

Technology options for petrol cars Rotation Potential [%] Cost [U] Reduction Potential [%] Reduction Potential [%] Cost [U] Cost [U] Reduction Potential [%] Cost [U] Cost [eduction technologies	for p	etrol	cars	in 2	020	
Description Description Cost [6] Reduction potential [%] Cost [6] Reduction potential [%] Cost [6] Reduction potential [%] Reduction potential [%] Gas-wall heat transfer reduction 3 50 3 50 3 50 3 50 3 50 3 50 3 50 3 50 3 50 3 50 3 50 3 50 3 50 3 50 3 50 3 50 3 50 3 50 3 50 52 50 52 50 5 250 6 6 4 4 50 4 4 50 14 4 50 16 16 550 17 600 18 2 35 2 35 2 10 228 10 280 10 280 10 28 11 120 55 100 5 200 5 200 5 200	Techn	ology options for petrol cars	Small		Medium		Deduction	ge
Bit Part Insert For eduction 3 50 3 50 3 Direct injection, homgencous 4.5 180 5 180 5.5 Direct injection, homgencous 4.5 180 9 5.0 9.5 Direct injection, homgencous 4.5 180 9 5.0 9.5 Direct injection, homgencous 4.5 140 9 5.0 9.5 Mild downsing (D% cylinder content reduction) 4 400 8 455 9 Stong downsing (D% cylinder content reduction) 7 400 8 455 9 Stong downsing (D% cylinder content reduction) 16 559 17 600 18 Camphasing 4 80 4 80 4 Automated annual transmission 5 300 5 20 Opinising genboxatios / downspeeding 4 60 4 60 4 Automated annual transmission 5 1200 5 100 5 100 5	Descri	iption	potential [%]	Cost [€]	potential [%]	Cost [€]	potential [%]	Cost [€]
Understein, straified charge 4.5 180 5.5 Direct injection, straified charge 8.5 400 9 500 9.5 Ihmendynamic cycle impervements e.g. split cycle, PCC/IECCI, CAI 13 4475 14 475 15 Midd dwarsing (0% cylinder content reduction) 4 200 5 250 6 Midd dwarsing (0% cylinder content reduction) 7 4400 8 455 9 Stong dwarsing (0% cylinder content reduction) 16 550 17 600 18 Campchaning 4 80 4 80 4 9 Optimising gradboxnics / downspeeding 4 60 4 60 4 Out insign gradboxnics / downspeeding 5 300 5 300 5 Direct injection design and materials 2 1200 5 1200 5 Down diving gradboxnics / downspeeding 5 1200 5 1200 5 More hybrid-tragenerative braking 7 732 7		Gas-wall heat transfer reduction	3	50	3	50	3	
Bitset in section, stratified charge 8.5 400 9 500 9.5 Thermodynmic cycle inprovements e.g. pill cycle, PCC/HCGI, CAI 13 475 14 475 15 Mild downsizing (15% cylinder content reduction) 4 200 5 226 6 Midd downsizing (15% cylinder content reduction) 7 400 8 485 9 Strong downsizing (15% cylinder content reduction) 16 550 17 600 18 Camphasing 428 9 10 280 10 280 11 Low firstion dosign and materials 2 35 2 35 2 Optimising gradoxatios / downspeeding 4 60 4 60 4 Autorated manual transmission 5 100 5 100 5 Confinuously variable transmission 5 1200 5 100 5 Mild hydnid -tropanetarity brakation 5 1200 5 150 15 Mild bydnid -tenuetarity brakation		Direct injection, homogeneous	4.5	180	5	180	5.5	1
Best of the set of th		Direct injection, stratified charge	8.5	400	9	500	9.5	6
Bit devensibility Using advansibility	suo	Thermodynamic cycle imporvements e.g. split cycle, PCCI/HCCI, CAI	13	475	14	475	15	5
Box Medium downsing (20% sylinder content reduction) 7 400 8 455 9 Strong downsing (20% sylinder content reduction) 16 559 17 600 18 Camphaning 4 80 4 80 4 80 4 Variable valve selution and lift 9 280 10 280 11 Low filtion design and materials 2 33 2 38 2 38 2 30 5 300	qdo	Mild downsizing (15% cylinder content reduction)	4	200	5	250	6	3
Since downsing (>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	dine	Medium downsizing (30% cylinder content reduction)	7	400	8	435	9	5
Main problem 4 80 4 80 4 Variable vale actuation and lift 9 280 10 200 1	En	Strong downsizing (>=45% cylinder content reduction)	16	550	17	600	18	5
Variable value actuation and lift 9 280 10 280 11 Low fittion design and materials 2 35 2 35 2 Optimising genboxnatios / downspeeding 4 60 4 60 4 Automated manual transmission 5 300 5 300 5 Dual dather transmission 6 650 6 700 6 Continuously vaniable transmission 5 1200 5 1200 5 Statt-stop hybridiration 5 175 5 200 5 Mice hybridi - tragenerative breaking 7 325 7 375 7 Mide hybridi - tragenerative breaking 2 1226 25 2750 25 Mide hybridi - textue boost for downsizing 15 1400 15 1500 15 Mide wight reduction 6 320 6 400 6 Strate top hybridi reduction 12 200 12 100 12 M		Camphasing	4	80	4	80	4	3
Low fistion design and materials 2 35 2 38 2 Optimising genoboxatios / downspeeding 4 60 4 6 6 50 5 50 5 50 5 5 50 5 5 50 5 5 50 15 50 15 50 15 50 15 50 15 50 15 50 12 80<		Variable valve actuation and lift	9	280	10	280	11	2
optimising garboxatios / downspeeding 4 60 4 60 4 Automated manual transmission 5 300 5 300 5 Dual clutch transmission 6 650 6 700 6 Continuously variable transmission 5 1200 3 1200 5 Start-top hybridistion 5 1200 15 100 5 Micro hybridi - regrenerative breaking 7 325 7 375 7 Mid weight reduction 2 220 25 2730 25 Mid weight reduction 6 320 6 400 6 Strat-top ments other than BW 2 128 100 22 120 120 120 Mid weight reduction 12 800 12 1000 12 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 <t< td=""><td></td><td>Low friction design and materials</td><td>2</td><td>35</td><td>2</td><td>35</td><td>2</td><td></td></t<>		Low friction design and materials	2	35	2	35	2	
mage mage <thmage< th=""> mage mage <thm< td=""><td>8</td><td>Optimising gearbox ratios / downspeeding</td><td>4</td><td>60</td><td>4</td><td>60</td><td>4</td><td></td></thm<></thmage<>	8	Optimising gearbox ratios / downspeeding	4	60	4	60	4	
Temp Outload the transmission 6 650 6 700 6 Continuously variable transmission 5 1200 5 1200 5 Mill or bybrid stransmission 5 175 5 200 5 Mill or bybrid - requestive breaking 7 735 7 7 Mill or bybrid - requestive breaking 25 1200 15 1500 15 Mill or bybrid - requestive breaking 23 2250 22 2750 25 Mill or bybrid - requestion 2 128 2 160 2 Mill or bybrid requestion 12 2800 12 1000 12 Strong weight reduction 12 2800 12 1000 12 Add weight components other than BW 2 120 2 15 120 Accodynamics improvement 2 50 2 20 15 15 Provestion 3 30 3 35 3 20 1	nisa	Automated manual transmission	5	300	5	300	5	3
Image: Continuously vanishes transmission 5 1200 5 1200 5 Image: Start-top hyndisation 5 175 5 200 5 Misro hybrid - tragenerative breaking 7 325 7 375 7 Misro hybrid - tragenerative breaking 15 1400 15 1500 15 Mild hybrid - tragenerative breaking 25 2250 25 2750 25 Mid wight reduction 2 128 2 160 2 Midmum weight reduction 6 320 6 400 6 Strong weight reduction 12 800 12 1000 12 Midmum weight reduction 12 300 3 3 3 3 Midmum weight reduction 2 120 2 15 2 15 2 15 2 15 3 3 3 3 3 3 3 3 3 3 3 3 3 3	opt	Dual clutch transmission	6	650	6	700	6	5
Micro hybridistion 5 175 5 200 5 Micro hybridistion 7 325 7 375 7 Micro hybridistion 15 1400 15 1500 15 Full hybrid - teque boost for downsizing 15 1400 15 200 2 Micro hybrid - scenario there than BW 2 128 2 160 2 Midowight reduction 6 320 6 400 6 Strong wright reduction 12 800 12 1000 12 Yession 20 20 2 50 2 90 12 Accordynamics improvement 2 50 2 90 1.5 1.5 Peduced divide resistance 3 30 3 35 3 35 3	F	Continuously variable transmission	5	1200	5	1200	5	12
model Topological Topological <thtopological< th=""> <thtopological< th=""> <thto< td=""><td>tion</td><td>Start-stop hybridisation</td><td>5</td><td>175</td><td>5</td><td>200</td><td>5</td><td>2</td></thto<></thtopological<></thtopological<>	tion	Start-stop hybridisation	5	175	5	200	5	2
Second Divide Action of Index Second Secon	disa	Miero hybrid - regenerative breaking	7	325	7	375	7	4
Image: Strong weight reduction 25 2250 25 2750 25 Medium weight reduction 2 128 2 160 2 Medium weight reduction 6 320 6 400 6 Strong weight reduction 12 800 12 1000 12 Lightweight reduction 2 120 2 150 2 Types: low rolling resistance 3 30 3 3 3 Reduction 1 50 1 90 1	ybri	Mild hybrid - torque boost for downsizing	15	1400	15	1500	15	15
Mild weight reduction 2 128 2 160 2 Medium weight reduction 6 320 6 400 6 Strong weight reduction 12 800 12 1000 12 Lightweight components other than BIW 2 120 2 160 2 A convergence 50 2 50 2 50 1.5 Deduced divelay fiction 1 50 1 90 1	Ξ	Full hybrd - electric drive	25	2250	25	2750	25	37
Open of the dum weight reduction 6 320 6 400 6 Bit ong weight reduction 12 800 12 1000 12 Ight weight reduction 12 800 12 1000 12 Accodynamics improvement 2 120 2 150 2 Accodynamics improvement 2 50 2 50 1.5 Tyres: low rolling resistance 3 30 3.5 3 Reducted fixed		Mild weight reduction	2	128	2	160	2	1
as of the second seco	300	Medium weight reduction	6	320	6	400	6	4
Set Exploring Lightweight components other than BW 2 120 2 150 2 End and marks improvement 2 50 2 50 1.5 1.5 Tyres: low rolling resistance 3 30 3 35 3 Beduced thysEn fiction 1 50 1 90 1	tion	Strong weight reduction	12	800	12	1000	12	12
ge Acrodynames improvement 2 50 2 50 1.5 Tyres: low rolling resistance 3 30 3 35 3 Bedue divelane fiction 1 50 1 40 1 10	ng n educ	Lightweight components other than BIW	2	120	2	150	2	1
Image: Provide state in the state	nvii	A ero dynamics improvement	2	50	2	50	1.5	
I Soll II Soll II	0	Tyres: low rolling resistance	3	30	3	35	3	
		Reduced driveme friction	1	50	1	50	1	
Inermo-electric waste near recovery 2 1000 2 1000 2		Inemo-electric waste heat recovery	2	1000	2	1000	2	10
secondary near recovery cycle 2 200 2 200 2)the	Secondary neat recovery cycle	2	200	2	200	2	
Auxanary systems encency improvement 12 420 12 440 12 Themap improvement 25 150 25 250 25	9	Auxiliary systems efficiency improvement	12	420	12	440	12	

Tech	adory options for diesel cars	Sm	all	Med	um	La
-		Reduction	Cost [6]	Reduction	Cost [6]	Reduction
Desci	iption	potential [%]	cost [e]	potential [%]	cost [e]	potential [%]
su	Combustion improvements	2	50	2	50	2
ond	Mild downsizing (15% cylinder content reduction)	4	50	4	50	4
ne o	Medium downsizing (30% cylinder content reduction)	7	400	7	450	7
Engi	Strong downsizing (>=45% cylinder content reduction)	15	500	15	600	15
_	Variable valve actuation and lift	1	280	1	280	
uon	Optimising gearbox ratios / downspeeding	3	60	3	60	3
mist	Automated manual transmission	4	300	4	300	4
op	Dual clutch transmission	5	650	5	700	-
	Continuously variable transmission	4	1200	4	1200	4
tion	Start-stop	4	175	4	200	8
idisə	Micro hybrid - regenerative breaking	6	375	6	375	6
łybn	Mild hybrid - torque boost for downsizing	11	1400	11	1500	1
	full hybrid - electric drive	22	2250	22	2750	2.
127	Mild weight reduction	1.5	128	1.5	160	1.
ance	Medium weight reduction	5	320	5	400	
cast	Strong weight reduction	11	800	11	1000	
ng r	Lightweight components other than BIW	1.5	120	1.5	150	1.:
ivio	A crodynamics improvement	2	50	2	50	1.
4	Tyres: low rolling resistance	3	30	3	35	-
<u> </u>	The same de dais e commission	1	1000	1	1000	
	Cover density and another state and a	2	1000	2	200	
Othe	Secondary near recovery cycle	2	200	2	200	
-55	Thermal management	25	420	25	150	2

Framework Contract on Vehicle Emissions ENV.C.3./FRA/2009/0043 Service request#1	Scenario a) Alternative accounting for progress observed in the 2002-2009 period
	 Variant including additional reduction step based on assumption that part of the reductions achieved in the 2002-2009 period are to be attributed to other causes than application of technologies as included in the technology tables: technical options not included in cost curves effects of optimising the powertrain calibration by improving trade-offs against other parameters possible utilization of flexibilities in the test procedure
	 > Based on detailed comparison of base models in 2002 and 2010 and of average reductions per segment the following additional reduction potentials were chosen for the scenario analysis: > petrol: 10% > diesel: 9%

		Økopol	₿ AEA			innovation for life
Framework Contract on Vehicle Emissions ENV.C.3./FRA/2009/0043 Service request #1	Costs for r	neetin	g the 95 g	g/km targ	et in 202	0
	a) Alternative	e accoun	ting for progr	ess observed	d in 2002-200	9 period
	b) Alternative	e cost cu	rves based o	n a modified	technology ta	able with
	data from EF	PA studie	S			
	c) Combinat	ion of a)	and b)			
			Additional m	anufacturer cost	relative to 130 g/	km target [€]
	Utility parameter	Slope	based on 2020 cost curves	based on "Scenario a)"	based on "Scenario b)"	based on "Scenario c)"
		60%	1748	1159	1280	765
	Mass	100%	1750	1158	1277	760
		60%	1754	1164	1290	775
	Footprint	100%	1760	1168	1294	772
	 Scenario a) Scenario c) 	and b) le	ad to ~ 500 - - 1000 € Iow	600 € lower	costs	
	Results for tl	ne scena	rios a) to c) v	vould change	e the conclus	ion from the
	assessment	of impac	ts of introduc	ing EVs by 2	.020.	

D							
Γ	eduction techn	ologie	es for	diese	I LCV	s in 20	020
	Technology options for diesel LCVs	Smal	ILCV	Mediu	mLCV	Large	ELCV
	Des cription	CI2 reduction potential (%)	Cost (EUR)	CCI2 reduction potential [%]	Cost (EUR)	CCI2 reduction potential [%]	Cost [BJF
- i	Combustion improvements	3,0	90	3,0	90	3,0	90
eng	Mid downsizing (15% cyinder content reduction)	40	50	40	50	3,0	50
ase	Mediumdawnsizing(30% cylinder content reduction)	7,0	290	7,0	290	6,0	170
م	Variable valve actuation	NA	N/A.	1,0	50	1,0	50
e c	Optimising Gearbox ratios/downspeeding	1,0	0	1,0	0	1,0	0
ssi	Improved MT Transmission	0,5	0	0,5	0	0,5	0
Ē	Downs peeding via slip controlled clutch and DMF deleted	3,0	120	3,0	120	3,0	120
tran	Automated manual transmission	6,0	300	6,0	300	6,0	500
1	Dual (dry) clutch transmission	40	900	50	1100	NA	NKA
2	Startstop	40	175	40	200	5,0	225
No S	Moro - hybrid (including regenerative braking)	6,0	360	7,0	375	8,0	400
a a t	Mid hybrid (Torque boastf or downsizing)	11,0	1400	11,0	1500	11,0	1800
Ē	Full Hybrid (EV only mode)	25,0	2560	25,0	3060	25,0	4250
₹	Series Range extender with 40-50kW engine	46,0	10000	46,0	11000	46,0	11500
1	Bectric vehicle	100,0	30000	100,0	32000	100,0	33000
tio	EfW lightweighting - mild (~10% reduction)	1,5	150	1,0	175	1,0	325
1 g	BNV lightweighting - medium (~25% reduction)	40	750	25	875	25	1625
e re	BM/ lightweighting - strong (~D% reduction)	6,5	2400	40	2800	40	5200
DUC	Lightweight components other than BMV	1,5	150	1,0	175	1,0	325
1 ta	Aerodynamics improvement - minor	1,5	50	2,0	100	1,5	100
res	Aerodynamics improvement - major	3,0	150	3,0	200	3,0	250
Ving	Low rolling resistance tyres	40	150	5,0	200	5,0	300
0	Reduced driveline friction(mild reduction)	1,0	80	1,0	80	1,0	90
	Reduced driveline friction(high reduction)	3,0	210	3,0	220	3,0	250
	Thermo-electric generation	N'A	N'A.	25	300	4,0	400
1	Secondary heat recovery cycle	NA	NA	40	400	5,0	600
her	Audilary (therma) systems improvement	2,5	70	2,8	80	32	80
18	Audiliary systems improvement (lubrication, vacuum, FE)	2,8	85	3,5	100	37	115
	Other Thermal management	1,5	80	22	120	25	170
1	Bedrical assisted steering (EFS, EFHS)	NA	N/A	NA	NA	30	150

