Long-term potential for increased shipping efficiency through the adoption of industry-leading practices

Dr. Haifeng Wang

September 30 2013

Outline

- Background
 - Carbon intensity, shipping activity, and climate impacts of international shipping
- Global in-use ship efficiency assessment
 - Method and data
 - Findings: Factors that influence operational efficiency
- Conclusions and next steps

Background

Carbon intensity and transport activity of international shipping

- Ocean-going vessels are the most carbon efficient freight mode
- They also account for over half of global freight activity

Climate Impacts of International Shipping

 International shipping accounts for 11% of GHG emissions and oil consumption in the transportation sector

Climate Impacts of International Shipping

 Propelled by the growth of international commerce, CO₂ emissions will continue to grow between now and 2050

ICCT (2011) "Reducing Greenhouse Gas Emissions from Ships" <u>www.theicct.org/reducing-ghg-emissions-ships</u> Note: A1T, A1F, A1B, A1, B1, and B2 are scenarios based on which IPCC used to project future CO2 emissions

The Energy Efficiency Design Index (EEDI) for new ships

- The EEDI will slow but not reverse the CO₂ growth from international shipping
- On-time implementation would maximize benefits

ON CLEAN TRANSPORTATION ICCT (2011) "The Energy Efficiency Design Index (EEDI) for New Ships" http://www.theicct.org/eedi-new-ships

Substantial technical and operational potential to increase energy efficiency

Operational

Weather routing **1-4%** Autopilot upgrade **1-3%** Speed reduction **10-30%**

Auxiliary power

Efficient pumps, fans **0-1%** High efficiency lighting **0-1%** Solar panel **0-3%**

Aerodynamics

Air lubrication **5-15%** Wind engine **3-12%** Kite **2-10%**

Thrust efficiency

Propeller polishing **3-8%** Propeller upgrade **1-3%** Prop/rudder retrofit **2-6%**

Engine efficiency

Waste heat recovery **6-8%** Engine controls **0-1%** Engine common rail **0-1%** Engine speed de-rating **10-30%**

Hydrodynamics

Hull cleaning **1-10%** Hull coating **1-5%** Water flow optimization **1-4%**

Significant portions of these opportunities are cost effective

ICCT (2011) "Reducing Greenhouse Gas Emissions from Ships" www.theicct.org/reducing-ghg-emissions-ships

Global in-use ship efficiency assessment

- The large remaining opportunity for reducing CO₂ emissions in-sector lies in the improvement of energy efficiency for in-use ships
- Overarching questions
 - What are factors that influence ship efficiency?
 - Are there data available to assess these factors?
 - If the fleet achieves higher efficiency on par with its leading shipping companies, what are the energy and climate implications for the industry?

Global in-use ship efficiency assessment: Data and Methods

Data and Methods

- Data
 - 2011 Satellite Automatic Identification System (S-AIS)
 - Smith et al (2013) "Assessment of shipping's efficiency using satellite AIS data"
 - Clarkson Ship Intelligence (2013)
 - Buhaug et al (2009) "Second IMO GHG Study 2009 update of the 2000 GHG study"
 - UNCTAD "Review of Maritime Transportation", various years
- Method
 - Global shipping fleet turnover model

Satellite Automatic Identification System

- The S-AIS is installed on every ship larger than 300 gross tonnage for safety reasons
- Signals are transmitted from ships to satellites every few seconds
 - Message 1: vessel location and speed over ground
 - Real time ship speed and shipping routes are two critical improvement from previous studies
 - Message 5: Vessel destination, IMO number, and draught (often input manually)

2011 Satellite Automatic Identification System

 Very Large Crude Carrier (VLCC) movement in August 2011

<u>Containership movement in August</u>
<u>2011</u>

Courtesy of Dr Martin Austwick at CASA in University of College London

2011 Satellite Automatic Identification System (2)

Smith et al (2013) ""Assessment of shipping's efficiency using satellite AIS data" http://www.theicct.org/ assessment-shipping-efficiency-using-ais-data

Global Shipping Fleet Turnover Model

 Global Shipping Fleet Turnover Model: use data on ship population, overall ship efficiency, ship activity, and overall CO₂ emissions to backcast and forecast the fleet profile and emissions

Global in-use ship efficiency assessment: Findings

Findings: Technical efficiency and operational efficiency

 Ships with higher technical efficiency (energy efficiency as designed) typically have higher operational efficiency

Findings: Ship age and operational efficiency

Newer ships typically have higher operational efficiency

Findings: Ship size, speed, and operational efficiency

 Larger ships typically operate at reduced speed and have higher operational efficiency

Findings: Top performers

 Top performers of each ship type have much higher operational efficiency than the industry average

Projection scenarios

Baseline with EEDI standard

Incorporation of adopted efficiency standard that increases new ship efficiency

Additional technology

Additional new ship efficiency technology at higher penetration levels than required by EEDI, achieving 1.5% annual reduction

Additional measures

On top of technologies, operational measures achieve another annual efficiency improvement rate of 1.1% Top 5% industry leaders

Incorporates fleet shifts in age, design efficiency, operations, and composition, achieving 3.8% annual efficiency improvement

CO₂ intensity until 2040

 Fleet wide CO₂ intensity average will decline between 20% and 54% by 2040

CO₂ emissions until 2040

 Fleet wide CO₂ emissions will be reduced by between 100 million metric tonnes (mmt) and 400 mmt by 2040

Marine fuel consumption until 2040

 Oil consumption from international shipping will be cut by between 0.9 million b/d and 3.2 million b/d in 2040

Discussion

- Which measures do you think should be used to increase energy efficiency?
- What are the implications of shipping carbon footprint on global supply chain?
- What are major opportunities for improving energy efficiency over the next three decades in international shipping?

Conclusion

- Shipping offers enormous potential to increase efficiency and reduce CO₂ emissions cost effectively
- Significant differences in operational efficiency can be observed across varying ship types, ages, and sizes
- Combining S-AIS data with existing data are critical to understanding how ships operate and why they differ in operational efficiency

Future Work

- Identify differences in operational efficiency within each ship type, age, and size combination
- Collaborate with shipping companies and organizations to examine other factors that influence ship operational efficiency not captured by this methodology
- Integrate satellite data with on-shore AIS to improve data quality

Thank You

www.theicct.org/marine

Dr. Haifeng Wang haifeng@theicct.org

