(TIAX

Technologies to Improve Fuel Efficiency of Heavy Duty Trucks

Reducing Greenhouse Gas Emissions from Heavy-Duty Vehicles: Policy options, development, and prospects—International Workshop

European Commission--Climate Action & The International Council on Clean Transportation (ICCT) Brussels, Belgium November 10, 2011 Michael D. Jackson TIAX LLC 20813 Stevens Creek Blvd., Ste 250 Cupertino, California 95014-2107 (408) 517-1560

© 2005 TIAX LLC

U.S. National Academy of Sciences Study

Legislative requirements

- US Congress required DOT/ to engage NHTSA engage National Academies to develop a report that evaluates MD and HD vehicle fuel economy (Energy Independence and Security Act of 2007)
- EISA also requested NHTSA to conduct its own study on the fuel efficiency of commercial MD and HD on highway vehicles and work trucks leading to rulemaking.
- Rule making process was a join effort of NHTSA for fuel economy standards and EPA for GHG standards

NAS Committee objectives were to conduct assessment and develop report

- Assessment of technologies and costs to evaluate fuel economy for MD and HD trucks
- Analysis of existing and potential technologies that may be used practically to improve MD and HD fuel economy
- Analysis of how such technologies may be practically integrated into the MD and HD truck manufacturing
- Assessment of how such technologies may be used to meet fuel economy standards
- Associated costs and other impacts on the operation of MD and HD trucks, including congestion

TIAX retained by NAS to provide a comprehensive set of fuel savings technologies, their benefits, and their price

- Developed detailed forecasts of fuel consumption reducing technologies
- Supported evaluation of MD & HD vehicle technologies by researching the technologies and their costs through intensive interviews of manufacturers, fleet owners and others to produce a detailed matrix relating technologies and vehicle types over time.
- Developed a detailed matrix of fuel saving technologies, their fuel consumption benefits, and their costs.
- Focused on ten-year timeframe
- Arranged specific site visits

There are three approaches to reducing fuel consumption from the medium and heavy-duty fleet. TIAX's analysis focuses on characterizing fuelefficient technologies

Approach	TIAX analysis includes	TIAX analysis does not include
Technology	 Identification of Technologies 	 Breakdown of RPE
Deploy fuel efficient	•Estimate of fuel consumption benefit	 Analysis of manufacturing processes
technologies into the vehicle fleet	•Cost estimates (RPE)	 Operations & Maintenance (O&M) Costs/Life Cycle Costing
Productivity	 Estimates of fuel consumption 	•Cost analysis
Increase the use of	benefit	 Infrastructure analysis
longer & heavier vehicles	 Identification of enabling technologies 	 Policy landscape
Operations & Logistics	•On-vehicle optimization tools (e.g.,	 Off-vehicle fleet optimization tools
Optimize fleet management	driver training, telematic navigation, etc)	 Optimization of goods movement

Major Sources of Information and Data

- Site Visits
 - Engine/Truck: Cummins, Daimler/Detroit-Diesel, Navistar, Kenworth, Peterbilt, Volvo
 - Supplier: Allison, Arvin Meritor, Azure, Eaton, Great Dane, ISE
 - End-User: Wal-Mart
 - Conferences: UMTRI LCV Conference
 - NAS Committee Meetings: Con-Way, Aluminum Assoc, and others
 - Testing Organizations: ARC and TRC
- Literature Review: Journal articles and research reports; DOE vehicle technology research reviews; NAS Committee Presentations; 21st Century Truck Partnership; company data sheets, press releases
- Original Analysis
 - Extend the results of previous studies to other vehicle classes, adjusting for factors such as duty cycle, vehicle weight, and engine size

Scope of Analysis & Approach to Data Collection

Vehicle Classes						
 Class 8 Tractor-Trailer 	•Urban Transit Bus					
 Class 3-6 Straight Box Truck 	•Motor Coach					
 Class 3-6 Straight Box Truck 	 Class 2b Pickups & Vans 					
•Class 8 Refuse Hauler						

Technology Categories					
 Aerodynamics 	 Transmission & Driveline 				
•Engines	•Hybrids				
•Tires & Wheels	 Driver Management & Coaching 				
 Weight Reduction 	 Overnight) Idle Reduction 				
Technolog	y Attributes				
Technology •Technology description	y AttributesYear of Introduction				
Technology •Technology description •Baseline for comparison	 y Attributes Year of Introduction Effect on technology on weight, 				
Technolog •Technology description •Baseline for comparison •Fuel consumption benefit	 y Attributes Year of Introduction Effect on technology on weight, coefficient of drag, etc 				

Variety of Trucks Analyzed

Tractor Trailer

Refuse Hauler

Motor Coach

40 ft Transit

Class 2b

Many opportunities to reduce fuel consumption but energy losses from engine, aerodynamics and tires dominate

Vehicles at GVWR and 50 mph Steady State Speed

The technologies used to achieve fuel consumption gains varies by market segment

These results were used to develop cost curves for each vehicle class

Aggressively deploying new technologies can reduce fuel consumption by 40 to 50% for most vehicle classes in a 2015 to 2020 time frame

Category	тт	Box	Bucket	Refuse	Bus	Coach	2b
Aero	11.5%	6%	-	-	-	8%	3%
Engine	20%	14%	14%	14%	14%	20%	23%
Wt Reduction	1.3%	4%	4%	1%	6.3%	1.1%	0.8%
Tire	8%	3%	3%	2.50%	1.50%	3%	2%
Transmission	7%	4%	4%	4%	4%	4.5%	7.5%
Hybrid	10% ¹	30%	40%	25%	35%	-	18%
Mgmt & Coaching	6%	-	-	-	-	-	-
Idle Reduction	_1	-	-	-	-	-	-
Sub-Total	49.3%	49.4%	51.3%	40.2%	50.4%	32.5%	43.2%
Added Wt (lb)	2,500	1,100	1,050	1,500	2,000	1,500	750
Adj. FC ³	48.9%	47.1%	49.6%	38.4%	47.8%	32.0%	44.5%
Cost	\$ 84,600	\$ 43,120	\$ 49,870	\$ 50,800	\$ 74,400 ² \$ 250,400	\$ 36,350	\$ 14,710
\$/% Benefit	\$ 1,731	\$ 916	\$ 1,006	\$ 1,322	\$ 1,556	\$ 1,136	\$ 331

¹The hybrid package includes ~4% credit for overnight idle reduction

²The lower cost includes an 80% federal subsidy for Diesel transit bus hybrids ³Fuel consumption benefit, adjusted for the added weight

Major conclusions of TIAX assessment

- 50% reduction in fuel consumption possible in 2017 timeframe
 - MY2008-2009 diesel vehicles and MY2008-2009 gasoline vehicles
 - 2007 emissions compliant
 - But at relatively high costs (our estimates)
- Idle emissions could be eliminated in future
 - technology exists today and electrification will further enable eliminating idle emissions on all vehicles
- National maximum speed limit should be "hardwired" in all new trucks
 - Technology exists
 - Unifies at least one of the variables on truck specification

Many similarities between EU and US truck market/users

EU Vehicle Segment	GHG Emissions by Segment (%)	% of MD/HD Fuel Consumed	US Vehicle Segment
Service	13	13	Class 2b
Urban Delivery	4	8	Class 3-6
Municipal Utility	5	5	Refuse/Service /Utility
Regional Delivery	15	61	TT
Long Haul	36		TT
Construction	11	5	Dump Trucks
Bus	9	1.4	Bus
Coach	7	0.5	Coach

Cabover design dominates in Europe vs. US

MAN TGX

Peterbilt 386

Tractor Characteristics	EU	US
Width (m)	2.55	2.6
Height (m)	4 (max)	4.09
Length (m)	~4.5-5.3	7.9
Frontal area (m2)	<10	10
No of axles	2	3
No of tires	6(dual)	10(dual)
Driveline conf	4x2	6x4
Weight (mt)	7	8.6

Trailers and total vehicle length limited in EU compared to US

Trailer/Vehicle Characteristics	EU	US
Width (m)	2.55	2.6
Height (m)	4 (max)	4.09
Length (m)	13.62	15.15
Tractor trailer gap (m)	0.87	1.02
Typical king pin distance (m)	1.668	0.914
No of axles	3	2
No of tires	6(single)	8(dual)
Tare weight (kg)	5650	6124
Payload (kg)	same	17240
Total vehicle GVW (mt)	40	36.3
Total vehicle Length (m)	16.5	21.3-22.9

Other important factors affecting fuel consumption

Parameter	EU	US
C _d	<us< td=""><td>0.62-0.64</td></us<>	0.62-0.64
Trailer	13,6 m	53' Std Box
Engine	11-15L	11-15L
Transmission	Automated manual	10 speed manual
Governed speed	90 kph	75 mph
GVW	40-44 mt	80,000 lb
Fuel consumption (L/100km)	30-35 L/100km	6.5 mpg (36 L/ 100km)
Fuel Price	1.3 €/L	\$3.90/gal (0.75 €/L)

Long haul fuel economy has improved and held relatively constant with increasing emission regulations

Average Fuel Consumption

(Gross Vehicle Weight 38/40 t)

Status: 10/2009

Apply Fuel Savings Technologies to European Market Segments

Technology		Vehicle Segment							
		Service	Urban Delivery	Municipal Utility	Regional Delivery	Long Haul	Construction	Bus	Coach
	Aft box taper		~						
	Boat tail				✓	~			
	Box skirts		~						
Aerodynamics	Cab side extension or cab/box gap fairings		~						
	Full gap fairing				✓	~			
	Full skirts				✓	~			
	Roof deflector		~						
	Streamlining	✓							~
Lightweighting	Material substitution	~	✓	~	✓	~	~	✓	~
	Automatic tire inflation on vehicle/tractor				~	~	~		>
Tires and	Automatic tire inflation on trailer				✓	~			
Wheels	Low rolling resistance tires	✓		✓				✓	✓
	Low rolling resistance wide- base single tires		~		~	~	~		
Transmission	Aggressive shift logic and early lockup	~		~				~	
and Driveline	Increased transmission gears	~		✓				✓	
	Transmission friction reduction	✓		✓	✓	~	√	~	~
Engine Efficiency	Improved diesel engine	~	~	~	~	~	~	~	~
	Dual-mode hybrid	~			✓	~			
Hybridization	Parallel hybrid	_	✓				✓		✓
Typhulzation	Parallel hydraulic hybrid			✓					
	Series hybrid							✓	
Management	Predictive cruise control				✓	\checkmark			

11 to 15L Engines

Engine Technology	2007 Baseline	2010 Engine	2013 Engine	2015 Engine	2015 to 2020 Package			
Cylinder Pressure	190-210 Bar		Increasing Cyli	nder pressure				
Fuel system	1,800 to 2,200 Bar Common rail or 33K psi Unit Injector	Common rail, m	Common rail, multiple injections per cycle, Higher injection pressure					
Emissions Control	Med-rate EGR, DPF w/ active regen	SCR, low-rate cooled EGR, DPF w/passive regen	SCR, low-rate cooled EGR, DPF w/passive regen					
Aspiration	VG Turbocharger	Improved VG Tu	urbocharger	E-Tur	ър			
Engine Controls	Open-lo	оор	Closed-loop	Improved Cl	osed-loop			
Waste-heat recovery	None	9	Mech. Turbo- compound turbo-compound cycle					
Accessories	B	elt-driven mech.	ech. Var disp pumps - Electric or- elec acc accessorie					
Weight	2,200 to 3,100 lbs	+400 lbs	+450 lbs	+750 lbs				
Peak Efficiency	41 to 42 %	43.2 to 44.2%	45.5 to 47.5% 47.9 to 51.4% 50.6 to 53.5					
Package Cost	-	\$10K	\$14K \$16.5K \$23.5K					

Improved tractor and trailer aerodynamics

Substantial GHG reductions possible across all EU market segments

Comparison of EU results to NAS results

- Assume Long Haul EU technologies compared to NAS baseline TT
 - Aerodynamics Lower Speeds
 - Reduced from 105 to 90 kph; -0.3% fuel savings/kph
 - Fuel savings of 5%
 - Engine aftertreatment EGR and DPF (without SCR)
 - Fuel savings of 6%
 - Transmission and driveline
 - 4x2 tractor configuration and AMT
 - Fuel savings of 7%
 - Tractor and Trailer wheels and tires
 - Fuel savings of 3%
 - Total estimated EU Long haul vs. NAS TT fuel savings 19%
- Assumed service segment EU technology compared to NAS baseline
 - Replace gasoline with diesel engine
 - Fuel savings 19-24%

Estimated EU GHG reductions lower due to market penetration of fuel savings technology

Heavy Duty Fuel Efficiency Technologies Closing Remarks

- Like the U.S. the EU has the potential to substantially reduce GHG emissions from heavy-duty vehicles
 - Off the shelf diesel technology exists with reasonable economics
 - Use of alternative fuels can also contribute to lower GHG emissions
- For most HDV segments powertrain improvements proves significant savings
 - Engine improvements
 - Hybridization for vocational or stop and go duty cycles
- Aerodynamics of entire vehicle important for long haul and duty cycles that have extended high speed driving
 - Need to improve both tractor and trailer
- The long haul, regional delivery, service, and bus/coach segments account for 83% of total HDV fuel consumption and therefore have the largest leverage
 - Segments also have common vehicle configurations
- Even at high fuel prices in Europe, GHG reductions will require regulations to move fuel savings technologies into the market

Thank you for your attention

