Fuel Economy Policy Options and Target Setting

March 12th, 2018 Africa Clean Mobility Week 2018 Nairobi, Kenya

Dr. Francisco Posada Senior Researcher

Vehicles make up more than 23% of all sectors greenhouse gas emissions ...

Notes:

Global anthropogenic CO₂ emissions in 2010 based on IPCC (2014).

Transport CO₂ emissions in 2010 estimated by ICCT (2014) include the full fuel lifecycle, including direct emissions from combustion & upstream emissions from extraction, refining, & distribution of fuels.

And the vehicle population, and activity, is expected to grow in the next decades

http://www.theicct.org/sites/default/files/publications/ICCT_HealthClimateRoadmap_2013_revised.pdf

GIZ-Ricardo review of NDCs shows a strong focus on vehicles and fuels mitigation actions

172* countries (= 87%) identify transport as an important source of emissions and area of action

14* countries specify a transport sector GHG emission reduction target

119* countries define mitigation actions in the transport sector

Transport GHG reduction target

Transport mitigation actions listed

Transport mentioned as polluting sector

no transport

Transport in Nationally Determined Contributions (NDCs).Lessons learnt from case studies of rapidly motorising countries Synthesis Report. Edina Löhr, Nipunika Perera, Nikolas Hill (Ricardo Energy & Environment), Daniel Bongardt, Urda Eichhorst (GIZ) https://www.changing-transport.org/wp-content/uploads/2017_Transport-in-NDCs.pdf

Main vehicle fuel economy policies

The basicsWhat are Vehicle Fuel
Economy CO2
emissions?

Vehicle fuel economy and CO₂ emissions are obtained under chassis laboratory testing

Certification test cycle (vel. & accel. traces) e.g., NEDC, WLTC

Spinning **/** roller bench

Regulated pollutants (per vehicle max or fleet average): NOx, NMHC, NMOG, HC (EU), CO, PM, PN (EU), HCHO (US)

Fuel Economy (km/L) and CO₂ (gCO₂/km)

Vehicle Fuel Economy
Policy1. Fiscal measures to
promote FE

Fiscal measures to improve vehicle fuel efficiency

- Vehicle tax/fee
 - Based on CO₂ emissions or fuel efficiency
 - One-time (e.g. at registration) or annually(e.g. circulation tax)
- Incentive schemes for very fuel-efficient vehicles
- Feebate- a mix of fees/tax and rebate/incentives
- Fuel tax

Progressive fiscal incentives: France's Bonus/Malus program

Bonus-malus program penalizes buyers of high CO_2 emission models while rewarding buyers of lower CO_2 -emitting vehicles at the time of first sale.

According to the French government, the program lowered fleet CO_2 emissions by 9 g/km during the single year of 2008

http://www.theicct.org/review-and-comparative-analysis-fiscal-policies

Vehicle Fuel Economy Policy

2. Fuel Economy Label

Fuel economy label

Label design and information

Vehicle fuel economy labels in Singapore since 2012

UK vehicle label

- Comparable CO₂ emission
- Fuel saving
- Fiscal policy information
- Additional EV information

Singapore label

- Absolute fuel economy value
- Fuel economy/GHG range
- Fiscal policy information

Vehicle Fuel Economy
Policy3. Fuel Economy
CO2 emission
standards

3. Fuel Economy and

What are vehicle fuel economy standards?

- National level regulation
- Fuel economy standards imply a legal framework
 - National Energy efficiency act or mandate
 - Petroleum conservation act or mandate
 - UN agreements on Climate Change (NDCs)
- Compliance:
 - per vehicle Minimum Efficiency Performance Standard (MEP)
 - corporate average fuel economy (CAFE)
- Regulated entity: new vehicle manufacturers and importers
- Metric

```
Fuel economy = How many kilometers per liter of fuel? [mpg]
```

```
Fuel consumption = How much fuel per kilometer driven? [L/100km]
```

CO₂ emission = How much CO₂ per kilometer driven? [g/km]

Regulating all manufacturers ensures that the overall fleet meets the target – Targets change over time

Picct

In the EU, mandatory CO₂ standards for new cars have quadrupled the reduction rate

More and more countries introduce CO₂ standards, with converging target values

Source: http://www.theicct.org/info-tools/global-passenger-vehicle-standards

Vehicle efficiency targets for different countries

What would happen to the vehicle itself?

Vehicles would be fitted with technologies that improve efficiency

There are many different technical options how to reduce CO₂ emissions

 The average 2015 car, at 15-20% efficiency, has many efficiency losses – and many efficiency opportunities

Sources: Lutsey, 2012; Kromer and Heywood, 2007; U.S. EPA (http://www.fueleconomy.gov/feg/atv.shtml)

Gasoline Direct Injection (GDI) adoption in Europe

Market share, gasoline vehicles with direct injection (in % of gasoline vehicles sold)

Regulation has been driving efficiency technology uptake in both, the EU and US in recent years

EU CO₂ emission standards are mandatory since 2008

THE INTERNATIONAL COUNCIL

Case study South Africa Fuel Economy Standards

The South African new passenger vehicle fleet is the largest in the African continent and the 18th largest globally.

South Africa vehicles are exported to markets with new vehicle FE/CO₂ standard regulations

Every single FE Policy starts with a Baseline Analysis

- ICCT purchased 2015 dataset from NAAMSA
- Data for more than 2100 model variants
 - CO₂, g/km
 - Fuel Consumption , L/100km
 - Vehicle characteristics (Mass, Power,...)
- Covering more than 98% of the market

SA passenger car market characteristics – CY2015

Mini 8% SUV MPV Small Off-Road 33% Sport 2% Luxury 0% Medium Upper medium 7% 1% Lower medium 21%

VW and Toyota are the two largest manufacturers

Diesel share: 17%

The South African market aligns in terms of market composition with most global markets: a contrasting combination of large shares of small vehicles and SUVs

CO₂ emissions by manufacturer

FE Passenger Vehicle Baseline for South Africa

Comparison of average new vehicle CO₂ emissions by manufacturer in South Africa and Europe, gasoline vehicles only

■ SA ■ EU ● Excess CO2, %

- Fleet average difference is 20% higher CO₂ emissions in SA
- The red dot shows the excess CO₂ that the average PV is emitting in SA with respect to the European market, by manufacturer.
- Toyota presents the largest difference, partially explained by high SUV share in SA and reduced uptake of efficient technologies

Average PC in SA emits 148 gCO_2/km . Significant potential for improvement when compared to other markets

32

Adopting PV FE/CO₂ emission standards in South Africa

Policy scenario analysis

Key variable to improve: FE Standards

Considerations

- Stringency: stringent targets results in higher CO₂ rates of reduction but increase technology demand and cost
- Long-term targets are preferred
- Independent of fuel and technology

Policy scenarios on potential FE/CO₂ emission standard adoption

- Business as usual
- Adoption of CO₂/FE standards
 - 120 gCO₂/km by 2024 (19% improvement)
 - 95 gCO₂/km by 2030 (36% improvement)
 - 4.1% per year improvement

Model results: FE policy scenarios show large CO₂ reductions even with double the fleet size by 2050

Annual PV CO2 emissions

Assumptions

ON CLEAN TRANSPORTATION

- Projected fleet growth 2%/year
 - PV Fleet size doubles: from 6 MM in 2015 to 14 MM by 2050
- VKT average 15000 km/year
- CO₂ gap: 18%
- Rebound effect: 10% per % of fleet CO₂ reduction
 - FE/CO2 standards scenario assumes 4.1% per year improvement
- Non-regulated years assume a 0.5% per year efficiency improvement

Next steps ICCT's workplan

More information ...

Additional resources online:

 South Africa FE Standars Project: <u>https://www.theicct.org/publications/south-</u> africa-new-PV-CO2-emission-stds

Francisco Posada francisco@theicct.org O WHITE PAPER

JANUARY 2018

SOUTH AFRICA'S NEW PASSENGER VEHICLE CO₂ EMISSION STANDARDS: BASELINE DETERMINATION AND BENEFITS ASSESSMENT Francisco Posada

Dicct

Thank you!

South Africa's vehicle fleet is growing – passenger cars account for large portion

Number of vehicles registered in South Africa:

Greenhouse gas emission levels:

Posada, F., NAMA Mitigation Potential – Preliminary Analysis. Prepared for TRANSfer project. The international Council on Clean Transportation. Washington DC. July, 2015.

Implementation of vehicle fuel economy labeling scheme

Manufacturer Sales weighted average CO₂ emissions - Example

Manufacturer X	Model A	Model B	
Sales 2015	1000	500	
CO ₂ emissions	150 g/km	300 g/km	
Mass	1000 kg	2000 kg	
Manufacturer X, Sales Weighted Ave CO2	<u>(1000*150)+(500*300)</u> = 200 g/km 1000+500		
Manufacturer X, Sales Weighted Ave Mass	<u>(1000*1000)+(500*2000)</u> 1000+500	= 1333.3 kg	

Average new vehicle sales-weighted CO₂ emissions as a function of curb weight, by segment - gasoline vehicles only

- Compared to Europe, South African SUVs are 14% heavier and 29% less efficient
- Small vehicles are more efficient in Europe by around 18%.

ON CLEAN TRANSPORTATIO

International market comparison of new passenger car fleet characteristics

Region	South Africa	EU-28	U.S.	China	Japan	Brazil	India	South Korea
Data year	2015	2015	2015	2014	2013	2013	2015	2014
Sales (million)	0.4	13.7	16.7	20.7	3.5	3.0	2.8	1.4
Number of cylinders	3.9	3.9	4.6		3.8	4.0	3.6	4.3
Engine displacement (I)	1.7	1.6	2.5	1.7	1.4	1.4	1.3	2.0
Engine power (kW)	97	93	171	93	78	76	59	120
Curb weight (metric tons)	1.3	1.4	1.8	1.4	1.2	1.1	1.1	1.5
Footprint (m ²)		4.0	4.6	4.0	3.7	3.7	3.5	4.2
Power-to-weight-ratio (kW/kg)	0.073	0.067	0.093	0.066	0.065	0.067	0.052	0.084
CO ₂ emissions - NEDC (g/km)	148	121	185	171	119	151	123	148
Gasoline	83%	43%	96%	98%	86%	6%	47%	51%
Diesel	17%	52%	1%	2%	0%	0%	50%	39%
Hybrid-electric	< 0.1%	3%	3%	0%	13%	0%	0%	0%
Others (Ethanol, CNG, LPG)	0%	2%	0%	0%	1%	94%	3%	10%
Manual transmission	67%	75%	5%	49%	1%	83%	98%	9%
Automatic transmission	33%	25%	95%	51%	99%	17%	2%	91%

Methodology for CO₂ benefit analysis

Classic bottom up analysis for GHG emissions inventory

Key variable to improve: FE Standards

Considerations

Real world CO₂ emissions gap is the difference between the value obtained during certification testing (laboratory) and the value obtained on the road (real world driving).

Key variable to monitor: Number of vehicles

ON CLEAN TRANSPORTATION

Key variable to monitor: activity

Model validation – Fleet size and fuel consumption

SA Passenger vehicle fleet, parc

Total fuel consumption, billion Litres

Average error 2005-2015: +0.4%

Retirement rates adjusted:

Vehicle survival function				
f=e-(x/b)^a				
a value	2.5			
b value	22			

Sources: OICA: <u>http://www.oica.net/category/vehicles-in-use/</u>

Fleet projections: South Africa PV sales expected to double by 2050

New vehicle sales

CO₂/FE Standards promote early and accelerated adoption of efficient technologies

	GDI	Turbo	VVT	6+ speed	CVT	Start Stop	Hybrid
2005	-	2.4%	49.4%	6.2%	1.1%	-	1.9%
2006	-	3.2%	58.2%	14.4%	1.2%	-	1.5%
2007	-	3.6%	63.3%	18.8%	6.7%	-	3.2%
2008	3.1%	4.5%	62.7%	21.6%	7.7%	-	3.3%
2009	4.2%	4.0%	79.1%	22.4%	8.3%	-	2.9%
2010	9.2%	4.1%	91.8%	36.4%	8.4%	-	5.6%
2011	18.4%	8.2%	94.9%	59.2%	8.8%	-	3.4%
2012	27.6%	9.7%	97.7%	63.3%	11.0%	0.9%	4.7%
2013	37.7%	15.3%	98.1%	67.5%	13.7%	3.0%	5.4%
2014	43.2%	18.4%	97.9%	68.1%	21.3%	6.8%	4.2%

Source: 2015 EPA Fuel Economy Trends Report – **Cars only** GDI: Gasoline Direct Injection CVT: Continuously Variable Transmission VVT: Variable Valve Timing