fontaras@jrc.ec.europa.eu

