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Objectives 
•  Define terms related to “Source 

Apportionment” and “Weight of 
Evidence” 

•  Summarize common pitfalls, 
limitations, and uncertainties in source 
apportionment studies and how to 
overcome them 

•  Identify some emerging technologies 
that might enhance the source 
apportionment weight of evidence 



What do we mean by “Weight of Evidence”? 
Derives from legal and medical fields 

Emerging applications to environmental risk assessment 

Listing Evidence 

Best Professional 
Judgment 

Logic Causal Criteria 

Indexing Scoring 

Quantitative 
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Linkov et al., 2009, Sci. Total Environ. 



What do we mean by “Weight of Evidence”? 
(continued) 

•  Examine the problem 
using different methods 

•  Use discrepancies 
between model results to 
identify and correct 
weaknesses in models 
and input data 

•  Quantify confidence 
intervals 

•  Explain and qualify 
conclusions regarding 
source contribution 
estimates 

U.S. EPA, 1987,2007 

www.epa.gov/ttn/scram/guidance/guide/
final-03-pm-rh-guidance.pdf 



What do we mean by "Source Apportionment Model"? 

Watson, 1979 

Known Source 
Emissions 
 

Known 
Dispersion 
Characteristics 

Source Model 
Estimated Ambient 
Concentrations 

Source Models  
(CMAQ, CAMx, etc.) 

Some Known 
Source 
Characteristics 

Known  
Ambient 
Concentrations 

Receptor Model Estimated Source 
Impacts 

Some Known 
Dispersion 
Characteristics 

Receptor Models  
(CMB with EV, UNMIX, PMF, 
solutions) 

The source model uses source emissions as inputs and 
calculates ambient concentrations.  
The receptor model uses ambient concentrations as 
inputs and calculates source contributions.   



Source and receptor models derive from the 
same physical construct 

Cikl = ΣjΣmΣnFijTijklmnDklnQjkmn 

i  =  pollutant 
j  =  source type 
k  =  time period  
l  =  receptor location  
m  =  source sub-type, a specific source or groups of  

  emitters with similar source compositions and/or 
  locations   

n  =  location of emitter m of source type j 
Cikl  =  ambient concentration 
Fij  =  fractional quantity of pollutant i in source j 
Tijkmn =  transformation of pollutant i during transport 
Dkln  =  dispersion and mixing between source and receptor 
Qjkmn =  emissions rate 

Adapted from Watson, 1984, Atmos. Environ.; Watson and Chow, 2005 



Lagrangian Source Model 
 

Cikl = ΣjΣmΣn TijklmnDklnFijQjkmn   

 
MEASURED 
AT SOURCE 
(INVENTORY) 

CALCULATED 
BY MET MODEL 

CALCULATED 
BY CHEMICAL 
MODEL 

CALCULATED 
AT RECEPTOR 

Chemical Mass Balance (CMB) Model 

Cikl = ΣjTijklFijΣmΣn DklnQjkmn    

 
Sijkl, SOURCE  
CONTRIBUTION 
ESTIMATE 

MEASURED AT 
SOURCE 
(T=1 OR ESTIMATED BY 
OTHER METHOD) 

MEASURED 
AT RECEPTOR 

Lagrangian Source Model

Source and receptor model use different input data 
 

Source and receptor models complement each other rather than replacing each other 



These equations reduce to the Chemical Mass Balance 
(CMB) receptor model 

Equation:   

 

Measurements: 

•  Size-classified mass, elements, ions, and carbon 
concentrations on both ambient and source samples 

Model Input: 

•  Ambient concentrations (Ci) and uncertainties (σCj), 
source profiles (Fij), and uncertainties (σFij) 

Model Output: 

•  Source contributions (Sj) and uncertainties (σSj) 

N  to1ifor       S  F     C j

J

1j
iji == ∑

=

Hidy and Friedlander, 1971 
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CMB solutions rely on chemical differences among source emissions, 
i.e., “Source Profiles” 



Source and receptor models complement each other rather 
than replace each other 
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PM2.5 Inventory/Receptor Model Comparison 

(Denver, CO – Winter 1997) 

Fugitive dust 
is always 

overestimated 

Cold starts 
and high 

emitters are 
unrecognized 

Watson and Chow, 2007 



TSP in Xian, China  
(336 µg/m3 Material Balance, 10/27/97, Eastern Urban Site) 

Nitrate
5% Sulfate

10%

Ammonium
2%

Soot
6%

Organics 
(=1.2xOC)

28%

Dust 
(=20xFe)

49%

“Xi’an emission inventories (EPA AP-42) show that TSP 
is nearly all from fugitive dust”-Shaanxi EPB official 

Chow et al., 2002, Chemosphere 



Sj=Ci/Fij 
– Tracer solution, Hidy and Friedlander (1971), Winchester and 

Nifong (1971), single sample 

Effective Variance, PMF, and Unmix are solutions to the 
CMB equations, not separate models 

 

�2 =minΣi Σk [(Cik-ΣjFijSjk)2/σCik
2)]  

– Positive Matrix Factorization, Paatero (1997), multiple samples 

�2  = minΣi [(Ci-ΣjFijSj)2/(σCi
2+ΣjσFij

2Sj
2)]  

• Effective Variance, single sample, Watson et al., 1984 



Marker (not “tracer”) species have consistent ratios within 
a source type and different ratios between source types 

•  Elements, ions, and carbon are necessary, but 
insufficient for most source type 

• Gas as well as particle components are useful 

• Organic compounds are numerous, but have 
highly variable abundances 

• Isotopic ratios of carbon, sulfur, lead, and other 
elements also vary among sources 

• Particle size, morphology, and minerals are 
useful for dust sources 

• Mass spectral patterns may not allow chemical 
identification, but can still distinguish among 
sources 



What should you measure?  
 Everything you can!  Everything you can!  Everything you can! 

Watson, 1979 



PMF and Unmix don’t need source profiles? 
WRONG! 

Why isn’t 
secondary 

coal 
dominated 
by sulfate? 

Ramadan et al., 2000, JAWMA 



PMF and Unmix 
source factors 

must correspond 
with at least one 
measured profile 

 
Example from 

Minnesota 
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Applying different CMB solutions to the same data set aids in the Weight of Evidence 
(Minnesota, 8/2003 – 7/2004, most samples passed validation tests ) 

PMF soil and cement factors are mixed with regional, Biomass similar 
to regional, Gas/diesel split uncertain, PMF overestimates mass 

Chen et al., 2011, JAWMA 



Considerations for a Source Apportionment Study 

•  Begin with a conceptual model. What has been done already? What 
are potential sources? What are useful markers? How does the wind 
blow? 

•  Plan measurement locations and times.  Represent different spatial 
scales. Sample close to and away from sources. Obtain enough 
samples to cover different situations. Take advantage of 
interventions. 

•  Select the observables. Review prior source profiles. Sample on 
substrates appropriate for different analyses. Include source testing. 

•  Perform descriptive analysis prior to modeling. Averages and maxima 
by season, time of day. Case studies for maximum concentrations. 
Comparison with prior studies and those of similar situations. 



Considerations for a Source Apportionment Study 
(continued) 

•  Apply more than one CMB solution method and compare 
results.  Compare PMF source factors with measured profiles. 
Conduct sensitivity and collinear tests. Stress the models. 

•  Refine emission inventory based on receptor model results and 
apply source model. Compare source and receptor model 
contributions. 

•  Make input files available to others who would challenge 
conclusions. 

•  Refine the conceptual model and start over. 



Danger of Ignoring the Weight of Evidence:  
Example from India 

CBCP, 2010 

•  Good:  Network 
design, source 
profiles, organic 
markers, emission 
inventory, 
dispersion model. 

•  Bad:  No 
sensitivity/ 
collinearity tests, 
comparison 
among sites and 
cities, consistency 
of size fractions.   



Danger of Ignoring the Weight of Evidence:  
Example from India (continued) 

• Weight of evidence would include external data from vehicle and stove 
emission tests, comparisons with apportionments from different cities, 
examination of other data such as continuous gas and particle 
measurements.  



Chemical 
Analysesa 

Nuclepore 
polycarbonate
-membrane 
filter 

Silver nitrate-
impregnated 
cellulose-fiber 
filter 

K2O3-
impregnated 
cellulose-fiber 
filter 
 
 

Citric acid-
impregnated 
cellulose-fiber 
filter 
  

Quartz-fiber 
filter 

Quartz-fiber 
filter 

Teflon-
membrane 
filter 

~1-2 
cm2 
punch 
 

0.5 cm2 
punch 

½ filter 
extracted in 
20 ml 
distilled-
deionized 
water (DDW) 

XRF for 51 
elementsb 

Acid 
Digestion 

ICP-MS for 
rare-earth 
elements and 
isotopesd 

OC, EC, carbon 
fractions, 
carbonate by 
thermal/optical 
carbon 

Organic 
Markers by 
TD-GC/MSc 

Ammonia by 
AC 

½ filter 
extracted in 
10 ml 1:11 
hydrogen 
peroxide: 
DDW dilution 

Whole filter 
without 
extraction 

Elemental 
analysis or 
morphological 
analysis for 
lichen studies 

Sulfur dioxide by 
IC 

Hydrogen 
sulfide by 
XRF as sulfur 

½ filter 
extracted in 
10 ml DDW 

10 ml for anions and 
cationse by IC, AC, and 
AAS, acidified to pH 2 with 
HCl 

1 ml for total 
WSOC by 
thermal/optical 
carbon 

Filtration of 5 ml through 0.2 µm 
PTFE syringe filter 

1 ml speciated WSOC 
separated into three 
classes: NC, MDA, and 
PA by HPLC-IEC and 
UV/Vis detection at 
254 nm 

1 ml for NC 
speciation (e.g., 
carbohydrates) by 
IC-PAD 

1 ml for MDA 
speciation (e.g., 
organic acids) by IC 
with conductivity 
detector 

1 ml for PA 
speciation (e.g., 
HULIS) by HPLC–
SEC–ELSD–UV/VIS 

a Analytical Instruments: 
 AAS: Atomic absorption spectroscopy 
 AC: Automated colorimetry 
 ELSD: Evaporative light scattering 

detector 
 HPLC-IEC: High performance liquid 

chromatography with an ion exchange 
column 

 IC: Ion chromatography 
 IC-PAD: IC with pulsed amperometric 

detector 
 ICP-MS: Inductively coupled plasma – 

mass spectrometry 
 PTFE: Polytetrafluoroethylene 
 SEC: Size-exclusion chromatography 
 TD-GC/MS: Thermal desorption-gas 

chromatography/mass spectrometry 
 UV/VIS: Ultraviolet detector 
 XRF: X-ray fluorescence 
 
Observables 
 OC: Organic carbon 
 EC: Elemental carbon 
 HULIS: Humic-like substances 
 MDA: Mono/dicarboxylic acids 
 NC: Neutral/basic compounds 
 PA: Polycarboxylic acids 

b Al – U (see Table 7-1) 
c 124 organic marker species (see 

Table 7-1) 
d Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, 

Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, 
Pb204, 205, 206, 207, 208 

e Cl-, NO2, NO3
-, PO4

=, SO4
= (by 

IC); NH4
+ (by AC); Na+, Mg++, K+, 

and Ca++ (by AAS) 

More markers can be measured on existing and new samples  

Teflon-
membrane 
filter 

Quartz-
fiber 
filter 

Quartz-
fiber 
filter 

Citric acid-
impregnated 
cellulose-
fiber filter 

K2O3-
impregnated 
cellulose-
fiber filter 

Silver nitrate-
impregnated 
cellulose-fiber 
filter 

Nuclepore 
polycarbonate-
membrane 
filter 

Chow and Watson, 2012;  
Ho and Yu, 2004, J. Chromatogr. A. 



Extending from single to multiple wavelengths can 
distinguish pollution sources  
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Short-term dense 
monitoring can 

access PM10 
spatial variation 

SFE
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Corcoran, central California, USA (10/9/00 – 11/14/00) 



Microaethalometer can be used to verify major 
black carbon emitters  

Hansen and Mocnik, 2010 
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Magee Scientific, Berkeley, CA 



UAVs are available to characterize aged 
plumes with microsensors 

(Fooyin University, Taiwan) 

Char et al. 2010 



Aerosol Mass Spectrometers are elucidating 
sources and chemical mechanisms 

Middlebrook et al., 2003, JGR 



Continuous ion sensors show 
mechanisms 

 

URG 9000D with IC 
(URG Corporation,  
Raleigh, NC, USA) 

URG 9000D with IC 
(URG Corporation,  
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* Using TSI DustTrak DRX 
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Watson et al., 2011, AAQR 

Rapid particle size measurements separate nearby from 
distant emitters 



New technologies can be combined into complex systems to 
obtain source profiles as well as emission rates 
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Source apportionment studies are multi-pollutant by design, and 
their measurements will be useful for emerging air quality 

management strategies 



Take Home Messages 

•  Don’t just plug numbers into the software and 
expect to get a reasonable result. 

•  Find out what has been done already in the 
study area or similar areas.  READ and don’t 
re-invent the wheel.  Use all available 
resources to construct a conceptual model. 

•  Be critical of your own results and those  
of others. 

•  Expect to discover things you hadn’t  
thought of. 
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