NRC·CNRC

Black Carbon: Measurement Issues

Greg Smallwood CCAC Marine Black Carbon Emissions Workshop: Identifying Research Gaps 9-10 Sep 2014 Ottawa, ON, Canada

National Research Conseil national Council Canada de recherches Canada

What Needs to be Measured?

- health and environmental researchers and policymakers are asking for more specificity on PM
 - mass and number
 - size and size distribution
 - composition (black carbon, organic carbon, sulphates, nitrates)
 - surface area and surface reactivity
 - optical properties (absorption and scattering)
- BC provides specificity on composition
 - what should be measured for BC?
 - mass
 - number
 - absorption
 - other measurands (size distribution, surface coatings, etc.)?

Measurement Issues (I)

Traceability

- many instruments offer no opportunity for traceability
- filter-based mass can be traceable
 - issues with sensitivity (mass of particulate vs. mass of filter)
 - issues with filter artifacts
 - gaseous adsorption
 - fibre loss
 - less than 100% removal efficiency
 - issues with size cutoff
 - impactors and cyclones do not cut sharply at threshold (i.e. PM_{2.5})
- number concentration can be made traceable
 - ISO/FDIS 27891 Aerosol particle number concentration --Calibration of condensation particle counters

Measurement Issues (II)

Reliability and Repeatability

- difficult to establish
- Uncertainty
 - large uncertainties (can be order of magnitude in number, factor of 2 in mass)

Reference Materials

• airborne particulate RMs don't exist

Representativeness

- all ex-situ methods suffer from sampling issues
 - how representative is the sample at the measurement location of the airborne particulates?
 - losses diffusion, thermophoretic, impaction,...
 - agglomeration
 - evaporation/condensation

Measurement Issues (III)

Measuring properties with different methods

- most instruments are proprietary
 - each manufacturer implements a different measurement principle
- difficult to intercompare results obtained with different instruments
- example
 - black carbon mass
 - directly measured, or inferred from optical absorption, extinction, or emission measurements

Calibration

- is the instrument calibrated with a standard method?
- what is the uncertainty?

Measurement Issues (IV)

Measuring specific properties with a myriad of interferences

- selectivity
 - how does one measure properties of BC when many other PM components are present?
- sensitivity
 - atmospheric concentrations are often very low (<1 μ g/m³)
- gas composition
 - can be highly variable, especially in engine exhausts
 - can influence measurement
- morphology
 - spherical particles vs. fractal aggregates
- single particle vs. ensemble measurements
- variations over time, elevation, temperature, humidity, sunlight, etc.

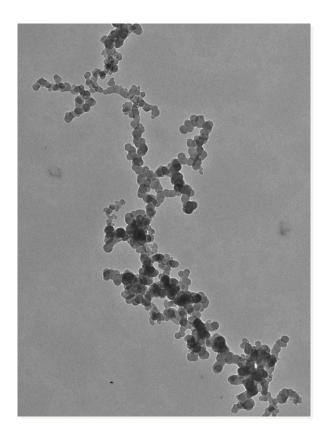
Examples of Instruments used to Measure BC: Mass (top row) and Morphology/Size/Number (lower row)

NRC CNRC

Thank you

Dr. Gregory J. Smallwood Program Leader, Metrology for Industry and Society

phone:613-993-1391e-mail:greg.smallwood@nrc-cnrc.gc.caweb:www.nrc-cnrc.gc.ca



Measurement Science and Standards

Definition for Black Carbon

"Black Carbon is a distinct type of carbonaceous material that is formed primarily in flames, is directly emitted to the atmosphere, and has a unique combination of physical properties"

- strongly absorbs visible light
- is refractory with a vaporization temperature near 4000 K
- exists as an aggregate of small spheres
- is insoluble in water and common organic solvents

Bond et al., "Bounding the role of black carbon in the climate system: A scientific assessment," Journal of Geophysical Research – Atmospheres, 118, (2013)

NRC CNRC