EU vehicle technology study: Background and results of Phase I

ICCT International Workshop on greenhouse gas reduction potential and costs of light-duty vehicle technologies

John German April 27, 2012 Brussels

Agenda

1 Introduction

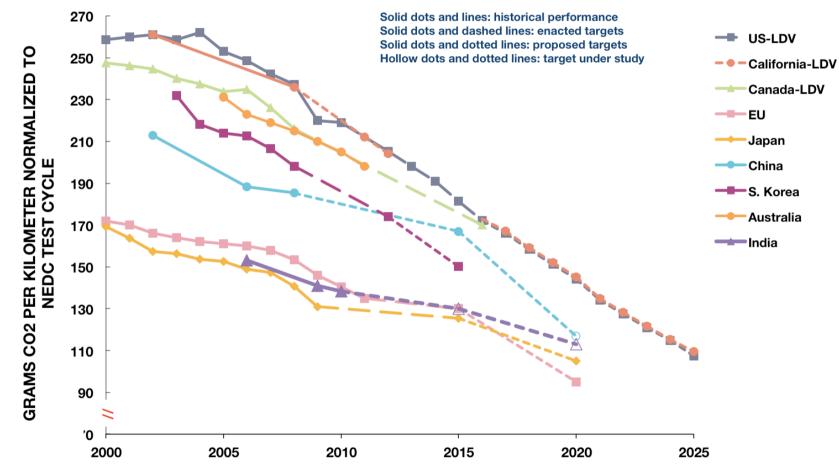
- 2 EU vehicle market statistics
- **3** Ricardo vehicle simulations
- 4 FEV cost analysis Phase I

Introduction Detailed technical data for EU rulemaking

- Setting (cost-)effective CO₂ standards requires knowledge about technical reduction potential and associated costs
- Comprehensive, transparent data is needed for fact-based discussion
- Requires sufficient budget to carry out vehicle simulations and detailed cost studies
- Current EU budget for cars & vans studies ≈ 1 million EUR Very limited availability of staff resources
- In the past relied much on industry surveys
 → limited transparency and tendency to overstate costs for required technologies

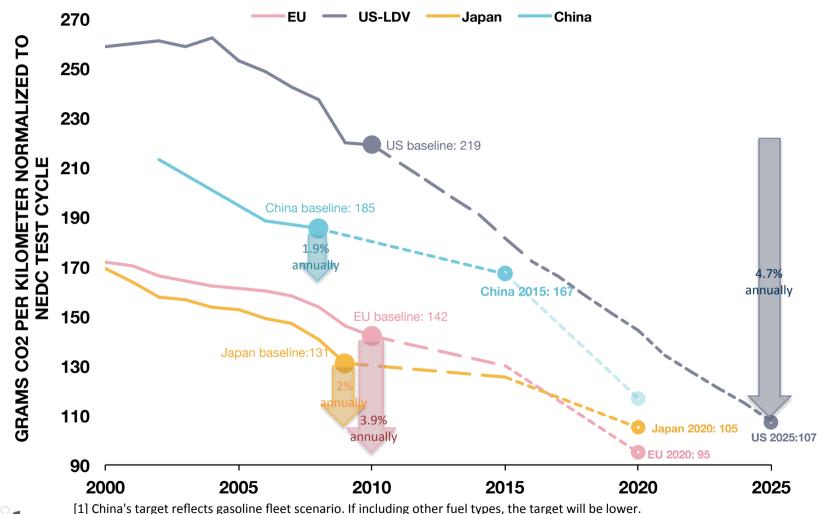
Basic idea of ICCT project

- Vehicle market is a global market with similar technologies worldwide
- Make use of existing technology studies in other markets
- US studies for 2017-25 LDV regulation are currently best-practice example



Introduction The US LDV greenhouse gas standards

- US 2012-16 light-duty vehicle GHG standard
 - Footprint-based
 - Fleet target (cars + light trucks) for 2016:
 250 g/mile = 155 g/km ≈ 170 g/km (in NEDC)
 - Status: adopted, phase-in began in 2012
- US 2017-25 light-duty vehicle GHG standard
 - Footprint-based
 - Fleet target (cars + light trucks) for 2025:
 165 g/mile = 103 g/km ≈ 110 g/km (in NEDC) (≈ 98 g/km for cars only)
 - Status: Notice of Intent, final proposal and adoption expected for 2012


Introduction Global comparison of LDV CO₂ standards

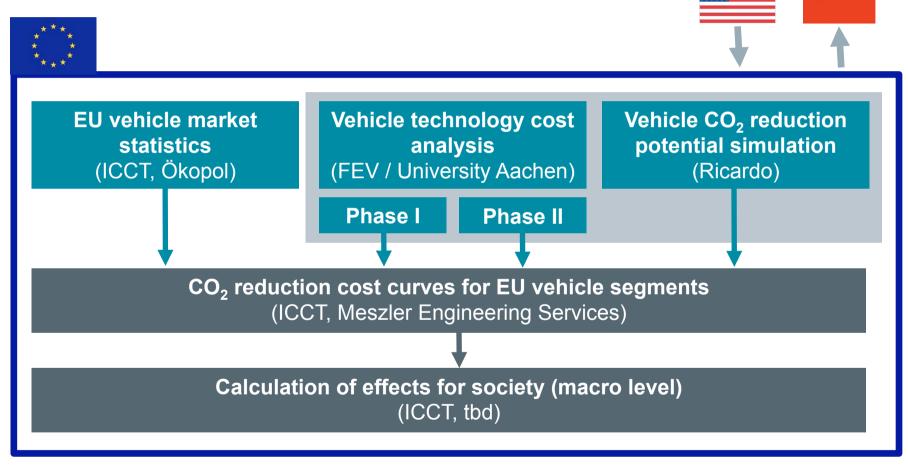
China's target reflects gasoline fleet scenario. If including other fuel types, the target will be lower.
 US and Canada light-duty vehicles include light-commercial vehicles.

Introduction **Global comparison of LDV CO₂ standards**

[2] US and Canada light-duty vehicles include light-commercial vehicles. [3] Annual rate is calculated using baseline actual performance and target values.

Introduction Technical studies for US rulemakings

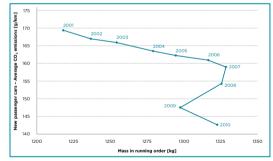
• Underlying technical studies:

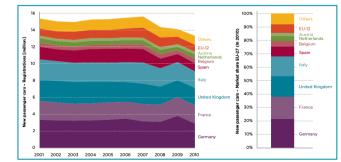

- Vehicle simulation work (Ricardo)
- Teardown engineering cost assessment (FEV)
- Weight reduction assessment (Lotus Engineering, FEV)
- Battery modeling for electric vehicles (US energy laboratory)
- Confidential business information from manufacturers

- ...

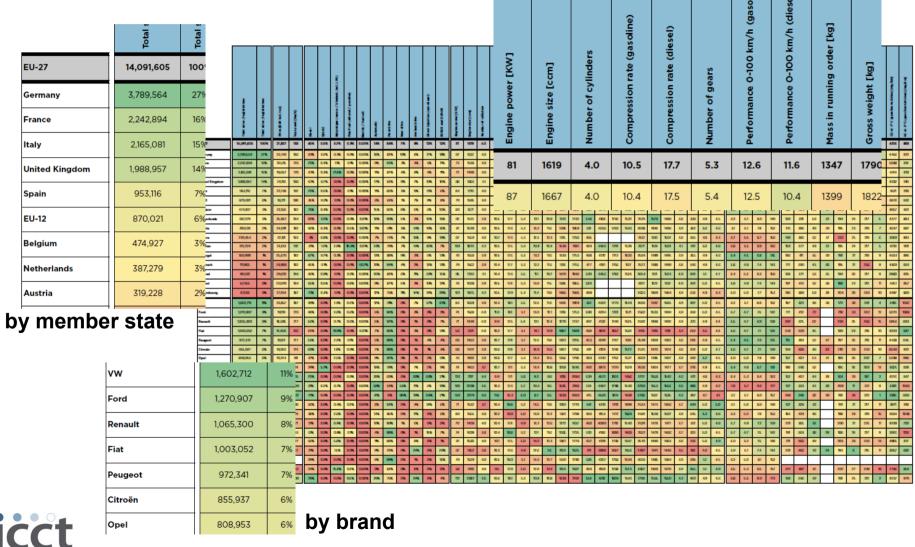
- 3 agencies (EPA, NTHSA, CARB) Total budget for technical studies ≈ 15 million \$ Total technical staff working on LDV standards ≈ 50
- Links to detailed reports on methodology and results: <u>http://www.epa.gov/otaq/climate/publications.htm#vehicletechnologies</u>

GHG reduction potential and cost analyses The ICCT approach



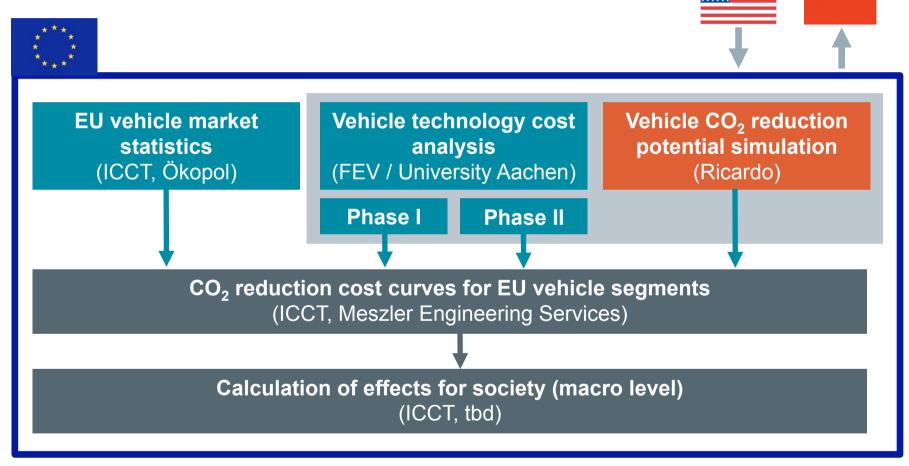

accompanying workshops, briefings and publications

EU vehicle market statistics ICCT Pocketbook



THE INTERNATIONAL COUNCIL ON CLEAN TRANSPORTATION

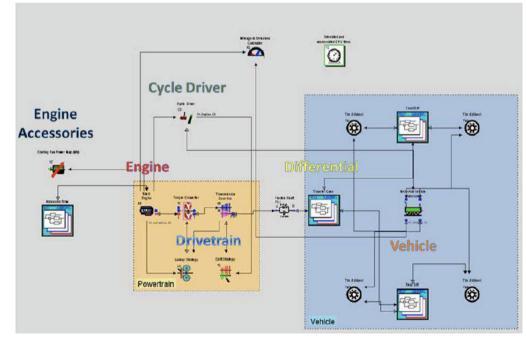
- First edition published in Jan 2012
- 2001-2010 EU-27 passenger cars 2009-2010 EU-27 vans
- Provides data beyond official CO₂ monitoring data
- Data sources: Polk, KBA, VCA, Automobil Revue, manufacturers, suppliers
- Update planned for summer 2012
- → <u>http://www.theicct.org/european-vehicle-market-statistics</u>


EU vehicle market statistics ICCT Pocketbook

numerous technical parameters

THE INTERNATIONAL COUNCIL ON CLEAN TRANSPORTATION

GHG reduction potential and cost analyses The ICCT approach

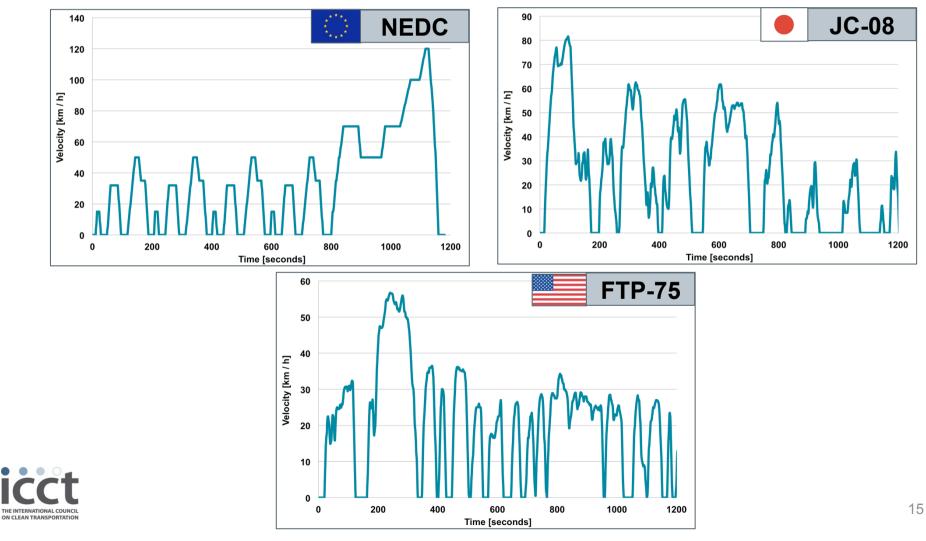

accompanying workshops, briefings and publications

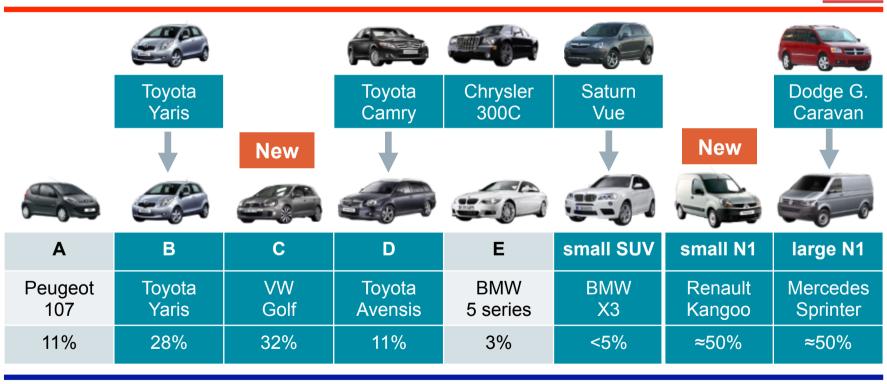
Ricardo vehicle simulations How does vehicle simulation work?

Principle idea:

- 1. Input data (engine maps, road load data, etc.) fed into software tool to calculate fuel consumption / CO_2 emissions over a drive cycle
- 2. Software model is validated by comparing calculated results against known data for an existing vehicle model
- 3. Input data is changed (e.g. new engines maps) to account for future changes in technology and model is re-run

Ricardo vehicle simulations What is so special about the simulations?


- Generally accepted approach:
 - To study future CO₂ reduction potential, technology interactions have to be accounted for (by grouping technologies into packages)
 → vehicle simulations takes interactions into account
 - Ricardo's vehicle simulation methodology follows closely industryinternal approach of vehicle development and was confirmed by an independent peer review: http://www.epa.gov/otaq/climate/publications.htm#vehicletechnologies
- Deliverables of the Ricardo vehicle simulations project:
 - **Report** describing methodology and results
 - Software tool for public use to allow users to change vehicle parameters and calculate resulting CO₂ emissions themselves
 - See ICCT website for details


- Additional driving cycles
- Additional vehicle segments
- Additional technologies
- Adapted underlying assumptions

Additional driving cycles

Additional vehicle segments

Additional technologies

- Start-stop incl. energy-recuperation
- Gasoline direct injection (DI), turbocharging and downsizing (stoichiometric)
- Gasoline DI, turbocharging and downsizing (lean-stoich.)
- Gasoline exhaust gas recirculation (EGR) DI turbo
- Gasoline Atkinson cycle engine with cam profile switching (CPS)
- Gasoline Atkinson cycle engine with digital valve actuation (DVA)
- Gasoline P2 hybrid
- Gasoline PowerSplit hybrid
- Diesel advanced 2020+ engine
- Advanced transmission technologies (6/8-speed automatic, dual clutch transmission)
- Manual transmission sensitivity analysis

- Adapted underlying assumptions
 - Making use of EU applicable engine maps
 - Future gasoline vehicles will meet California LEV III requirements (equivalent to Euro 6+)
 - Baseline diesel vehicles meet Euro 5 standard
 - Future diesel vehicles will meet Euro 6+ standards
 - Ricardo results do not account for weight changes; to be handled separately using provided software tool
 - Blanket 3.5% improvement in fuel consumption coming from a combination of friction improvements in future engines
 - Ricardo baseline vehicles to be understood as ≈2010 model year vehicles with start-stop technology implemented

B-segment (29% market, 38% diesel)

	Gas	oline	Die	esel		
	Ricardo	EU-27	Ricardo	EU-27		
Vehicle model	Toyota Yaris	n/a	Toyota Yaris	n/a		
Engine size	4 cyl., 1.5 l	4 cyl., 1.3 l	4 cyl., 1.2 l	4 cyl., 1.5 l		
Engine power	82 kW	63 kW	59 kW	61 kW		
Engine type	PFI	PFI (MS DI≈2%)	n/a	n/a		
Vehicle weight	1,130 kg	1,090 kg	1,130 kg	1,160 kg		
Transmission	6-AT	MT (MS≈94%)*	6-AT	MT (MS≈94%)*		
Acceleration 0-100 km/h	9.9 s	13.2 s	12.2 s	13.3 s		
CO ₂ in NEDC	128 g/km	136 g/km	108 g/km	113 g/km		
Remarks	Start-Stop/Reg. Euro 5 eq.	no Start-Stop Euro 4 (MS≈60%)	Start-Stop/Reg. Euro 5	no Start-Stop Euro 4 (MS≈60%)		

Ricardo simulations baseline vehicle vs. EU-27 average new vehicle in 2010

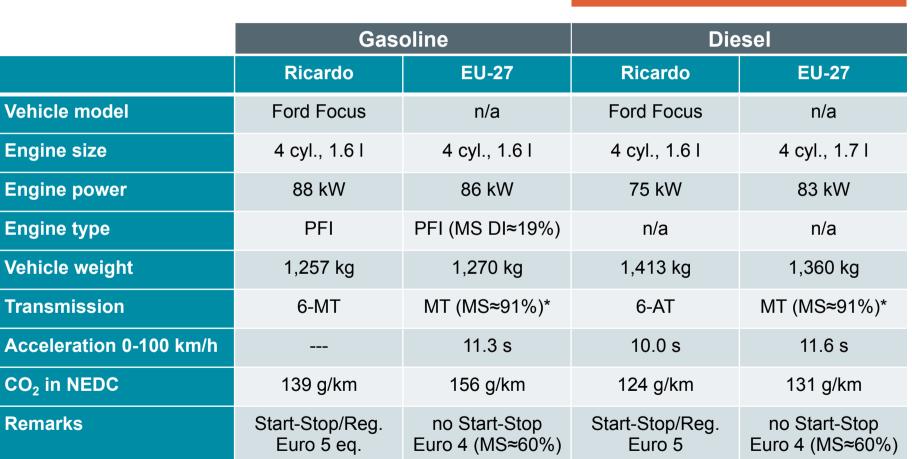
THE INTERNATIONAL COUNCIL

ON CLEAN TRANSPORTATION

Abbreviations: PFI (port fuel injection), DFI (direct fuel injection), MS (market share), AT (automatic transmission), MT (manual transmission), vehicle weight is given in mass in running order (includes 68 kg driver and 7 kg of luggage) *5-MT: 86%, 6-MT: 8%

C-segment (32% market, 38% diesel)

	Gas	oline	Die	esel
	Ricardo	EU-27	Ricardo	EU-27
Vehicle model	VW Golf	n/a	VW Golf	n/a
Engine size	4 cyl., 2.0 l	4 cyl., 1.6 l	4 cyl., 1.6 l	4 cyl., 1.7 l
Engine power	86 kW	86 kW	75 kW	83 kW
Engine type	PFI	PFI (MS DI≈19%)	n/a	n/a
Vehicle weight	1,413 kg	1,270 kg	1,413 kg	1,360 kg
Transmission	6-AT	MT (MS≈91%)*	6-AT	MT (MS≈91%)*
Acceleration 0-100 km/h	10.0 s	11.3 s	10.0 s	11.6 s
CO ₂ in NEDC	165 g/km	156 g/km	124 g/km	131 g/km
Remarks	Start-Stop/Reg. Euro 5 eq.	no Start-Stop Euro 4 (MS≈60%)	Start-Stop/Reg. Euro 5	no Start-Stop Euro 4 (MS≈60%)


Ricar Abbre MT (r

ON CLEAN TRANSPORTATION

Ricardo simulations baseline vehicle vs. EU-27 average new vehicle in 2010 Abbreviations: PFI (port fuel injection), DFI (direct fuel injection), MS (market share), AT (automatic transmission), MT (manual transmission), vehicle weight is given in mass in running order (includes 68 kg driver and 7 kg of luggage) * MS 5-MT: 49%, 6-MT: 42%

--- revised C class vehicle ---

C-segment	(3)
(32% market, 38% diesel)	

Ricardo simulations baseline vehicle vs. EU-27 average new vehicle in 2010

ON CLEAN TRANSPORTATIO

Abbreviations: PFI (port fuel injection), DFI (direct fuel injection), MS (market share), AT (automatic transmission), MT (manual transmission), vehicle weight is given in mass in running order (includes 68 kg driver and 7 kg of luggage) * MS 5-MT: 49%, 6-MT: 42%

D-segment (11% market, 80% diesel)

	Gas	oline	Die	esel
	Ricardo	EU-27	Ricardo	EU-27
Vehicle model	Camry / Avensis	n/a	Camry / Avensis	n/a
Engine size	4 cyl., 2.4 l	4 cyl., 2.0 l	4 cyl., 2.0 l	4 cyl., 2.0 l
Engine power	118 kW	127 kW	122 kW	109 kW
Engine type	PFI	PFI (MS DI≈37%)	n/a	n/a
Vehicle weight	1,583 kg	1,440 kg	1,583 kg	1,500 kg
Transmission	6-AT	MT (MS≈81%)*	6-AT	MT (MS≈81%)*
Acceleration 0-100 km/h	8.3 s	9.3 s	7.6 s	9.9 s
CO ₂ in NEDC	166 g/km	177 g/km	133 g/km	148 g/km
Remarks	Start-Stop/Reg. Euro 5 eq.	no Start-Stop Euro 4 (MS≈95%)	Start-Stop/Reg. Euro 5	no Start-Stop Euro 4 (MS≈95%)

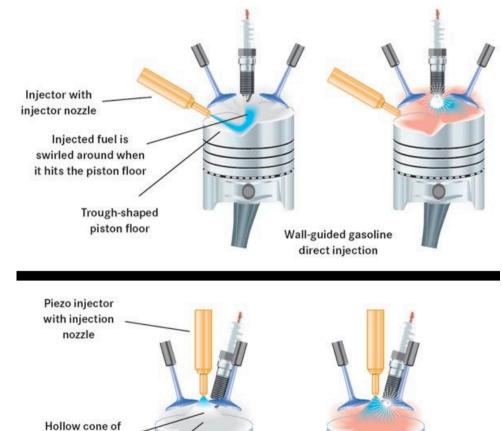
Ricardo simulations baseline vehicle vs. EU-27 average new vehicle in 2010

THE INTERNATIONAL COUNCI

ON CLEAN TRANSPORTATION

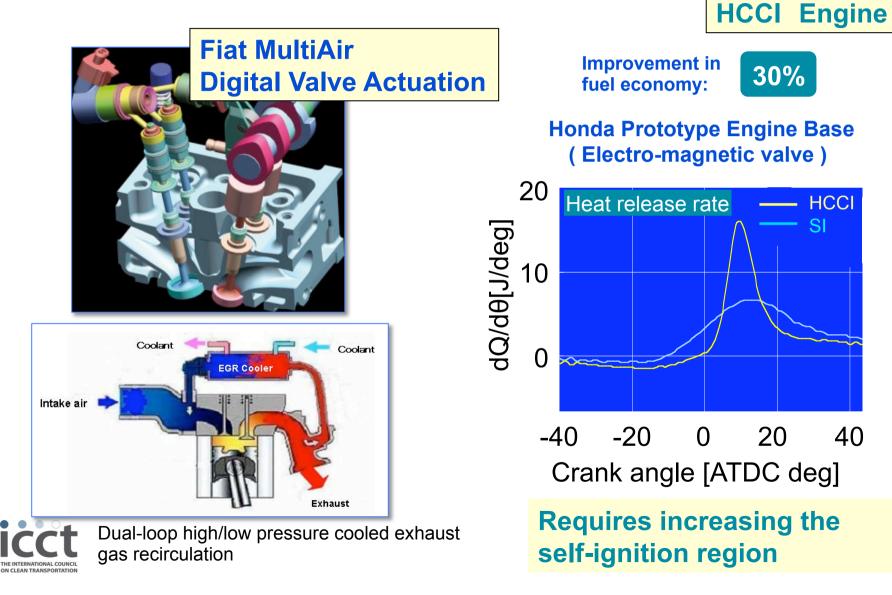
Abbreviations: PFI (port fuel injection), DFI (direct fuel injection), MS (market share), AT (automatic transmission), MT (manual transmission), vehicle weight is given in mass in running order (includes 68 kg driver and 7 kg of luggage) * 5-MT: 13%, 6-MT: 68%

Ricardo vehicle simulations Efficiency, low CO₂ technologies


- There are many different technologies available to reduce vehicles' CO₂ emissions
- Technical efficiency, low-CO₂ options
 - Petroleum efficiency
 - Gasoline
 - Diesel
 - Hybrid
 - Alternative fuels
 - Compressed natural gas
 - Biofuels
 - Electric-drive
 - Plug-in hybrid electric
 - Electric
 - Fuel cell electric

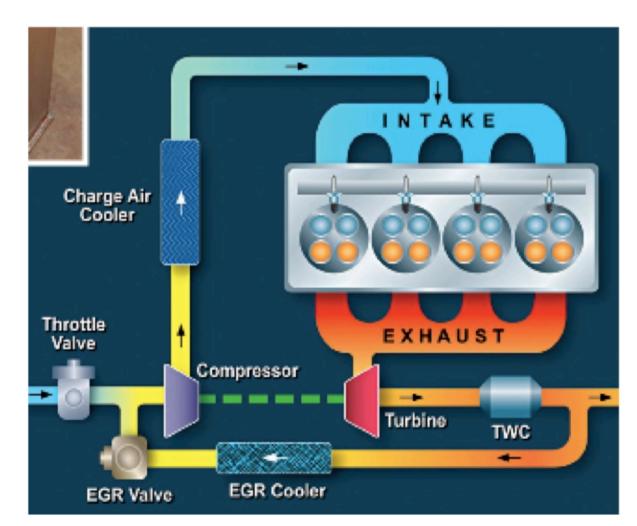
Ricardo vehicle simulations Gasoline direct injection

- Cools intake mixture: especially important for turbocharging
- Longer valve overlap increases low-rpm torque (fuel injected after valves close)
- Spray-guided reduces wall impingement and particulate emissions


Spray-guided gasoline direct injection

injected fuel

Flat piston floor



Ricardo vehicle simulations Next generation gasoline engines

Ricardo vehicle simulations Turbo boosted-EGR systems

- Highly dilute combustion – considerable efficiency improvement
- Advanced ignition systems required

Terry Alger, Southwest Research Institute, "Clean and Cool", Technology Today, Summer 2010

Ricardo vehicle simulations Ricardo developed model inputs

paper (right) from demonstration engine.

THE INTERNATIONAL COUNCI ON CLEAN TRANSPORTATION e.g., Stoichiometric, Direct Injection Turbocharged Engine

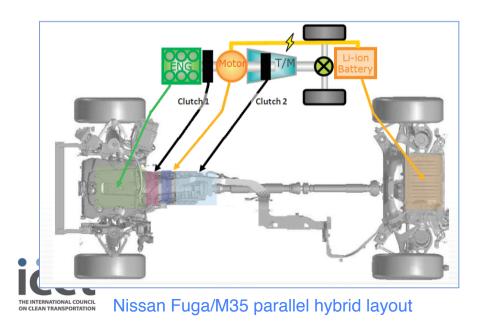
2,0L Two-Stage Turbo, Map of BSFC [g/kWh]

Source: Schmuck-Soldan, S., A. Königstein, and F. Westin, 2011

Ricardo vehicle simulations Input Powersplit: Planetary gearing

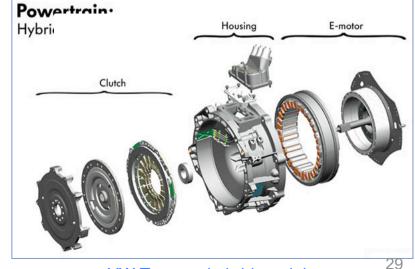
- Toyota and Ford: Optimizes city efficiency, inexpensive CVT
- Achilles' Heel: Fixed torque split between engine and generator

апи юж-посион.


Power Split Device

The power split device uses a planetary gear. The rotational shaft of the planetary carrier inside the gear mechanism is directly linked to the engine, and transmits the motive power to the outer ring gear and the inner sun gear via pinion gears. The rotational shaft of the ring gear is directly linked to the motor and transmits the drive force to the wheels, while the rotational shaft of the sun gear is directly linked to the generator.

- Two large motors
 - generator must handle part of engine output
 - Motor must handle generator plus battery output
- Cruising efficiency loss
 - Part of engine output always incurs losses in generator and motor
- Power recirculation possible


Ricardo vehicle simulations P2 hybrid system

- New P2 hybrid single motor with two clutches
 - Pre-transmission clutch: engine decoupling and larger motor
 - Nissan, VW, Hyundai, BMW, and Mercedes
- Achilles' Heel: Bump-starting engine
 - Hyundai: Separate BAS to start motor
 - Nissan: 2nd clutch designed to slip
 - VW: Retained conventional torque converter

Drivability Efficiency

VW Touareg hybrid module

Provided in project report and accompanying software tool

dvanced DCT					FUE	L ECC	NOMY	(mpg)		C	CO ₂ (g	/km)					PERF	ORMAN	CE									
	EF	2A	-															70 00 0		Spee	ed Spe	bed						
Vehicle - Engine	C (P2 Hybrid								FU	el e	CONC	MY (m	pg)		С	D₂ (g/	km)					PEF	RFOR	MANC	E		0.0.0
B Class - STDI	2		EPA	lines	Displ	Peak	Peak	Trans	Final								-			0-10	0-30	0-50	0-60	0-70	30-50	50-70	Speed	Spe on
B Class - LBDI	2	Vehicle - Engine	Weight	(kg)	Displ. (L)		Power	Spd-	Drive		EPA HWY		NEDC	JC08		EPA HWY		NEDC	JC08	mph	mph	mph	mph	mph	mph	mph	on 5% Grd	109
B Class - EGRB	2		Class	1.21	(-/	(Nm)	(KW)	туре	Ratio											(sec)	(sec)	(sec)	(sec)	(sec)	(sec)	(sec)	(mph)	Gri (mp
B Class - 2020 Diesel	2	B Class - STDI	2625	1191	0.59	124	59	DCT6	4.00	68.2	57.3	37.0	60.6	73.6	83	99	153	93	77	1.4	3.8	7.2	9.6	12.6	3.4	5.4	87.4	70
		B Class - LBDI	2625	1191	0.59	124	59	DCT6	4.00	68.4	57.7	37.3	61.4	74.9	82	98	151	92	75	1.4	3.8	7.2	9.6	12.6	3.4	5.4	87.4	70
C Class - STDI	3	B Class - EGRB	2625	1191	0.59	124	59	DCT6	4.00	70.2	59.9	38.8	63.5	76.2	80	94	146	89	74	1.4	3.8	7.2	9.6	12.6	3.4	5.4	87.4	70
C Class - LBDI	З	B Class - Atkinson CPS	2625	1191	1.66	138	65	DCT6	4.00	70.8	59.0	38.1	62.6	74.8	80	96	148	90	75	1.4	3.7	7.5	10.0	13.6	3.8	6.1	85.4	62
C Class - EGRB	3	B Class - Atkinson DVA	2625	1191	_	138	65	DCT6	4.00	71.7	_	39.2	64.2	78.4	79	93	144	88	72	1.4	3.7	7.5	10.0	_	3.8	6.1	85.4	62
C Class - 2020 Diesel	3	D Class - Atkinson DVA	2023	1101	1.00	130	~	0010	4.00	11.1	00.0	36.2	04.2	70.4	10		144		12	1.4	3.7	1.5	10.0	10.0	0.0	0.1	00.4	02
D Class - STDI	3	C Class - STDI	3250	1474	0.62	131.6	62.4	DCT8	3.68	60.3	57.0	35.1	59.1	66.5	94	99	161	96	85	1.4	3.9	7.5	10.0	13.4	3.6	5.9	87.3	67
D Class - LBDI	3	C Class - LBDI	3250	1474	0.62	131.6	62.4	DCT8	3.68	61.8	58.4	35.3	60.2	68.1	91	97	160	94	83	1.4	3.9	7.5	10.0	13.4	3.6	5.9	87.3	67
D Class - EGRB	3	C Class - EGRB	3250	1474	0.62	131.6	62.4	DCT8	3.68	62.6	59.6	36.6	61.7	68.8	90	95	154	92	82	1.4	3.9	7.5	10.0	13.4	3.6	5.9	87.3	67
D Class - 2020 Diesel	3	C Class - Atkinson CPS	3250	1474	1.74	145	68	DCT8	3.68	64.0	60.3	39.2	63.0	71.3	88	94	144	90	79	1.4	3.7	7.5	10.3	13.8	3.8	6.3	85.5	66
		C Class - Atkinson DVA	3250	1474	1.74	145	68	DCT8	3.68	65.0	61.2	39.7	63.9	72.3	87	92	142	88	78	1.4	3.7	7.5	10.3	13.8	3.8	6.3	85.5	66
Small CUV - STDI	4			-													_					-	-					-
Small CUV - LBDI	4	D Class - STDI	3625	1644	0.83	175.5	83	DCT8	3.23	61.9	57.2	36.9	59.0	64.6	91	99	153	96	87	1.3	3.6	6.5	8.6	11.3	2.9	4.8	98.0	77
Small CUV - EGRB	4	D Class - LBDI	3625	1644	0.83	175.5	83	DCT8	3.23	62.9	58.0	36.7	59.9	66.7	90	97	154	94	85	1.3	3.6	6.5	8.6	11.3	2.9	4.8	98.0	77
Small CUV - 2020 Diesel	4	D Class - EGRB	3625	1644	0.83		83	DCT8		65.1	59.7	38.4	61.7	67.0	87	95	147	92	84	1.3	3.6	6.5	8.6	11.3	2.9	4.8	98.0	77
		D Class - Atkinson CPS	3625	1644	2.40	200.2	94	DCT8	3.23	64.6	59.7	39.8	61.5	66.0	87	95	142	92	86	1.2	3.4	6.5	8.6	11.4	3.1	4.9	101.3	78
N1 (large) - STDI	4	D Class - Atkinson DVA	3625	1644				DCT8			61.0	40.5	62.7	67.8	86	93	139	90	83	1.2	3.4	6.5	8.6	11.4	3.1	4.9	101.3	78
N1 (large) - LBDI	4	D Oldos - Atkinoon DVA	0020	1011	2.10	200.2		0010	0.20	00.0	01.0	10.0	02.7	07.0	~	00	100		~	1.6	0.4	0.0	0.0	11.4	0.1	7.0	101.0	- ~
N1 (large) - EGRB	4	Small CUV - STDI	4000	1814	0.90	189.8	90	DCT8	3.50	50.1	44.2	28.5	47.9	56.4	113	128	198	118	100	1.5	3.9	7.0	9.4	12.3	3.1	5.3	90.5	72
N1 (large) - 2020 Diesel	4	Small CUV - STDI	4000	1814		189.8	90		3.50	50.8	44.2	28.5	47.9	57.3		128	198	118	99	1.5			9.4	12.3	3.1	5.3	90.5	72
NA (concellor CTT)	_							DCT8							111						3.9	7.0						
N1 (small) - STDI N1 (small) - LBDI	3	Small CUV - EGRB	4000	1814			90	DCT8	3.50	52.0	46.1	29.8	49.5	58.7	109	123	189	114	96	1.5	3.9	7.0	9.4	12.3	3.1	5.3	90.5	72
N1 (small) - EGRB		Small CUV - Atkinson CPS	4000	1814	2.60	217	102	DCT8	3.50	52.9	45.5	29.6	50.0	57.1	107	124	191	113	99	1.4	3.7	7.1	9.3	12.6	3.4	5.5	91.1	76
N1 (small) - 2020 Diesel	3	Small CUV - Atkinson DVA	4000	1814	2.60	217	102	DCT8	3.50	54.1	46.8	30.3	50.9	58.5	104	121	187	111	97	1.4	3.7	7.1	9.3	12.6	3.4	5.5	91.1	76
NT (smail) - 2020 Dieser	-																											
		N1 (large) - STDI	4500	2041	1.05	221	105	DCT8	3.17	47.7	42.2	26.2	44.7	52.1	118	134	216	126	108	1.5	3.8	6.9	9.1	11.9	3.1	5.0	94.3	75
		N1 (large) - LBDI	4500	2041	1.05	221	105	DCT8	3.17	47.4	42.6	26.8	45.2	52.7	119	132	211	125	107	1.5	3.8	6.9	9.1	11.9	3.1	5.0	94.3	75
0		N1 (large) - EGRB	4500	2041	1.05	221	105	DCT8	3.17	47.6	43.0	27.6	46.0	53.2	119	131	205	123	106	1.5	3.8	6.9	9.1	11.9	3.1	5.0	94.3	75
		N1 (large) - Atkinson CPS	4500	2041	3.15	263	124	DCT8	3.17	48.3	42.4	27.5	45.9	51.0	117	133	205	123	111	1.4	3.6	6.7	8.8	11.6	3.1	4.9	95.4	82
		N1 (large) - Atkinson DVA	4500	2041	3.15	263	124	DCT8	3.17	48.8	43.5	27.7	46.9	52.6	116	130	204	120	107	1.4	3.6	6.7	8.8	11.6	3.1	4.9	95.4	82

C-segment (gasoline) only engine + transmission

Exemplary results:

	cyl.	[0]	inj.	[kg]	trans.	[s]	[g/km]	em.	red.
EU-27 2010 average	4	1.6	PFI	1,270	5-MT	11.3	156	EU4	+X%
Ricardo baseline (start stop)	4	1.6	PFI	1,257	6-MT	9.1	139	EU5	
STDI (s tart stop + stoich. direct injection + downsizing)	3	0.8	DI	1,257	8-AT 8-DCT	9.0 9.1	101 99	EU6	-27% -28%
LBDI (start stop + lean-stoich direct injection + downsizing)	3	0.8	DI	1,257	8-AT 8-DCT	9.0 9.1	99 96	EU6	-28% -31%
EGBR (start stop + high load EGR DI + downsizing)	3	0.8	DI	1,257	8-AT 8-DCT	9.0 9.1	97 95	EU6	-30% -32%
Atkinson CPS (P2)	4	1.9	DI	1,324	8-DCT	9.1	78	EU6	-44%

THE INTERNATIONAL COUNCI ON CLEAN TRANSPORTATION 0-100 km/h, em. = emission standard, red. = CO_2 reduction compared to Ricardo baseline vehicle STDI = stoichiometric turbocharged gasoline direction injection, LBDI = lean-stoichiometric turbocharged gasoline direct injection, EGR = exhaust gas recirculation, DCT = dual clutch transmission, AT = automatic transmission, MT = manual transmission, PFI = port

cyl. = number of cylinders, [I] = engine displacement, inj. = engine type, [kg] = vehicle weight, trans. = transmission, [s] = acceleration

fuel injection // more technologies in project report // note that vehicle weight is not adapted for individual packages in the original Ricardo report but was adjusted for this summary (additional weight for hybrid configuration)

C-segment (gasoline) including roadload reduction

Exemplary results:

	cyl.	[1]	inj.	[kg]	trans.	[s]	[g/km]	em.	red.
EU-27 2010 average	4	1.6	PFI	1,270	5-MT	11.3	156	EU4	+X%
Ricardo baseline (start stop)	4	1.6	PFI	1,257	6-MT	9.1	139	EU5	
STDI (s tart stop + stoich. direct injection + downsizing) -15% mass, -10% RR/CdA	3	0.7	DI	1,058	8-AT 8-DCT	9.0 9.1	89 87	EU6	-36% -37%
LBDI (start stop + lean-stoich direct injection + downsizing) -15% mass, -10% RR/CdA	3	0.7	DI	1,058	8-AT 8-DCT	9.0 9.1	87 85	EU6	-37% -39%
EGBR (start stop + high load EGR DI + downsizing) -15% mass, -10% RR/CdA	3	0.7	DI	1,058	8-AT 8-DCT	9.0 9.1	85 83	EU6	-39% -40%
Atkinson CPS (P2) -15% mass, -10% RR/CdA	4	1.6	DI	1,117	8-DCT	9.1	68	EU6	-51%

cyl. = number of cylinders, [I] = engine displacement, inj. = engine type, [kg] = vehicle weight, trans. = transmission, [s] = acceleration 0-100 km/h, em. = emission standard, red. = CO₂ reduction compared to Ricardo baseline vehicle

STDI = stoichiometric turbocharged gasoline direction injection, LBDI = lean-stoichiometric turbocharged gasoline direct injection, EGR = exhaust gas recirculation, DCT = dual clutch transmission, AT = automatic transmission, MT = manual transmission, PFI = port fuel injection // more technologies in project report // note that vehicle weight is not adapted for individual packages in the original Ricardo report but was adjusted for this summary (additional weight for hybrid configuration)

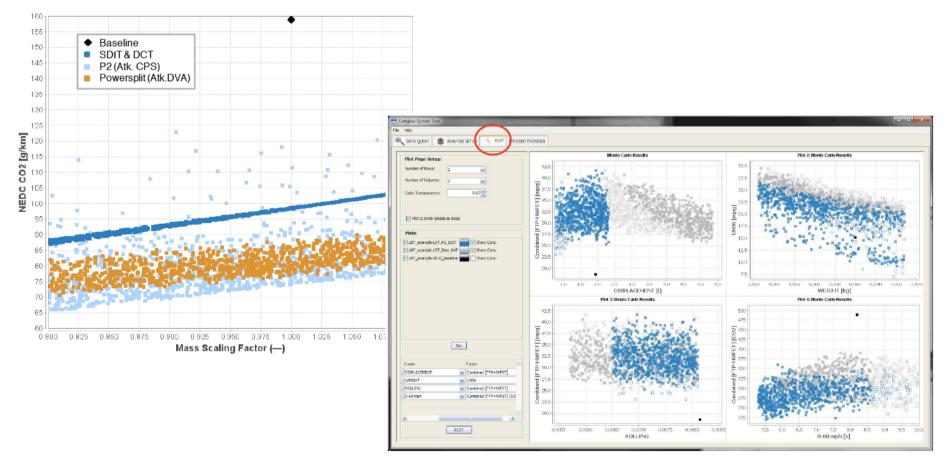
C-segment (diesel) only engine + transmission

Exemplary results:

	cyl.	[0]	inj.	[kg]	trans.	[s]	[g/km]	em.	red.
EU-27 2010 average	4	1.7		1,360	5-MT	11.6	131	EU4	+X%
Ricardo baseline (start stop)	4	1.6		1,257	6-MT		122	EU5	
Advanced diesel	3	1.3		1,257	8-AT 8-DCT	9.1 9.1	98 98	EU6	-20%

cyl. = number of cylinders, [I] = engine displacement, inj. = engine type, [kg] = vehicle weight, trans. = transmission, [s] = acceleration 0-100 km/h, em. = emission standard, red. = CO₂ reduction compared to Ricardo baseline vehicle STDI = stoichiometric turbocharged gasoline direction injection, LBDI = lean-stoichiometric turbocharged gasoline direct injection, EGR = exhaust gas recirculation, DCT = dual clutch transmission, AT = automatic transmission, MT = manual transmission, PFI = port fuel injection // more technologies in project report // note that vehicle weight is not adapted for individual packages

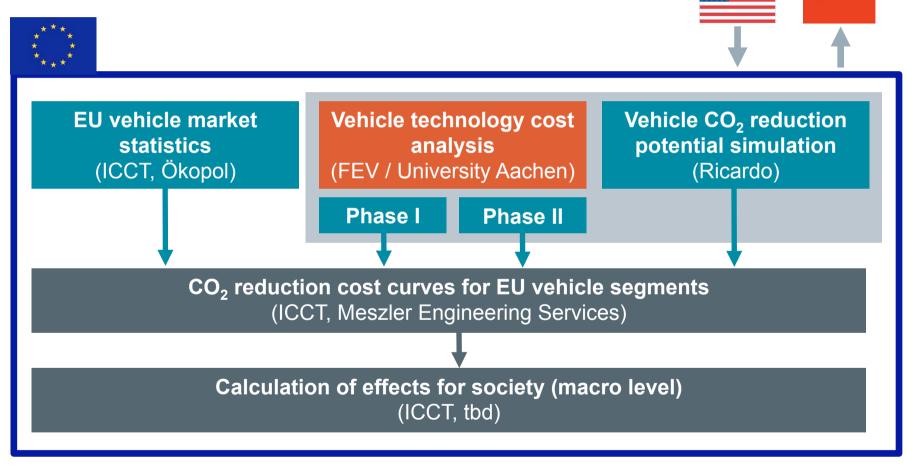
Ricardo vehicle simulations Response Surface Model software tool


Tool and user guide available on ICCT website

000	Complex System Tool	
File Help		
CATA QUERY SANALYSIS SET UP PLOT EFFICEN	T FRONTIER	
VEHICLES AND TECHNOLOGIES SELECTION	Output Definition	Load Vehicle:
Choose Vehicle Class: B-Class (Toyota Yaris)	Compute Show Formula	Car.veh Load
Select Technologies:		Car.veh Save
Architectures Engines Transmissions	STATUS: Configuration Valid	Vehicle Fuel Economy and Performance Data
Baseline Stoich_DI_Turbo Lean_DI_Turbo	Vehicle Class: B-Class (Toyota Yaris)	Edit Search Table
EGR_DI_Turbo	Architecture:	A B C D E
2020_Diesel	Conventional SS	1 NEDC [CO2] Displacement FDR Rolling R. Aero
Atkinson_CPS Atkinson_DVA	Produce	2 133.67424 1.5 4.0 0.0094 0.73
2020_EURO_DIESEL	Engine:	3 105.855034 0.74 4.0 0.0094 0.73 4 103.35448 0.74 4.0 0.0094 0.73
Diesel_Baseline	Stoich_DI_Turbo	5
	Transmission:	6
	6Dry_DCT	7
		8
		9
		10
Displacement:	Driveline Eff.:	11 12
0.74 50 125 100.0 %	0 96 104	13
		14
FDR:	e-load: 50.0 %	15
4.0 75 125	0 -50 0	16
10 120	EM Size:	17
Rolling R.: 100 %		18
0.0094 70 100	0 50 300 50.0 %	
Aero: 100 %	EM/Batt Eff.: 50.0 %	
0.736 70 100 100 100 100 100 100 100 100 100	0 -50 0	Load Data Sheet: Save Data
		Carvis Browse Car.xis
<		

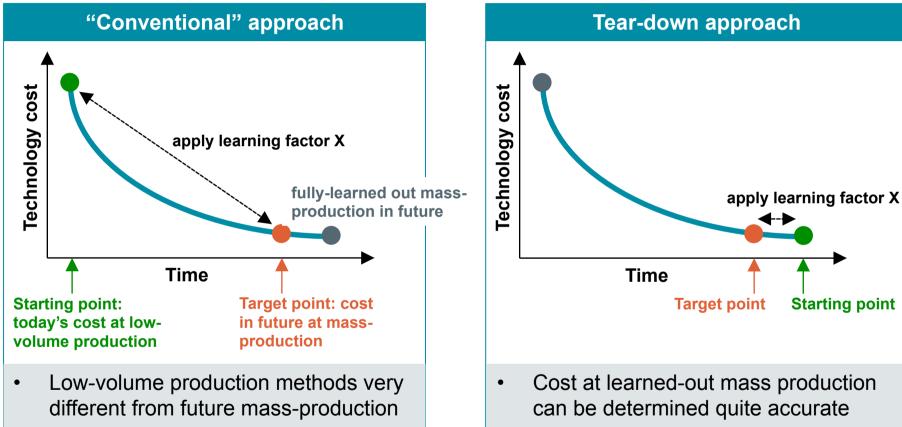
Ricardo vehicle simulations Response Surface Model software tool

Tool also allows Monte-Carlo simulations



Ricardo vehicle simulations Outlook

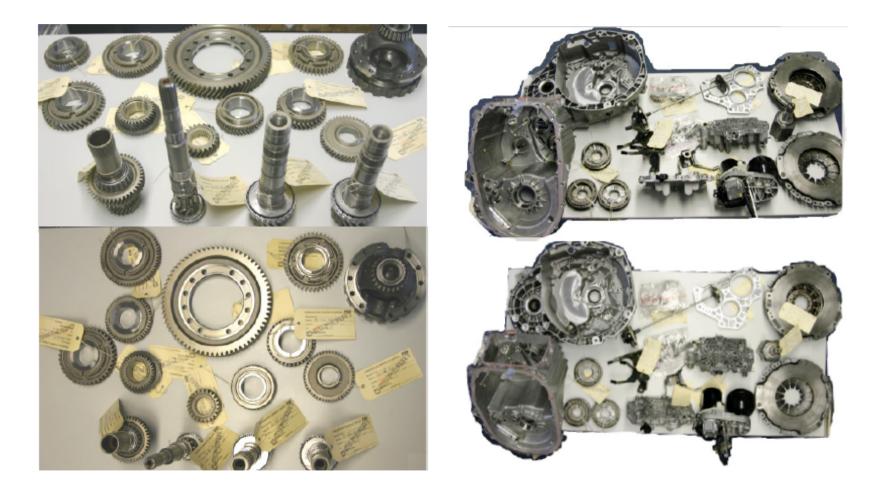
- Potential additions for the future:
 - Diesel hybrid
 - 2-cylinder gasoline DI engine
 - A-segment vehicle
 - E-segment vehicle
 - New world harmonized driving cycle (WLTP)


GHG reduction potential and cost analyses The ICCT approach

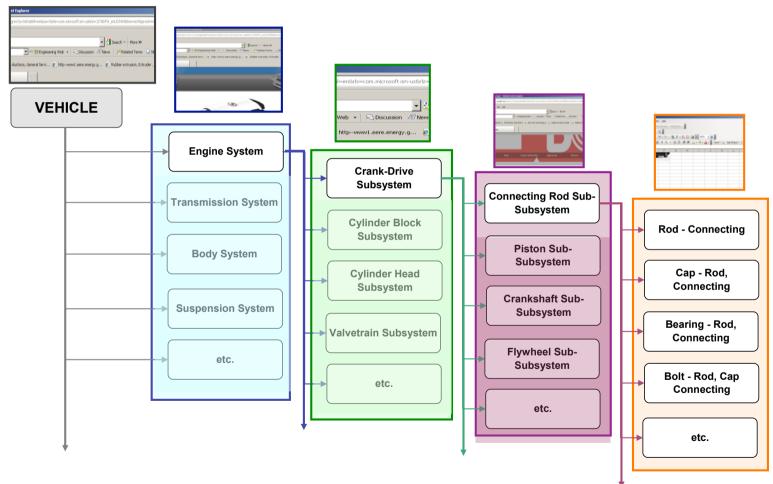
accompanying workshops, briefings and publications

FEV cost analysis Phase I Principle idea of tear-down cost analysis

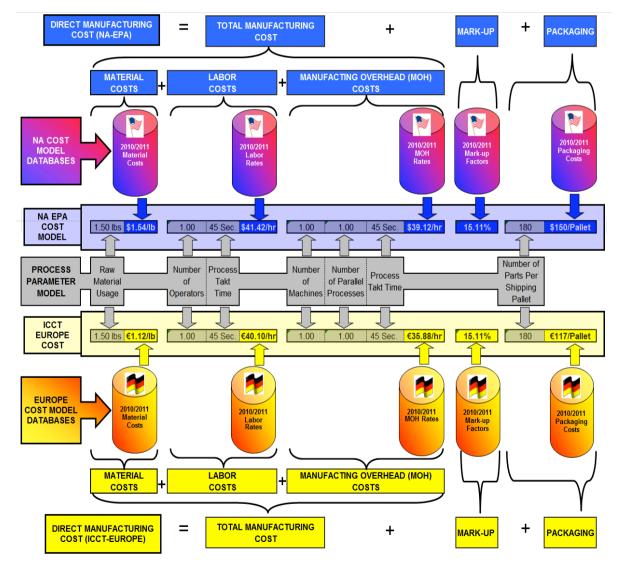
Learning factor X applied over a long


time range (introducing uncertainty)

Learning factor X applied over short ٠ range only (less uncertainty)


Starting point

FEV cost analysis Phase I Tear-down really means "nuts and bolts" ...



FEV cost analysis Phase I General approach for tear-down analysis

FEV cost analysis Phase I Illustration of analysis process

FEV cost analysis Phase I Transparency of methodology and results

All details on parts and manufacturing processes available publicly

Technology Level: Downsized, Turbocharged, Gasoline Direct Inject (GDI) Engine/ Compact Vehicle Class

Vehicle Class: Compact/Economy 2-4 Passenger

Study Case#: N0101 (N = New, 01 = Technology Package, 01 = Vehicle Class)

System Description: 2007 Mini Cooper S. 1.6L 14, 16V DOHC GDI Turbo

Component Description: OEM Assembly of Fuel Induction Components to Engine

Part Number: 1100

Component Quote Level:	Full Quote
------------------------	------------

Differential Quote (Quote Summary includes)

	GENERAL COMPONENT	INFORMATION			GENERAL MANUFACTURING INFORMATION					MAN				
Reference #	Part Description	Part Number	QTY Per Assembly	Primary Process Description	OEM/Supplier Classification	Material Specification	Labor Classification	Burden Classification	Finished Pieces Per Hour	Number of Operators	Number of Lines	Parallel Processing Multiplier		
Tio	r 1 Supplier or OEM Processing	* & Accombly (Full Cor	at mo	(pping)										
I	T Supplier of OEW Processing	a Assembly (Full Cos		ipping)										
1A	Fuel Rail - High Pressure	1101-N0101-02	1	Install Fuel Rail to Cylinder Head (Two Additional Fasteners Over Base GEMA Engine)	OEM Assembly, Mark-up Applied @ Bottom.	Not Applicable	General Assembly-OEM	Engine Assembly, OEM	257	1	1	1		
2A	Fuel Injector Assembly - Solenoid, 7 Hole	1104-N0101-01	4	Install Fuel Injectors to Cylinder Head, Considered Wash to Base Engine	OEM Assembly, Mark-up Applied @ Bottom.	Not Applicable	Not Applicable	Not Applicable	451	1	1	1		
	Fuel Pump - High Pressure w. Vol.Control Valve (Driven-Off Intake Cam)	1107-N0101-01	1	Install Fuel Pump to Cylinder Head, 3 Fasteners	OEM Assembly, Mark-up Applied @ Bottom.	Not Applicable	General Assembly-OEM	Engine Assembly, OEM	171	1	1	1		
	Pipe Assembly - Fuel, High Pressure, Pump to Rail	1170-N0101-01	1	Install High Pressure Pipe Between Fuel Rail and Pump. Run Down Two Tube Nuts	OEM Assembly, Mark-up Applied @ Bottom.	Not Applicable	General Assembly-OEM	Engine Assembly, OEM	257	1	1	1		

Modification

FEV cost analysis Phase I The tear-down approach in comparison

- Key advantages of the tear-down cost analysis approach:
 - great level of transparency
 - reduced uncertainty of results by avoiding learning factors
 - following closely industry-internal approach for costing
 - better transferability to other regions
- Downside of the approach:
 - very expensive
- Approach has been subject to independent peer-review:
 - <u>http://www.epa.gov/otaq/climate/</u> publications.htm#vehicletechnologies

FEV cost analysis Phase I Technologies assessed

FEV cost analysis (Phase I)

- ✓ Gasoline direct injection and downsizing
- ✓ Automatic and dual-clutch transmissions
- ✓ Start-stop hybrid (belt alternator type)
- ✓ P2 and PowerSplit hybrid
- Electrical air conditioning compressor

FEV cost analysis (Phase II)

- Advanced diesel technology
- Manual and dual-clutch transmissions
- ✓ EGR direct injection turbo engine (diesel)
- EGR direct injection turbo engine (gasoline)
- Advanced start-stop technology
- Lightweighting measures

➔ joint US-EU project

➔ transferring US results to the EU

→ new technologies specifically for EU

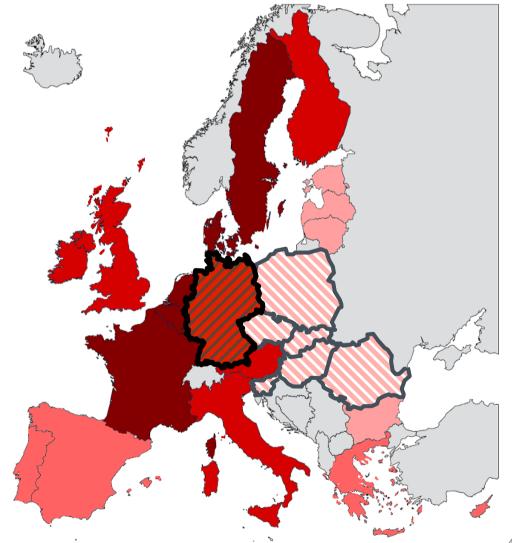
FEV cost analysis Phase I EU vehicle segments used for FEV study

Pow	ertrain - `	Vehicle Class	-			European Veh	icle Segments		
Sun	nmary Ma	trix (P-VCSM)	Veh. ID#	00	01	02	03	05	06
	= Scaleable M = Scaleable M Technologies M = Custom Mod	els, Single Vehicle Segment odels, Multiple Vehicle Segments odels, Multiple Vehicle Segments <i>I</i> odifications relative to Custom M lels, Single Vehicle Segment Re- native Vehicle Segments	and lodel	Subcompact car typically powered by an inline 4 cylinder engine, naturally aspirated, port fuel injection, 5-speed manual transmission (MT).	Compact or small car typically powered by an inline 4 cylinder engine, naturally aspirated, port fuel injection, 6-speed manual transmission or 7-speed dual clutch transmission (DCT).	typically powered by a 4 cylinder turbocharged, direct	A midsize or large passenger car typically powered by 4 and 6 cylinder turbocharged, direct fuel injection, 6-speed MT or ≥ 6 speed AT.	A small or mid-sized sports- utility or cross-over vehicle, or a small-midsize SUV, or a Mini Van powered by a 4 cylinder turbocharged engine, direct fuel injection, 6-speed MT or AT & 7 DCT.	Large sports-utility vehicles, typically powered by a 8 cylinder naturally aspirated engine, direct fuel injection, ≥ 6-speed AT.
		Vehicle Catego	ry Example	VW Polo, Ford Fiesta	VW Golf Ford Focus	VW Passat BMW 3 Series	VW Sharan BMW 5 Series	VW Tiguan BMW X1/X3	VW Touareg BMW X5/X6
		Typical Engine Size Ra	ange (Liters)	1.2-1.4	1.4-1.6	1.6-2.0	2.0-3.0	1.2-3.0	3.0-5.5
		Ave. Curb V	Veight (lb) ₍₁₎	2,390	2,803	3,299	3,749	3,505	4,867
	Ave. Power (hp) ₍₁			100	121	157	234	178	364
	Ave. Torque (lb*ft)(1)			108	132	174	237	195	362
		Weight-to-Power	Ratio (lb/hp)	24	23	21	16	20	13
Tech. ID#	Technology Level New	Technology Descrip		1.0L. 13. 4V. DOHC.	1.2L, 14, 4V, DOHC,	1.6L, I4, 4V, DOHC,	2.0L, 14, 4V, DOHC,		3.5L V6, 4V, DOHC,
01	Technology	injection (GDI), dual variable val- (dVVT, internal combustion engi Port-fuel injected, 4-valve, natura gasoline engine, dual variable va	ve timing ne (ICE) ally aspirated	Turbo, GDI, dVVT, ICE 1.4L, I4, 4V, DOHC, NA,	1.6L, I4, 4V, DOHC, ICE 1.6L, I4, 4V, DOHC, NA, PFI, dVVT, ICE	Turbo, GDI, dVVT, ICE 2.4L, I4, 4V, DOHC, NA, PFI, dVVT, ICE	Turbo, GDI, dVVT, ICE 3.0L, V6, 4V, DOHC, NA, PFI, dVVT, ICE		5.4L, V8, 3V, SOHC, NA, PFI, sVVT, ICE
02	Configuration	Variable Valve Lift and Timing (Multi-Air), Naturally Aspirated, F Injection Engine Port-fuel injected, 4-valve, natura		1.4L, I4, 4V-MultiAir, SOHC, NA, PFI, ICE 1.4L, I4, 4V, DOHC, NA,					
	Technology Configuration	gasoline engine, dual variable va	live timing	PFI, dVVT, ICE					
04	New Technology Configuration	Mild hybrid vehicle, start-stop teo launch assist and regenerative b				2007 Saturn Vue Greenline Start-Stop BAS Technology			
iĊ		Conventional powertrain vehicle Transmission) with similar power performance attributes.				2007 Saturn Vue Conventional Powertrain			
THE INTERNAT ON CLEAN TR	ional coNew ansitechnology Configuration	Power-split hybrid electric vehicle	e	2010 Ford Fusion Power- Split Cost Models Updated for Europe Subcompact	2010 Ford Fusion Power- Split Cost Models Updated for Europe Compact/Small	2010 Ford Fusion Power- Split Cost Models Updated for Europe Midsize Vehicle	2010 Ford Fusion Power- Split Cost Models Updated for Europe Midsize/Large	2010 Ford Fusion Power- Split Cost Models Updated for Europe Small/Mid	45
00		Conventional powertrain vehicle Transmission) with similar power performance attributes.	•	Vehicle Segment HEV Parameters	Vehicle Segment HEV Parameters	Segment HEV Parameters	Vehicle Segment HEV Parameters	COV/SUV Segment HEV Parameters	

FEV cost analysis Phase I Key assumptions

- **Cost structure timeframe** (labor rates, material costs, etc.): 2010
- Direct manufacturing costs
 = cost of components and assembly to the OEM
- Indirect manufacturing costs includes: OEM corporate overhead (sales, marketing, warranty, profit, etc.), OEM engineering, design, and testing costs (internal and external), OEM owned tooling
- **OEM manufacturing location:** Germany
- Supplier manufacturing location: Germany
- Annual capacity planning volume: 450,000 units

FEV cost analysis Phase I Germany as manufacturing base for study


Labor cost in Europe

1 to 10 €/h 10 to 20 €/h 25 to 30 €/h 30 €/h and more

Approach to meet European average

- Consideration of German labor costs as representative of Western European conditions
- Definition of one percent relation between German labor costs and an average of Eastern European countries
- Sensitivity analysis for manufacturing base located in Eastern Europe

FEV cost analysis Phase I Different levels of detail for results available

	Downsized, Turbocharged, (rope Analysis: ect Injection En	gine Technology Configurations								
		Calculated Inc	cremental Manufact	uring Cost - Downsized, Turbocharged, Gasoline Direct Injection Engines								
System ID	System Description	Subcompact Segment, Passenger Seating: 2-4		Small to Mid Size Segment, Size Segment, aassenger Passenger			•					
	Vehicle Example	VW Polo	-	ICCT Europe Analysis: Downsized, Turbocharged, Gasoline Direct Injection Engine Technology Configurations								
	Typical Engine Size Range (Liters)	1.2-1.4	<u>+</u>	Downsized, Turbocharged, C	asoline Dire	ect injection	Engine Teci	nnology Cor	ingurations			
ters	Average Curb Weight (lb)	2390	\vdash									
ame	Average Power (hp)	100			Calculated Inc	romontal Manu	facturing Cost	- Downsized T	urbocharged, G	asoline Direct		
i Par	Average Torque (Ib*ft)	108			Calculated Inc		-		urbochargeu, c			
trair	Weight-to-Power Ratio (lb/hp)	24					Injection	Engines				
Basic Powertrain Parameters	Baseline Technology Configuration	1.4L, I4, 4V, DOHC, NA, PFI, dVVT, ICE	Syntom						Small to Mid Size Sports Utility			
Basi	New Technology Configuration	1.0L, I3, 4V, DOHC, Turbo, GDI, dVVT, ICE	System	System Description	Subcompact Segment,	Compact or Small Segment,	Mid Size Segment,	Mid to Large Size Segment,	and Cross Over	Large Sports Utility Segment,		
Α	Engine Frames, Mounting & Bracket Subsystem	SA(1)			Passenger	Passenger	Passenger	Passenger	Segment,	Passenger		
в	Crank Drive Subsystem	SA(1)			Seating: 2-4	Seating: 2-5	Seating: 4-5	Seating: 4-7	Passenger Seating: 4-5	Seating: 4-7		
с	Counter Balance Subsystem	SA(1)							ooug o			
D	Cylinder Block Subsystem	SA(1)										
E	Cylinder Head Subsystem	SA(1)		Vehicle Example	VW Polo	VW Golf	VW Passat	VW Sharon	VW Touran	VW Touareg		
F	Valvetrain Subsystem	SA(1)	S	Typical Engine Size Range (Liters)	1.2-1.4	1.4-1.6	1.6-2.0	2.0-3.0	1.2-3.0	3.0-5.5		
G	Timing Drive Subsystem	SA(1)	ete	Average Curb Weight (Ib)	2390	2803	3299	3749	3505	4867		
	Accessory Drive Subsystem	SA(1)	j j	Average Power (hp)	100	121	157	234	178	364		
I	Intake Subsystem	SA(1)	La L					-	-			
J	Fuel Subsystem	SA(1)	. <u>.</u>	Average Torque (Ib*ft)	108	132	174	237	195	362		
к	Exhaust Subsystem	SA(1)	rtra	Weight-to-Power Ratio (lb/hp)	24	23	21	16	20	13		
L	Lubrication Subsystem	SA(1)	Basic Powertrain Parameters	Baseline Technology Configuration	1.4L, I4, 4V, DOHC,	1.6L, I4, 4V, DOHC,	2.4L, I4, 4V, DOHC,	3.0L, V6, 4V, DOHC,	Results from case study 0102 or 0103	5.4L, V8, 3V, SOHC,		
	Cooling Subsystem	SA(1)	- <u>-</u>		NA, PFI, dVVT, ICE	applicable to vehicle	NA, PFI, sVVT, ICE					
0	Induction Air Charging Subsystem Exhaust Gas Re-Circulation Subsystem- Not	SA ₍₁₎ SA ₍₁₎	Basi	New Technology Configuration	1.0L, I3, 4V, DOHC, Turbo, GDI, dVVT,	1.2L, I4, 4V, DOHC, Turbo, GDI, dVVT,	1.6L, I4, 4V, DOHC, Turbo, GDI, dVVT,	2.0L, I4, 4V, DOHC, Turbo, GDI, dVVT,	segment - dependent on baseline powertrain	3.5L V6, 4V, DOHC, Turbo, GDI, dVVT,		
	Applicable In Analysis	SA(1)			ICE	ICE	ICE	ICE	size	ICE		
P Q	Breather Subsystem Engine Management, Engine Electronic and Electrical Subsystems	SA(1) SA(1)	A	Subsystem Compilation of Direct Injection Cost Impact	€ 132	€ 138	€ 142	€ 147		€ 246		
ĸ	Accessories Subsystem (Starter Engines, Alternators, Power Steering Pumps, etc)	SA(1)	в	Subsystem Compilation of Turbocharging Cost	€ 232	€ 237	€ 255	€ 279		€ 522		
	Net Incremental Direct Manufacturing Cost results calculated by scaling detailed costs, from	€ 230 surrogate analyse	C	Subsystem Compilation of Downsizing Cost	(€ 134)	(€ 15)	(€ 30)	(€ 345)		(€ 119)		
	0			Net Incremental Direct Manufacturing Cost	€ 230	€ 360	€ 367	€ 80		€ 648		

FEV cost analysis Phase I Selected results from Phase I

Gasoline direct injection, turbocharging & downsizing

Technology	D	se Study #	Baseline Technology Configuration	New Technology Configuration	European Market Segment	European Vehicle Segment Example	Calculated Incremental <u>Direct</u> Manufacturing Cost 2010/2011	Net Incremental Manufacturing Costs (<u>Direct + Indirect Costs</u>) with Applicable Learning Applied				
Te		Case				Example	Production Year	2012	2016	2020	2025	
	Downsized, Turbocharged, Gasoline Direct Injection Internal Combustion Engines											
	1		1.4L, I4, 4V, DOHC, NA, PFI, dVVT, ICE	1.0L, I3, 4V, DOHC, Turbo, GDI, dVVT, ICE	Subcompact	VW Polo	€ 230	€ 371	€ 327	€ 267	€ 237	
	2		1.6L, I4, 4V, DOHC, NA, PFI, dVVT, ICE	1.2L, I4, 4V, DOHC, Turbo, GDI, dVVT, ICE	Compact/ Small	VW Golf	€ 360	€ 505	€ 460	€ 398	€ 367	
Engine	3	0102	2.4L, I4, 4V, DOHC, NA, PFI, dVVT, ICE	1.6L, I4, 4V, DOHC, Turbo, GDI, dVVT, ICE	Midsize	VW Passat	€ 367	€ 520	€ 473	€ 407	€ 375	
Ē	4		3.0L, V6, 4V, DOHC, NA, PFI, dVVT, ICE	2.0L, I4, 4V, DOHC, Turbo, GDI, dVVT, ICE	Midsize/Large	VW Sharan	€ 80	€ 245	€ 194	€ 123	€ 89	
	5		5.4L, V8, 3V, SOHC, NA, PFI, sVVT, ICE	3.5L V6, 4V, DOHC, Turbo, GDI, dVVT, ICE	Large SUV	VW Touareg	€ 648	€ 946	€ 854	€ 726	€ 664	
	Var	iable V	alve Timing and Lift, Fiat Mu	Itiair System								
	6	0200	1.4L, I4, 4V, DOHC, NA, PFI, dVVT, ICE	1.4L, I4, 4V-MultiAir, SOHC, NA, PFI, ICE	Subcompact	VW Polo	€ 107	€ 159	€ 145	€ 126	€ 117	

FEV cost analysis Phase I Selected results from Phase I

PowerSplit hybrid

Technology	₽	Case Study #	Baseline Technology Configuration	New Technology Configuration	European Market Segment	European Vehicle Segment Example	Calculated Incremental <u>Direct</u> Manufacturing Cost 2010/2011	Net Incremental Manufacturing Costs (<u>Direct + Indirect Costs</u>) with Applicable Learning Applied				
Te		Са				Example	Production Year	2012	2016	2020	2025	
	1	0500	Subcompact car typically powered by an inline 4 cylinder engine, naturally aspirated, port fuel injection, 5-speed manual transmission (MT).	Power-split HEV System Power: 64.6kW ICE Power: 52.7kW (I4 -> 13) Traction Motor: 43.2kW Generator: 30.3kW Li-lon Battery: 140V, 0.743kWh	Subcompact	VW Polo	€ 1,809	€ 4,555	€ 3,506	€ 2,624	€ 2,158	
	2	0501	Compact or small car typically powered by an inline 4 cylinder engine, naturally aspirated, port fuel injection, 6-speed manual transmission or 7-speed dual clutch transmission (DCT).	Power-split HEV System Power: 77.8kW ICE Power: 63.6kW (I4 - DS I4) Traction Motor: 52.0kW Generator: 36.5kW Li-lon Battery: 162V, 0.857kWh	Compact/ Small	VW Golf	€ 2,012	€ 5,034	€ 3,883	€ 2,908	€ 2,397	
-Split HEV	3	0502	A midsize passenger car typically powered by a 4 cylinder turbocharged, direct fuel injection, 6-speed MT and AT or 7-speed DCT, Start/Stop system.	ICE Power: 82.6 kW	Midsize	VW Passat	€ 2,230	€ 5,632	€ 4,331	€ 3,240	€ 2,663	
Power-S	4	0503	typically powered by 4 and 6 cylinder turbocharged, direct fuel injection, 6-speed MT or \geq 6 speed AT.	Power-split HEV System Power: 151.1 kW ICE Power: 123.4 kW (V6 -> I4) Traction Motor: 101kW Generator: 70.9kW Li-Ion Battery: 211V, 1.118kWh	Midsize/Large	VW Sharan	€ 2,215	€ 5,802	€ 4,410	€ 3,282	€ 2,671	
			A small or mid-sized sports-utility or cross-over vehicle, or a small-									

FEV cost analysis Phase I **Selected results from Phase I**

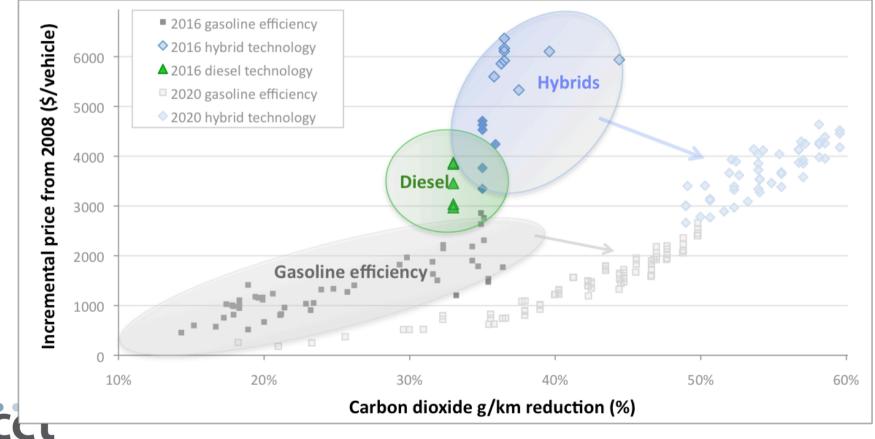
P2 hybrid

Technology	Q	Case Study #	# Baseline Technology Configuration	New Technology Configuration	European Market Segment	European Vehicle Segment Example	Calculated Incremental <u>Direct</u> Manufacturing Cost 2010/2011	Net Incremental Manufacturing Costs (<u>Direct + Indirect Costs</u>) with Applicable Learning Applied				
Ξ		Ca				Example	Production Year	2012	2016	2020	2025	
	1		Subcompact car typically powered by an inline 4 cylinder engine, naturally aspirated, port fuel injection, 5-speed manual transmission (MT).	P2 HEV System Power: 64.6 kW ICE Power: 51.7 kW I(4 -> 13) Traction Motor: 12.9 kW Li-Ion Battery: 140V, 0.743kWh	Subcompact	VW Polo	€ 1,704	€ 4,391	€ 3,355	€ 2,502	€ 2,045	
	2		Compact or small car typically powered by an inline 4 cylinder engine, naturally aspirated, port fuel injection, 6-speed manual transmission or 7-speed dual clutch transmission (DCT).	P2 HEV System Power: 77.8 kW ICE Power: 62.3 kW (I4 -> DS I4) Traction Motor: 16 kW Li-Ion Battery: 162V, 0.857kWh	Compact/ Small	VW Golf	€ 1,915	€ 4,914	€ 3,760	€ 2,806	€ 2,297	
HEV	3		A midsize passenger car typically powered by a 4 cylinder turbocharged, direct fuel injection, 6-speed MT and AT or 7-speed DCT, Start/Stop system.	P2 HEV System Power: 101.2kW ICE Power: 80.9 kW (I4 -> DS I4) Traction Motor: 20.23 kW Li-Ion Battery: 188V, 0.994kWh	Midsize	VW Passat	€ 2,080	€ 5,398	€ 4,115	€ 3,067	€ 2,502	
2 HI	F											

A small or mid-sized sports-utility ... P2 HEV or cross-over vehicle, or a smallmidsize SUV, or a Mini Van 5 0705 powered by a 4 cylinder

System Power: 114.6 kW ICE Power: 91.7 kW (14 -> DS 14)

Small/Midsize VW Tiguan


€ 5,621 € 4,284 € 3,192 € 2,603

51

FEV cost analysis Phase I Technology cost dropping

Technology availability increases - and its costs decrease - over time

- Incremental vehicle costs and percent improvements versus MY2008 baseline
- Data from EPA/NHTSA 2012-2016 rulemaking and EPA/NHTSA/CARB TAR for 2020

THE INTERNATIONAL COUNCIL ON CLEAN TRANSPORTATION

FEV cost analysis Phase I Technology evolution

Technology	Source	Benefit	Cost	
Turbo- charging	2001 NRC Report	5-7%	\$250- \$400	x 2 efficiency
and	Draft RIA – 18 bar	12-15%	\$342	רע
downsizing	Draft RIA – 24 bar	16-20%	\$550	New technology: x 2 efficiency
(no cyl. reduction)	Draft RIA – w/ boosted EGR	20-25%	\$967	again
4- to 6- speed	2001 NRC Report	3-4%	\$150- \$300	from cost increase
automatic	Draft RIA	3-4%	(\$ 15)	
Automatic to DCT	Draft RIA	4-6%	(\$154- \$223)	New technology: more efficient and cheaper

- Cost is direct manufacturing cost
- NRC Report is Effectiveness and Impact of Corporate Average Fuel Economy (CAFE) Standards, 2002
- Draft RIA is for NHTSA/EPA proposed standards for 2017-25 light-duty vehicles

FEV cost analysis Phase I P2 future improvements not in FEV analysis

- VW Golf (C-class) example. Base hybrid cost: €1,915
- High-power Li-ion batteries smaller, lighter, lower cost
 - Reduce battery size 48%: -€328
- 25% vehicle load reduction 25% smaller motor/battery
 - Battery cost: €93 (incremental to high power battery)
 - Motor cost: €40
- Integrate motor into transmission & system into vehicle
 - Eliminate motor case: €70
 - Eliminate oil pump/filter: €27
 - Eliminate electric A/C compressor (drive A/C off motor): €113
 - Enable use of AMT instead of DCT: €150
 - Simpler integrated braking system: €80
- Total cost reduction: €900, or 47%

Contact details

John German

Senior Fellow, Regional Lead US john@theicct.org

Peter Mock

Senior Researcher, Regional Lead EU peter@theicct.org

