全球对于在用车实际排放的重点关注: 问题正在解决中

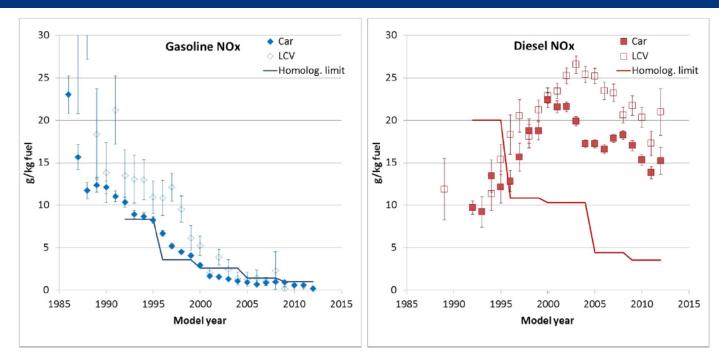
The Global Focus on Actual In-Use Emissions: A Work in Progress

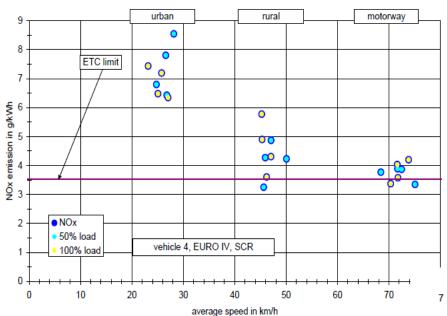
2015年6月8日

Michael P. Walsh 国际咨询专家 国际清洁交通委员会创始董事主席 Founding Chairman Board of Directors, International Council on Clean Transportation

欧洲正在思考如何改善排放不合规的问题 从欧1到欧5的情况

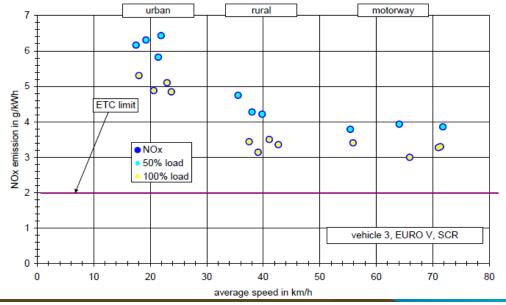
Europe is Wrestling with Upgrading Compliance Developments for Euro 1 – Euro 5




Fig. 4. Mean hot NO_x emission factors of gasoline (left) and diesel (right) passenger cars and light commercial vehicles as a function of model year. Whiskers represent the 95% confidence interval over the mean. Added are the type approval limit values for Euro 1 to Euro 5 passenger cars over the homologation test cycle in force in the respective year. For conversion from limit values in g per km see SI (using measured fuel consumption rates from Hausberger (2010)). For color plot consult online version.

重型车情况也类似

问题:城市车辆工况外NOx排放过高


Similar Issues With Heavy Duty Vehicles

The problem: High off-cycle NOx emissions in urban applications

荷兰利用PEMS检测对欧IV和欧V卡车进行了测试,发现在城市行驶条件下排放会高于标准限值!In-use PEMS testing of Euro IV and Euro V trucks in The Netherlands found emission well above standard in urban driving!

欧盟在用车达标的历史问题 Historical Problems with EU Compliance In Use

- 型式核准认证流程不完善
- 没有关注工况外排放(仅能在工况上达标)
- 耐久性要求较短
- 保修和缺陷报告的局限性
- OBD监管较弱
- 在用车检测和达标管理的 责任机构不明确

- Poor Type Approval Test Procedure
- No Focus on Off Cycle Emissions (Cycle Beating)
- Shorter Durability Requirement
- Limited Warranty and Defect Reporting
- Weaker OBD
- No Clear Responsibility and Authority for In Use Testing and Compliance

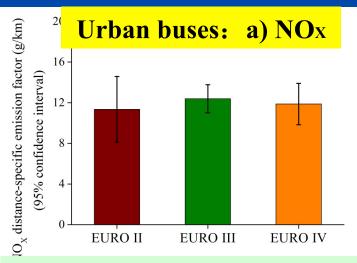
从欧V到欧VI的经验 Euro V-VI lessons

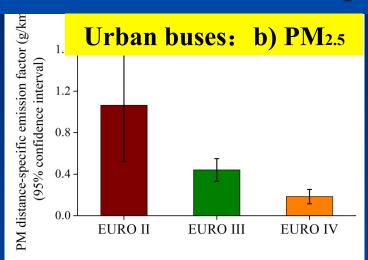
- 要想实现空气质量目标,所制 订的排放法规必须能控制实际 行驶过程中的排放
- 不仅要关注排放限值,还需要 关注:
 - 新的行驶工况(WHDC)
 - 更长的车辆使用寿命
 - 工况外和在用车排放检测 (PEMS)
 - OBD要求
 - 防作弊要求或NOx控制
 - 颗粒物数量限值和新的测量流程

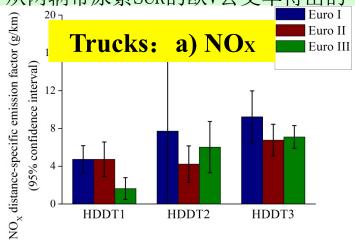
- To achieve air quality objectives emissions legislation has to meet high expectations on real world emissions
- Focus not only on emission limits but also on:
 - New driving cycle (WHDC)
 - Longer useful life of vehicles
 - Off-cycle and In-service testing (PEMS)
 - OBD requirements
 - Anti- tampering requirements or NOx –control
 - PN-limit and new measurement procedure

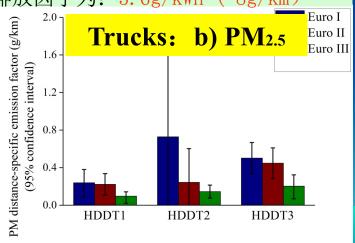
一种修正的办法: 欧6 RDE-LDV流程

The Fix: Euro 6 RDE-LDV Process


- 1. 对欧6标准的修订之一是将PEMS道路测试作为型式核准的一部分。
- 2. 工作组定义了如何进行测试(边界条件)以及数据如何分析报告。
- 3. 从2015年开始试点推行,2017年开始实施。道路排放限值待定,大概会是底盘测功机限值的2倍。


- 1. An amendment to Euro 6 standards to make on-road testing with PEMS part of type-approval.
- 2. Stakeholder WG is defining how the tests should be conducted (boundary conditions), how the data should be analyzed and reported
- 3. Pilot phase to start in 2015, implementation in 2017. On-road emission limits TBD, likely 2X chassis dynamometer limits


北京重型柴油车实际行驶排放因子 Real-world emission factors of HDDVs in Beijing



和PM_{2.5} 排放不同,尽管实施了更严格的NOx排放标准,但重型柴油车在实际行驶过程中的NOx排放并没有明显改善。

从两辆带尿素SCR的欧V公交车得出的平均的N0x排放因子为: 5.6g/kWh ($^{\sim}8g/km$)

Source: Wu, Y., Zhang, S., et al. Atmos. Chem. Phys., 2012.

在用监管的总体原则

General Principles

- 在用车排放性能是空气质量的关键
- 有效的达标管理方案是美国/加州的重要成果之一
- 政府部门的责任从监管型式核准 开始,但如果仅限于此是远远不 够的:
 - 定义国家、省级和地方政府在在用 车监管中的职责作用,确保提供充 分的财政预算
 - 制定与车辆实际使用情况相一致的 在用排放耐久性要求(车辆使用 寿命)
 - 严格监控企业达标
 - 收集和分析生产企业提供的数据并 予以相应的反馈
 - 利用可获得的信息有针对性的开展测试(PEMS和遥感检测)并有效利用政府部门的资源在企业自测基础
 - 上进行验证监测
 - 严厉处罚不达标行为

- In-use emissions performance is key to air quality
- A robust compliance program is one of the major accomplishments of US/ CA effort
- Government responsibility starts with oversight of type approval but ending there is insufficient
 - Define roles and responsibilities of national, provincial and local governments with regard to in use performance and make sure adequate budget is provided
 - Set in use durability requirements (useful life) consistent with actual use
 - Provide careful oversight of manufacturers' performance
 - Collect and analyze manufacturer provided data and respond accordingly
 - Use available information to target testing (PEMS and Remote Sensing) and leverage government resources to selectively duplicate manufacturer testing

在用监管的总体原则(2)

General Principles (2)

- 生产企业必须对车辆在用期间排放控制性能负责并承担后续责任(罚款和召回)
 - 尽早发现并纠正问题从而将 空气质量影响降低至最小程 度(缺陷报告和修正)
 - 提供耐用的排放控制部件, 可以在整个<u>使用寿命周</u>期都 正常发挥作用
 - 在发生故障时,通过保修和 召回来降低消费者需要担负 的成本
 - 积极开展在用车测试

- Manufacturers must take responsibility for in-use performance and be held accountable (fines and recalls)
 - Find and remedy problems early so air quality impacts are minimized (Defects)
 - Provide durable emission components which perform throughout <u>useful life</u>
 - Minimize cost to consumers through warranty and recalls where failures occur
 - Proactively carry out In-use testing

美国2007年重型车排放标准有效降低了PM, CO, 空气有毒物质和HC排放证明管理方案是行之有效的

The Program Seems To Be Working U.S. 2007 HD Emission Performance Provides Significant Reductions in PM, CO, Air Toxic HCs

	2007 EPA Standard (g/hp-hr)	Average ACES Engine Emissions (g/hp-hr)	ACES Emissions % Reduction Relative to the 2007 Certification Standard
CO	15.5	0.33	98
NMHC	0.14	0.0064	95
PM	0.01	0.0011	89
NO _X	1.2 a	1.075	10

^a Average value between 2007 and 2009, with full enforcement in 2010 at 0.20 g/hp-hr

	% Lower Than 2004 Engine Compounds Technology			
		16-Hour Cycle	CARBx-ICT	
	Single Ring Aromatics	82%	69%	
	PAH	79%	26%	
4	Nitro-PAH	81%	49%	
	Alkanes	85%	84%	
4	Polar	81%	12%	
	Hopanes/Steranes	99%	99%	
4	Carbonyls	98%	78%	
	Inorganic Ions	38%	100%	
4	Metals and Elements	98%	90%	
	Organic Carbon	96%	78%	
4	Elemental Carbon	99%	100%	
	Dioxins/Furans ^a	99%	N/A	
	* Relative to 1998 Engine Technology			

来源: CRC 1阶段 ACES 报告;

2010款以后的发动机所排放的有毒HC比2007 款发动机更低

谢谢! Thank you!