Costs of Transitioning to Ultra-low Sulfur Fuels (ULSFs) in India

Gaurav Bansal / Anup Bandivadekar

November 7th, 2012

Purpose of this webinar series is to initiate a dialogue around Auto Fuel Policy in India

ICCT is conducting a study to evaluate the past successes and future prospects of India's vehicle emission control program

- New vehicle emission standards
- Fuel quality standards
- Vehicle compliance and enforcement program
- Fuel inspection and compliance program
- Alternative fuels and new energy vehicle policies
- Fuel efficiency standards and labeling
- First webinar (April 26) focused on vehicle emission standards and compliance programs
- Second webinar (May 24) focused on fuel quality standards and compliance programs
- Third Webinar (October 10) focused on two- and three-wheeler emissions

ULSFs are needed to get the most out of emission after-treatment systems

- On gasoline vehicles, lower sulfur content in fuel is helpful in reducing emissions, although the effect of higher sulfur content in fuels is reversible.
- Diesel sulfur content > 50 ppm inhibits performance of aftertreatment systems
 - Diesel particulate filter (DPF)
 - Selective catalytic reduction (SCR)
 - Lean NOx trap (LNT)
- < 10 ppm sulfur fuel ideal to maximize the efficiency of aftertreatment systems

Indian standards 5-8 years behind the world's best

Gasoline Sulfur Content Schedule (ppm) 2005 2006 2007 2008 2009 2010 2011 2012 2013 India 500 150 India - 13 Cities** 150 50 India - 7 Cities* 150 50 500 Brazil 1000 China 500 150 **300/500**[∞] **30/80**[∞] Mexico Europe 50 10 10 Japan 50 **United States** 30/90/300 30/80[∞]

Diesel Sulfur Content Schedule (ppm)

THE INTERNATIONAL COUNCIL

	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
India			500					350		
India - 13 Cities**			350					50		
India - 7 Cities*			500			35	50		50	
Brazil		2000		18	300			500		
China				2000					350	
Mexico	50	0				500/	/15 [§]			
Europe		5	50				1	0		
Japan	50)				1	0			
United States	500					15				

*Puducherry, Mathura, Vapi, Jamnagar, Ankleshwar, Hissar, Bharatpur

**Delhi, Mumbai, Kolkata, Chennai, Bangalore, Surat, Agra, Hyderabad, Pune, Ahmedabad, Kanpur, Lucknow, Solapur

§ Gradual implementation to 15 ppm nationwide

2014

50

Today's webinar focuses on the costs of transitioning to ULSF in India

Slide 5

*http://www.theicct.org/transition-to-ulsf-brazil-china-india-mexico

Study assumptions

- ULSFs to be produced for on-road vehicles only
- Same crude sourcing pattern in 2015 as in 2010
 - No crude switching to lower sulfur
- New refineries not built expressly to produce ULSF
 - Thrust on upgrading of refineries
- Upgrades using only technologies already in commerce

ULSF production technologies

Hydrotreating – optimal in India

- o Removes heterogeneous atoms such as sulfur
- FCC feed hydrotreating (pre-FCC) for yield
- FCC naphtha hydrotreating (post-FCC for gasoline)
- Distillate hydrotreating (post-FCC for diesel)
- Hydrocracking costlier than hydrotreating
 - Breaks down heavier crude fractions into lighter fractions suitable for transportation fuels
 - Removes sulfur
 - In lieu of fluid catalytic conversion (FCC)
 - More expensive than FCC
- Fuel quality and yield restoration processes
 - Maintaining gasoline octane number
 - Increase in crude input due to losses

Refineries & BS IV cities in India

Refinery groupings in India

Refinery Group	Count	Crude Capacity	Characteristics	Crude Type	
		(K Bbl/day)		Low S	High S
A: Modern Export	3	1520	State of the art	4%	96%
B: High Distillate Yield Conversion	6	1120	Existing Cracking and hydroprocessing capacity	14%	86%
C: Small Sweet Crude	4	98.6	Basic in configuration	100%	-
D: Other Conversion	6	976.3	Moderate complexity	19%	81%
E: Transition Year Capacity	8	1234	Planned and under construction	40%	60%

Costs for ULSF production

- Operating Costs
 - Cost of additional hydrogen supply
 - Cost of replacing lost product yield
 - Cost of maintaining other aspects of fuel quality such as gasoline octane
 - Incremental direct operational costs

Capital Costs

Annual capital charges (ACC) associated with investments

Investment parameters for annual capital charges

$ACC = Investment_{US} x Location Factor x ACC Ratio$

ACC Ratio Parameter	Baseline Value	Sensitivity Case for India
Construction Period	3 years	2 years
Economic Project Life	15 years	20 years
Depreciation Period	10 years	10 years
Cost of Capital (after tax)	10%	5%
Marginal Tax Rate	30%	30%
Inflation Rate	2% per year	7% per year
Annual Fixed Costs	9%	9%
Other Costs	0.4%	0.4%

ULSF production investments

- Total Investment:
 \$4.1 billion (Rs. 21,000 crore)
 - LSF investment (current standards → 50 ppm sulfur):
 \$1.9 billion (Rs. 9,500 crore)
 - Extra ULSF investment (50 ppm sulfur → 10 ppm sulfur):
 \$2.26 billion (Rs. 11,300 crore)
- 12th 5-year plan (2013-2017) public sector refinery investments:
 - \$31 billion (Rs. 1,55,000 crore)
 - Much of LSF investment included in 12th five-year plan
- Some LSF and ULSF investment from private sector as well

ULSF production per liter costs – investments & operating costs

- Current refineries (Groups A-D)
 - Gasoline: 0.90-1.10¢ (Rs. 0.45-0.55)
 - Diesel: 0.80-1.10¢ (Rs. 0.40-0.55)
- Transition year refineries (Group E)
 - Gasoline: 0.20-0.30¢ (Rs. 0.10-0.15)
 - Diesel: 0.30-0.40¢ (Rs. 0.15-0.20)
- Combining both (Groups A-E)
 - Gasoline: 0.70-0.87¢ (Rs. 0.35-0.44)
 - Diesel: 0.64-0.88¢ (Rs. 0.30-0.44)

ULSF costs in other countries

- China
 - o Investments: \$6.9 billion (Rs. 34,500 crore)
 - Per liter costs
 - Gasoline: 0.66-0.78¢ (Rs. 0.33-0.39)
 - Diesel: 1.42-1.83¢ (Rs. 0.71-0.91)
- Mexico
 - o Investments: \$3.3 billion (Rs. 16,500 crore)
 - Per liter costs
 - Gasoline: 1.10-1.40¢ (Rs. 0.55-0.70)
 - Diesel: 2.50-3.20¢ (Rs. 1.25-1.60)
- Brazil
 - o Investments: \$6.3 billion (Rs. 31,500 crore)
 - Per liter costs
 - Gasoline: 1.64-1.96¢ (Rs. 0.82-0.98)
 - Diesel: 1.55-1.96¢ (Rs. 0.77-1.04)

Benefits of ULSF far outweigh costs!

- ULSF enables much cleaner vehicles
- Large long-term gain -- four to seven times the cost -- by implementing cleaner vehicle and fuel policies:
 - Gains continue well beyond 2030
 - Costs stabilize over time
 - Economies of scale & learning
- Additional benefits would be substantial
 - Reduced morbidity
 - Global warming mitigation
 - o Increased agricultural output
- More stringent regulations will make auto and oil industry more competitive internationally
- Details to be discussed in the next webinar!

Mode-wise transportation of petroleum products

- Pipelines becoming increasingly important
- Challenge is designing growing pipeline network to handle all fuels regardless of fuel quality

Growth of pipeline capacity in India

Recommendations for discussion

- Transition to <50 ppm sulfur fuel nationwide immediately
 - Not just a few more cities or state capital, but nationwide adoption of one fuel quality standard is critical
- Transition to <10 ppm sulfur fuel nationwide as soon as possible
- Enable oil companies to recover costs
 - Commitment to increase fuel price by Rs. 0.50-0.60 per liter to help recover costs of ULSFs

For more information...

- ICCT India website: <u>http://theicct.org/india</u>
- Transition to ULSF study report: <u>http://theicct.org/transition-to-ulsf-brazil-china-india-mexico</u>
- Webinar on vehicular emissions in India: <u>http://theicct.org/blogs/staff/reducing-vehicular-emissions-india-webinar-notes</u>
- Webinar on fuel quality in India: <u>http://theicct.org/blogs/staff/improving-fuel-quality-india-webinar-notes</u>
- Report on costs of emission reduction technologies: <u>http://theicct.org/estimated-cost-emission-reduction-technologies-</u> <u>ldvs</u>
- Briefing on the benefits of low sulfur fuels in India: <u>http://theicct.org/benefits-low-sulphur-fuels-india</u>
- Briefing on the potential of lower vehicle emission standards in Indian cities: http://theicct.org/potential-lower-vehicular-emissions-indian-cities
- Blog on dieselization in India: <u>http://theicct.org/blogs/staff/harsh-calculus-dieselization-india</u>
- Blog on vehicle and fuel taxes in India: <u>http://theicct.org/blogs/staff/india-2012-budget</u>

Gaurav Bansal gaurav "at" theicct.org

Anup Bandivadekar anup "at" theicct.org

http://twitter.com/#!/ theicct

