Technical Assessment in US Greenhouse Gas (GHG) Regulations: Methodology and Key Results

Nic Lutsey Postdoctoral Researcher, Univ. of California, Davis ICCT GHG technology workshop Brussels, Belgium February 1, 2012

Outline

- Background
- Technical assessment
 - Data sources, resources, steps
- Regulatory findings for proposed 2017-2025 standards
 - Vehicle technology modeling
 - Technology cost assessment

Background: Timeline for 2017-2025 Standards

Technology Assessment: Data Sources

- Many automotive technologies will be applied for compliance with existing 2012-2016 and proposed 2017-2025 regulations
- The technology assessment is based on many data sources
 - Available public technical literature
 - E.g., SAE journal articles
 - New and contracted technical work
 - Vehicle simulation work of technology packages from Ricardo
 - Teardown engineering cost assessment from FEV (e.g., on turbocharging, gasoline direct injection, dual clutch transmission, stop-start, hybrid system components, lithium ion batteries)
 - Mass-reduction assessment (e.g., Lotus Engineering)
 - Battery modeling for electric vehicles (from US energy laboratory)
 - Confidential business information
 - From individual automobile manufacturers
 - From individual suppliers (e.g., of turbochargers, tires, advanced materials)

Publicly available, peer-reviewed technical reports

Technology Assessment: Resources

• Federal rulemaking:

- By US Environmental Protection Agency (EPA) and National Highway Traffic Safety Administration (NHTSA)
- Website: <u>http://www.epa.gov/otaq/climate/regulations.htm</u>
- Major documents:
 - Proposal: "Notice of Proposed Rulemaking" (NPRM)
 - Technical: "Joint Technical Support Document" (TSD)
 - Other reports: <u>http://www.epa.gov/otaq/climate/publications.htm#vehicletechnologies</u>
 - Public docket: <u>http://www.regulations.gov/#!searchResults;s=EPA-HQ-OAR-2010-0799</u>
- California rulemaking
 - By California Air Resources Board (CARB)
 - Website: http://www.arb.ca.gov/regact/2012/leviiighg2012/leviiighg2012.htm
 - Also: <u>http://www.arb.ca.gov/msprog/clean_cars/clean_cars.htm</u>
 - Major document: "Initial Statement of Reasons" (ISOR)
 - Includes GHG; criteria pollutants, and ZEV regulations as package

Technology Assessment: Steps

Baseline fleet modeling

- Company model-by-model sales/technology today and projected through 2025
- Technology feasibility
 - Differs by vehicle class (E.g., mass reduction, transmission type, hybrid, electric)

Technology package modeling

- Model CO₂-reduction with incremental technology
- Model synergies of multiple technologies (based on Ricardo simulation work)
- Model 19 vehicle classes (e.g., V6 car, 4-speed transmission)
- Build up technology costs based on teardown work, OEM, supplier information
- Develop CO₂ reduction-versus-cost sequence for increasing technology adoption
- Incorporate crediting (e.g., car air conditioning credits up to 18 gCO₂/mile)
- Automaker compliance cost modeling
 - Assess amount of technology required for each automaker to achieve compliance
 - Incorporate each automakers' baseline for its specific fleet mix by footprint
 - Evaluate projected cost of compliance based adoption of minimum technology

Based on technical contract work and OEM input

Technical Background: Vehicle Efficiency

• The modern internal combustion automobile, at roughly 15-20% efficiency, has many efficiency losses – and many technical solutions

Individual Technologies

Area	Techno	logy for CO ₂ reduction	Technology share, MY2010	Potential CO ₂ reduction
Powertrain	Engine	Low friction lubrication	-	0.5%
		Engine friction reduction	-	2-4%
		Variable valve timing (and lift)	86%	4-6%
		Cylinder deactivation	7%	5-6%
		Turbocharging	3%	2-5%
		Turbo, gasoline direct injection	9%	8-15%
		Cooled EGR, turbo, GDI	-	20-25%
		Compression ignition diesel	0.5%	15-25%
		Digital valve actuation	-	5-10%
	Transmission	Early torque converter lock-up	-	0.5%
		Optimized shifting	-	2-6%
		6+ speed	40%	2-8%
		Continuously variable	10%	8-11%
		Dual-clutch, automated manual	-	9-13%
	Aerodynamics		-	2-5%
	Tire rolling resistance		-	2-4%
	Accessories (steering, air cond., alternator)		-	1-4%
Vehicle	Lower refrigerant emissions (low-leak, low-GWP)		-	2-10%
	Mass-reduction	Advanced material component	-	1-5%
		Integrated vehicle design	-	5-10%
	Hybrid systems	Stop-start mild hybrid	<1%	6-8%
		Full hybrid electric system	3%	30-35%

Technology CO₂-reduction potential differs by vehicle class, by drive cycle, and when multiple technologies are combined

Example: Combined Technology Packages

- Representative "mid-size vehicle" with increasing technology adoption
 - 2008 baseline 200 **3HG emission rate** 2016 target 150 (gCO₂e/km) 2025 target 100 50 Primary package (195/ Perol PRT, HEGDCT, 5% mass) + Dial cam phasing, indoctarged GDI L& Darl * ACtechnology 10 N 1284, alternative refrigerant * 85PD DCT+ACC+AEOP+IRATE+10% Mass PUE in Morie ADMIE, 5% CA BION 0 Turbo downsized cooled EGR 124 bart Plug in mond Lamie, A0% CA gridt Hydrogenfuelcell Batten electric (CA Brid)
 - Various packages available for ~50% GHG reduction (~2025 goals)

Notes: Vehicle class #5 (out of 19 classes) is shown; Emission levels based on combined 55% city / 45% highway US test procedure; plug-in electric vehicles are evaluated on California electricity grid; See CARB ISOR and US EPA NPRM for technology details

Example: Technology Cost-vs-GHG Walk-Up

- Representative "mid-size vehicle" technology-cost progression
 - 2500 ◆ Vehicle class #5 packages + stop-start ◆

Increasing cost with increasing technology adoption

_

Notes: Vehicle class #5 (out of 19 classes) is shown; Emission levels based on combined 55% city / 45% highway US test procedure; See CARB ISOR and US EPA NPRM for technology details

Results: Technology Adoption

- Compliance with US GHG standards is projected to primarily result from increased adoption of advanced gasoline efficiency technologies
 - Federal and California rulemakings utilize same underlying technical assumptions
 - California's ZEV program also includes electric-drive vehicle requirements

	Technology for CO ₂ reduction	Technology share, 2021 [USEPA]	Technology share, 2025 [USEPA]	Technology share, 2025 [CARB]	
	Improvements in low friction lubrication; engine friction reduction, variable valve timing/lift	>50%	>90%	>90%	
Engine	Turbocharged gasoline direct injection	63% 12% >50%	85%	51%	
	Cooled EGR, turbocharged GDI	12%	66%	14%	
Driveline	Early torque converter lock-up, high efficiency gearbox, optimized shifting, 8-speed	>50%	>90%	>90%	
	Dual-clutch, automated manual	55%	55%	56%	
Accessory	Electric power steering; efficient alternator, air conditioning; low-leak, low GWP refrigerant	>90%	>95%	>90%	
Load	Aerodynamic, low RR tires, low-drag brakes	>60%	>95%	>95%	
reduction	Mass reduction *	7%	12%	8%	
	Hybrid electric	7%	15%	6%	
Auvanced	Plug-in hybrid, electric, fuel cell	1%	3%	15%	
See CAPP ISOP and US EPA NPPM for technology details					

See CARB ISOR and US EPA NPRM for technology details

* Mass reduction is fleet average (not percent new vehicle technology share, like other technologies listed)

Results: Compliance Cost, Savings

• Federal and California rulemakings project similar overall increase in vehicle price and consumer fuel saving benefits

		Federal U.S. GHG / CAFE proposal	California proposal (GHG, criteria, ZEV)
	Fuel price (\$/gallon in 2025)	\$3.50	\$4.00
Assumptions	Vehicle median life	14 years	15 years
Assumptions	Vehicle median lifetime mileage	230,000	205,000
	Consumer fuel saving discount rate	3%/7%	5%
	Baseline (2016 v. 2008)	\$750	\$1150
Technology cost	New technology (2025 v. 2016)	\$1750 (NHTSA) \$1950 (USEPA)	\$1900
	Payback period	4 years	3 years
Consumer savings	Lifetime fuel savings per vehicle	\$5200 (7%) \$6600 (3%)	\$5900
	Net lifetime savings per vehicle (fuel savings minus technology cost)	\$3000 (7%) \$4400 (3%)	\$4000

Values approximate, involve rounding; see CARB ISOR and US EPA NPRM for technology details

Conclusion

- This presentation summarizes major technical steps and findings
 from the US greenhouse gas regulations
- The federal (US EPA / NHTSA) rulemaking
 - Proposed in November 2011
 - Set to be finalized in July 2012
- California (CARB) rulemaking
 - Includes GHG, criteria pollutant (NOx, HC, PM), and ZEV regulations
 - Proposed in December 2011
 - Board approved January 27, 2012
- Full technical and regulatory details are available at US EPA, NHTSA, and CARB rulemaking websites

