

CO₂ Emissions from Heavy Duty Vehicles Overview of VECTO's inputs

Giorgos Fontaras

San Francisco, 10/2013

Outline

- Introduction
- Inputs & VECTO
 - Engine module (draft)
 - Transmission module (draft)
- Verification summary
- Conclusions Follow up

INTRODUCTION

About the JRC / STU

- Joint Research Centre (JRC) research body of the European Commission
- Mission: provide research & innovation oriented to policy support for the European Union
- Sustainable transport unit: Research group working on transport technology & sustainability
- ~60 people, 7 labs, several models and software tools

- Need for an HDV CO₂ monitoring scheme for Europe
- Heavy Duty Vehicles is a complex sector, "not 2 vehicles identical"
- European manufacturers are amongst global leaders
- Lack of data to support policy, need for monitoring data collection
- Tool to be used by EC, TA authorities and possibly by OEMs
- Close collaboration between DG-CLIMA, JRC and ACEA
- Major markets outside Europe already adopted initiatives (mainly simulation based)

Approach Chosen: Simulation

- Approaches explored :
 - measurement on chassis dynamometer lacksquare
 - measurement with PEMS
 - vehicle simulation
- Selected option:

- Model based simulation for the whole vehicle (truck and trailer) and component testing
- Methodology considers:
 - engine, driving resistances of whole vehicle (rolling, aerodynamic), gearbox, axles, most relevant auxiliaries, driver model, specific mission profiles-cycles

VECTO: The CO₂ simulation tool for HDVs in Europe

- Vehicle Energy Consumption calculation **TO**ol
- Initially to cover:
 - Delivery trucks (long haul and regional-city)
 - Coaches
 - Effort to include city buses
- Effort to standardize:
 - Measurement protocols for input data generation
 - Individual component simulation models
 - Mission profiles and cycles
 - Evaluation / validation approaches

VECTO & INPUTS

Simulator (Vehicle Energy consumption Calculation Tool – VECTO):

- Backward simulation; Forward control loops included for target speed cycles, driver model operation, look ahead breaking, eco-roll, over-speeding
- Programming language: Visual Basic .NET
- Simulation of engine power and engine speed
- Interpolation of fuel consumption from engine map

- Total HDV classes:
 - 18 truck classes
 - 6 bus and coach classes
- 10 test cycles based on segment (5 for trucks and 5 for busses-coaches)
- Bodies and trailers:
 - Standard bodies and trailers
 - Δ(Cd*A) measured for alternatives
- Simplifications being discussed

				Segmentation				Norm-body				
	Identification of vehicle class				(vehic	(vehicle configuration and cycle allocation)			allocation			
Axles	Axle configuration	Chassis configuration	Maximum GVW [t]	< vehice class	Long haul	Regional delivery	Urban delivery	Municipal ûtility	Construction	Standard body	Standard trailer	Standard semitrailer
2	4x2	Rigid	>3.5 - 7.5	0		R	R			B0		
		Rigid or Tractor	7.5 - 10	1		R	R			B1		
		Rigid or Tractor	>10 - 12	2	R	R	R			B2		
	4x2	Rigid or Tractor	>12 - 16	3		R	R			B3		
2		Rigid	>16	4	R+T	R		R		B4	T1	
2		Tractor	>16	5	T+S	T+S						S1
	4x4	Rigid	7.5 - 16	6				R	R	B1		
		Rigid	>16	7					R	B5		
		Tractor	>16	8					T+S			W1?
	6x2/2-4	Rigid	all weights	9	R+T	R		R		B6	T2	
		Tractor	all weights	10	T+S	T+S						S2
3	6x4	Rigid	all weights	11					R	B7		
5	0/14	Tractor	all weights	12					R			S3
	6x6	Rigid	all weights	13					R	W7		
		Tractor	all weights	14					R	W7		
	8x2	Rigid	all weights	15		R				B8		
4	8x4	Rigid	all weights	16					D	RΟ		
	8x6 & 8x8 Rigid all weights 17					R	Rigid,					
					 			Т	Trailer,			
								TT	Tract	orto	m	

T+S..Tractor+semitrailer, W...only weight

Steps:

Vehicle characteristics \rightarrow Classification \rightarrow Segmentation \rightarrow Test cycle selection \rightarrow vehicle loading and default / specific bodies allocation \rightarrow simulation

Engine Module: VECTO relevant Input data (draft)

Component	Data	Unit	component specific	Default data	Comments	to be reported to TS	TS to be incorporated	CoP procedure
General	Vehicle class	[-]	х		classification according to HDV CO2 vehicle segmentation matrix			
	Vehicle curb weight	[kg]	Х					
	Trailer or body curb weight	[kg]		Х	specified for each vehicle class			
	Gross vehicle weight	[kg]	Х					
	Axle load distribution	[%]		Х	specified for each vehicle class			
	Chassis length	[m]	х		only for busses (→ number of passengers)			
	Chassis width	[m]	х		only for busses (→ number of passengers)			
Engine	Displacement	[ccm]	Х					
	Rated power	[kW]	х					
	Idling speed	[rpm]	Х					
	Rated speed	[rpm]	Х					
	Engine rotational inertia incl. flywheel	[kgm ²]		Х	calculated from engine displacement			
	Steady state fuel map		х		fuel consumption [g/h] = f (engine speed [rpm], engine torque [Nm])			
	Full-load curve		х		full-load torque = f (engine speed [rpm])			
	Drag curve		Х		drag torque = f (engine speed [rpm])			
	Test result WHTC hot		х		fuel consumption [g/h] = f (engine speed [rpm], engine torque [Nm]) in 10Hz time resolution			

Engine Module: general provisions (draft phase)

- Fuel consumption map → actual engine fuel consumption measured over different steady state conditions
- For each engine hardware and ECU calibration software combination a fuel map has to be measured
- All measurements performed according to (EC) 595/2009 on type approval of motor vehicles and engines and UN/ECE Regulation No 49.06
- Power consumption of engine auxiliaries (eg oil pump, coolant pump, fuel delivery pump, high pressure pump, alternator) to be covered by the map
- Issues that may arise because of the steady state approach:
 - Possible inconsistencies between engine certified CO₂ (WHTC hot part) and the steady state fuel map
 - transient engine behaviour not considered
- Solution → use of "WHTC correction factor" calculated on the basis of the actual WHTC measurement

Engine Module: The engine map

- Minimum 10 engine speeds shall be measured. The four base speeds shall be: n_{idle} , $n_{pref} n_{pref} * 0.04$, $n_{pref} + n_{pref} * 0.04$, n_{95}
- The remaining 6 engine speeds determined by splitting the two ranges $(n_{idle} \text{ to } n_{pref} -4 \% \text{ and } n_{pref} +4 \% \text{ to } n_{95})$ into a minimum of 4 equidistant sections
- Torque step width: clustering range 0 maximum torque into 10 equidistant sections
- Fill up the range below the mapping curve.
- When exceeding mapping curve the full load torque becomes applicable.

• Engine only operation is simulated over the 3 parts of WHTC

→ fuel consumption calculated from the steady state fuel map ("backward calculation")

- Measured specific FC per part in [g/kWh] is then divided by the simulated value
 - \rightarrow 3 different correction factors (CFs) calculated
- Total factor (CF_{Tot-i}) weighted average depending on mission profile "i"
 - Produced by VECTO by mission profile specific weighting factors (WFi),
 - CF_{Tot-i} = CF_{Urb} x WF_{Urb-i} + CF_{Rur} x WF_{Rur-i} + CF_{MW} x W_{FMW-i}

Transmission: VECTO relevant Input data (draft)

Component	Data	Unit	component specific	Default data	Comments	to be reported to TS	TS to be incorporated	CoP procedure
	Tyre rotational inertia			х	calculated based on wheel dimension of			
	Tvre RRC (trailer)			x	if applicable			
	Tyre rotational inertia (trailer)			х	if applicable			
Transmission	Transmission type	[-]	x		Manual transmission (MT), Automated manual transmission (AMT) or Automatic Transmission with Torque converter (AT)			
	Torque loss map (mechanical)		x	x	for each gear: torque loss [Nm] = f (clutch output speed [rpm], clutch output torque [Nm])			
	Gear ratio	[-]	Х		for each gear			
	Torque converter (TC) characteristics		x	X(?)	if applicable: torque ratio [-] = f(TC speed ratio [-]) reference torque at reference speed [Nm] = f(TC speed ratio [-])			
	Torque converter reference speed	[rpm]	х		if applicable; (1000 rpm defined as standard?)			
	Gearbox inertia	[kgm²]		х	for transmissions w/o TC set to zero; transmissions with TC: open			
Retarder	Retarder type	[-]	х		none (or transmission internal) / primary / secondary			
	Retarder losses		х	х	if applicable: retarder losses [Nm] = f (retarder speed [rpm])			

• 3 different methods for assessing transmission losses

Option 1: Fall back values based on the maximum rated torque of the transmission
 Option 2: Torque independent losses (measured), torque dependent losses (calculated). Electric machine & torque sensor before transmission (output shaft free-rotating)
 Option 3: Measurement of total torque loss. Electric machines and torque sensors in front and

behind transmission

position: horizontal

Transmission: Option 1 Fall back values

- Fall back values based on the maximum rated torque of the transmission
- The torque loss T_{I,in} on the input shaft of the transmission is calculated:

$$T_{l,in} = T_{d0} + T_{d1000} \cdot \frac{n_{in}}{1000 \, rpm} + f_T \cdot T_{in}$$

Where $T_{l,in}$ torque losses at input shaft T_{dx} drag torque at x RPM n_{in} speed of input shaft f_t equals 1-efficiency (fixed depending on direct / non direct gear) T_{in} torque at input shaft

$$\rightarrow \mathsf{T}_{dx}(\mathsf{T}_{max}) = T_{d0} = T_{d1000} = \mathsf{T}_{const} \cdot \frac{T_{max in}}{2000 Nm}$$

- Torque independent losses (measured),
- Torque dependent losses (calculated)
- Electric machine and torque sensor in front of transmission (output shaft free rotating)
- The torque loss T_{I,in} on the input shaft of the transmission is:

$$T_{l,in}(n_{in}, T_{in}, gear) = T_{idle}(n_{in}, gear) + (1 - \eta_T(gear)) \cdot T_{in}$$

- $T_{idle} \rightarrow Drag torque from testing at 0 load [Nm] (measured component)$
- Gear dependent efficiency η_T → calculated for each gear separately (calculated component)

$$\eta_{T} = \eta_{m, splitter} \cdot \eta_{m, main} \cdot \eta_{lowrange} \cdot \eta_{bearings}$$

• Fixed values or specific formulas for subcomponents

- Measurement of total torque loss
- Electric machines and torque sensors at both sides of transmission
- General model as in option 2

$$T_{l,in}(n_{in}, T_{in}, gear) = T_{idle}(n_{in}, gear) + (1 - \eta_T(gear)) \cdot T_{in}$$

- The torque loss measured for (speed of the input shaft):
 - 600, 800, 1000, 1200, 1400, 1700, 2000, 2400, 2800, 3200, ... rpm up to the maximum speed according to the specifications of the transmission (or higher).
- At each speed, torque measured for (input torques):
 - 0, 200, 400, 600, 800, 1000, 1200, 1400, 1700, 2000, 2400, 2800, 3200, 3600, 4000,
 ... Nm up to the maximum input torque according to the specifications of the transmission (or higher

- 2 different methods for assessing retarder losses
 - Option 1: standard technology specific table value for drag torque losses
 - Option 2: measurement of drag torque in deactivated mode
- Option 1:

$$T_{l,Ret, input / prop} = 10 + 2 \cdot (\frac{n_{input / prop}}{1000})^2$$

- Option 2:
- Retarder losses measured in combination with transmission testing
 →The transmission losses already include the retarder losses.
- If retarder individual component, retarder losses determined by subtracting gearbox losses measured with and without the retarder over one gear ratio

Input: Aerodynamic drag - rrc

- Constant speed test (at 2 velocities)
 - torque meter rim
 - anemometer
 - correction for gradient and for vehicle speed variations
 - correction for ambient p,T
 - $F = F0 + Cd * A * v^2 * \rho/2$

Important tire and vehicle conditioning for accurate Cd*A results.

RRC calculated in these tests not to be used. Official value to be used for monitoring purposes

 Implementation of gear shift strategy proposed by ACEA for manual and automated manual transmissions

Up- and down-shift polygons

Torque [Nm]	Downshift [rpm]	Upshift [rpm]			
-500	650	900			
0	650	900			
500	700	950			

Default-Option: skipping of gears: Criteria:

- 1) rpm is still over DownShift-rpm and
- 2) torque reserve is above a user-defined value (e.g. 20%)
- Additional parameter for avoidance of ocillating shifts:
- minimum time between two gear shifts (e.g. 3s)
- AMT = MT with different polygons and early upshifting
- Skipping gears possible based on torque reserve criteria, starting from gear >1
- Automatic GB model under development based on input received from OEMs and GB manufacturers

Input: Test cycles - driver model

→ Different representative cycles per vehicle category and mission profile including target speed phases and road gradients

Driver model:

Acceleration: limited by full load and max. driver demand

Gear selection with torque interruption

Overspeed function optional eco-roll or none

"Look ahead" braking

<u>Cycles</u>: *Trucks*: Long haul, Regional delivery, urban delivery, Municipal utility, Construction *Busses*: Urban bus (heavy urban, urban, suburban), Interurban bus, Coach

General structure of auxiliary models

Additional load to ICE from auxiliary operation "P_{mech ICF}" calculated in VECTO in 1Hz

$$P_{mech, ICE} = \frac{1}{\eta_{trans}} \cdot f(n_{ice} \cdot i_{aux}, \frac{P_{sup}}{\eta_{sup}})$$

"performance map"

Alternator Average electric power demand Compressor Average compressor supply power (Integral volume-flow Steering pump Steering power course over distance $(M_{wheel} * \omega)$ [kW] Air conditioning e.g. cooling capacity (mass flow * $(h_{out} - h_{in})$) [kW] Engine cooling system: special case

Detailed air-conditioning and air pump sub-models to developed by ACEA

Operation profiles and/or generic default values for auxiliaries-vehiclemission profile combinations are under investigations

Auxiliary speed	Supply power	Mechanic al power		
[rpm]	[kW]	[kW]		
1415	0	0.07		
1415	0.53	0.87		
1415	0.64	1.03		
1415	0.75	1.17		
1416	0.84	1.36		
1416	1.4	2.4		
1887	0	0.07		

VALIDATION SUMMARY

Results Air Drag With Yaw correction

- Application of generic yaw correction curve improves accuracy (>99%)
- Very good reproducibility in a different proving ground

Difference from OEM measurement for $C_d \bullet A_{cr}$ [%]	- 0.3 %
Standard deviation of C _d • A _{cr} measurement [%]	1.1 %
Difference from OEM value for RRC [%]	2.0 %
Standard deviation of RRC measurement [%]	2.3 %

On road testing: summary of results

Method seems to be quite accurate, even before full development (results are even better than expected but this may be by chance)

On-going: Extensive experimental campaign to verify overall performance with several different kinds of vehicles.

Engine mapping

CONCLUSIONS & FOLLOW UP

Conclusions

- The declaration method (DM) proposed can provide results representative of the real world performance
- Accurate input data essential, positive feedback regarding the quality of developing measurement methods
- Simulator presents satisfactory accuracy within a +-~3% from measurements
- Good results from engine mapping approach & other modeling concepts introduced

- Finalize & validate topics remaining open (gearbox and driveline efficiency quantification, auxiliary units power consumption, automatic gear shifting strategies, mobile air conditioning simulation for city buses)
- Accurate quantification of uncertainties for different vehicle types
- Apply the method to additional vehicle types / components, generate data. Lay down the foundations for a full scale application on different vehicles (pilot phase)
- Shift to forward simulation tool, attempt to merge with HILs simulator used for Hybrid HD powertrains

Thank you for your attention

georgios.fontaras@ftco.eu

Acknowledgement : Thanks to Stefan Hausberger, Martin Rexeis (TU Graz) Jan Hammer, Leif Erik Schulte (TUeV Nord) for the input provided.