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Agenda 

  Background on U.S. EPA’s Office of Transportation and 
Air Quality (OTAQ) 

  2012~2016 MY GHG Regulation 
  Joint regulation – EPA/NHTSA/CARB 
  Final standards and program elements 

  Proposed 2017~2025 MY GHG Regulation 
  Final standards and program elements 

  Core Analytical Work 
  Technology Effectiveness 
  Technology Costs 
  Modeling Tools 
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EPA’s Office of Transportation and Air Quality 

  OTAQ has authority under US Clean Air Act (1970) to regulate emissions from all 
mobile sources 

  The Office of Transportation and Air Quality (OTAQ) is divided between EPA's 
headquarters in Washington, D.C., and the National Vehicle and Fuel Emissions Lab 
(NVFEL) in Ann Arbor, Michigan 

  Over 400 employees (approximately ½ of the employees are engineers) 
  The NVFEL is a world-class state of the art testing & research facility 
  Major elements of CAFE data collection administered by EPA. 
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U.S. Vehicle Emissions History 
4 

  U.S. was regulatory pioneer in 1970’s 
  In Clean Air Act, Congress gave EPA “technology forcing” powers and California 

ability to set its own standards 

  Since then successful and cost-effective regulations have come from 
OTAQ 
  OTAQ rules responsible for 57% of benefits derived from all major federal rules  
  Tier 0, 1 & 2 criteria as well as toxics exhaust and evaporative light-duty emissions 

standards 
  Gasoline and Diesel Fuel Standards 
  Fuel economy labeling rule 
  2012~2016 MY GHG regulations 

  EPA’s principles 
  Identify feasible and cost-effective technology 
  Set performance standards to drive innovation and allow flexible compliance 
  Allow lead time for normal business investment cycles 
  Comprehensive approach with all subsectors and fuels 
  Open and transparent process with broad stakeholder involvement 



Corporate Average Fuel Economy (CAFE) vs  
GHG Regulations 
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  1975: Congress passed Energy Policy and Conservation Act (EPCA) 
giving National Highway Traffic Safety Administration (NHTSA, part 
of DOT) mandate to establish Corporate Average Fuel Economy 
(CAFE) standards 

  With CO2 having been established as a threat to human health, EPA is 
able to promulgate rules regulating GHG’s under Clean Air Act (CAA) 

  Both GHG and CAFE Performance are measured using two test 
procedures: 
  Federal Test Procedure (FTP) – representing average city driving 
  Highway Fuel Economy Test (HFET) – representing average highway driving 

  CAFE is required by EPCA to use the same test procedures used for 
model year 1975 

  CAA provides greater flexibility to EPA 
  Example:  Advanced Technology credits for Electric Vehicles  
  Fleet-wide CO2 standard could be met partially through credits from improved air 

conditioner (A/C) operation 
  A/C credits include CO2 & hydrofluorocarbon (HFC) refrigerant reductions 
  HFC refrigerant is a powerful GHG 



How do EPA/CARB/NHTSA Collaborate? 
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  Each agency is regulating the same fleet of vehicles 
  EPA and CARB regulating criteria pollutants and GHG’s under CAA 
  NHTSA establishing CAFE requirements under EPCA and Energy 

Independence and Security Act (EISA) 

  All 3 agencies draw from a similar set of vehicle 
performance data and analyses and have meetings with 
all stakeholders, both unilaterally and as a group. 

  Goal has been to create one national program which sets 
harmonized requirements for GHG’s and CAFE for the 
US 
  To this end CARB has deemed that compliance with the EPA 

program results in compliance with California’s GHG standards. 



2012~2016 MY GHG Regulation 
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  EPA’s standards estimated to achieve a fleet-wide level of 
250 grams/mile (155 g/km) of CO2 in model year 2016 
  Standards have begun phase in during model year 2012 

  The 250 gram/mile CO2 standard corresponds to 35.5 
mpg “equivalent” if all reductions resulted from fuel 
economy improvements (6.6 L/100km) 

  NHTSA also adopted new CAFE standards which would 
lead to an estimated fleet average level of 34.1 mpg (6.9 L/
100km) in 2016 
  The difference between the EPA and NHTSA standards lies mostly 

in the air conditioning technologies manufacturers are projected to 
use 
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US 2012~2016 MY CO2 Standards 



Standards are Footprint Attribute-based 

Vehicle Type Example Models 
Example Model Footprint 

(sq. ft. / sq. m) CO2 Emissions Target (g/
mi / g/km) 

Fuel Economy Target 
(mpg / L/100 km) 

Example Passenger  Cars 
Compact car Honda Fit 40 / 3.7 204 / 127 41.4 / 5.7 
Midsize car Ford Fusion 46 / 4.3 228 / 142 37.3 / 6.3 
Fullsize car Chrysler 300 53 / 4.9 261 / 162 32.8 / 7.2 

Example Light-duty Trucks 
Small SUV 4WD Ford Escape 44 / 4.1 258 / 160 32.8 / 7.2 

Midsize 
crossover Nissan Murano 49 / 4.6 278 / 173 30.6 / 7.7 
Minivan Toyota Sienna 55 / 5.1 303 / 188 28.2 / 8.3 

Large pickup 
truck Chevy Silverado 67 / 6.2 347 / 216 24.7 / 9.5 
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  Each manufacturer’s standard based on the footprint of the vehicles 
produced – actual standards are curves which equate a vehicle size to 
its specific CO2 or MPG target. 

  Each companies “standard” are footprint curves 



  Emission banking and trading elements 
  Flex-fuel vehicle (FFV) credits 

  MY2012 – 2015 credits similar to CAFE, MY2016+ credits based on 
actual E85 fuel use 

  Air conditioning HFC and CO2 reduction credits 
  Early credit opportunities for doing better than California or 

CAFE 
  Advance technology credits (electric vehicles) 
  Innovative technology credits 
  Manufacturers with limited product lines and/or have 

traditionally paid fines to NHTSA may be especially 
challenged technologically in the early years of the program 
  Under the Clean Air Act, manufacturers cannot pay fines in lieu of 

complying with motor vehicle emissions standards 
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EPA Program Flexibilities 



2017~2025 MY GHG Proposed Regulation 
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  EPA’s proposed standards estimated to achieve a fleet-wide level of 
163 grams/mile (101 g/km) of CO2 in model year 2025 

  Standards would begin phase-in during model year 2017 
  2025 Passenger Car Target = 144 g/mi CO2 (89 g/km) 

  5% year-over-year reduction in CO2 

  2025 Light Truck target = 203 g/mi CO2 (126 g/km) 
  3.5% year-over-year reduction in CO2 from 2017~2021 
  5.0% year-over-year reduction in CO2 from 2022~2025 

 
  The 163 gram/mile CO2 standard corresponds to 54.5 mpg (4.3 L/

100km) “equivalent” if all reductions resulted from fuel economy 
improvements 
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US 2017~2025 MY CO2 Standards 



Proposed CO2 Target Curves for Passenger 
Cars 
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  NHTSA’s proposal is expected to result in a 40.9 mpg (5.8 
L/100 km) in 2021 MY and 49.6 mpg (4.7 L/100 km) in 
2025 MY 
  Standards would also begin phase-in during model year 2017 
  2025 Passenger Car Target = 56 mpg (4.2 L/100 km) 

  4.1% year-over-year increase in fuel economy from 2017~2021 
  4.5% year-over-year increase in fuel economy from 2022~2025 

  2025 Light Truck target = 40.3 mpg (5.8 L//100 km) 
  2.9% year-over-year increase in fuel economy from 2017~2021 
  4.7% year-over-year increase in fuel economy from 2022~2025 
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US 2017~2025 MY CAFE Standards 



Standards are Footprint Attribute-based 
15 

•  Each manufacturer has a unique car fleet and truck fleet standard, derived from 
the footprint curves, based on the sales-weighted distribution of vehicles 
produced 

•  Footprint curves assign a specific CO2 or MPG target for each vehicle based on 
it’s footprint (roughly the area between the tires) 

•  See Appendix for the actual CAFE and GHG footprint curves 

Vehicle Type Example Models 
Example Model Footprint 

(sq. ft. / sq. m) 
2025 CO2 Emissions 
Target (g/mi / g/km) 

2025 Fuel Economy 
Target (mpg/km/100) 

Example Passenger  Cars 
Compact car Honda Fit 40 / 3.7 131 / 81 61.1 / 3.9 

Midsize car Ford Fusion 46 / 4.3 147 / 91 54.9 / 4.3 

Fullsize car Chrysler 300 53 / 4.9 170 / 106 48.0 / 4.9 

Example Light-duty Trucks 
Small SUV 4WD Ford Escape 44 / 4.1 170  /106 47.5 / 4.9 

Midsize 
crossover Nissan Murano 49 / 4.6 188 / 117 43.4 / 5.4 

Minivan Toyota Sienna 55 / 5.1 209 / 130 39.2 / 6 

Large pickup 
truck Chevy Silverado 67 / 6.2 252 / 157 33.0 / 7.1 



+ + 

2017 2025 2021 2022 

Final unless changed by rulemaking 

2017-2021 
Final 

2022-2025 
Conditional 

Joint Technical  
Assessment Report 
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Midterm Review 



Vehicle Technology Projections 

  EPA/NHTSA technology assessment indicates the MY 2017-2025 
standards can be met with a wide range of technologies 
  Advanced gasoline engines (turbocharged/downsized) and 

transmissions (8-speed transmission and high efficiency gear 
box) 

  Vehicle mass reduction 
  Lower tire rolling resistance 
  Improved aerodynamics 
  More efficient vehicle accessories 
  Improved air conditioning efficiency & alternative refrigerants 
  Some increased hybrids, EVs, PHEVs 

  EPA projects that MY2017-2025 vehicles will be 82% advanced 
gasoline, 15% hybrids, and 3% EV/PHEVs 
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Key Program Elements 

 2012~2016 proposed GHG rule includes 
many program flexibilities, including: 
  Multiplier for Advanced Technology Vehicles 
  Off-cycle Credits 
  Accounting for Upstream Emissions 
  Incentive for Hybridization of Full-size Pick-ups 
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Overview of Regulation Specifications 

Country or 
Region 

Target 
Year Standard Type 

Unadjusted Fleet 
Target/Measure Structure Targeted Fleet Test Cycle 

U.S./California 
(enacted) 2016 Fuel economy/

GHG 
34.1 mpg* or 250 gCO2/
mi (155 g/km)  

Footprint-based 
corporate avg. Cars/Light trucks U.S. combined 

U.S. (Notice of 
Public Rulemaking) 2025 Fuel economy/

GHG 
49.6 mpg* or 163 gCO2/
mi  (101 g/km) 

Footprint-based 
corporate avg. Cars/Light trucks U.S. combined 

Canada (enacted) 2016 GHG 153 (141)*** gCO2/km Footprint-based 
corporate avg. Cars/Light trucks U.S. combined 

EU (enacted) 
EU (proposed) 

2015 
2020 CO2 130 gCO2/km 

95 gCO2/km 
Weight-based 
corporate average Cars/SUVs NEDC 

Australia 
(voluntary) 2010 CO2 222 gCO2/km Fleet average 

Cars/SUVs/light 
commercial 
vehicles 

NEDC 

Japan (enacted) 
Japan (proposed) 

2015 
2020 Fuel economy 16.8 km/L 

20.3 km/L 
Weight-class based 
corporate average Cars JC08 

China (proposed) 2015 Fuel consumption 7 L/100km 
Weight-class based 
per vehicle and 
corporate average 

Cars/SUVs NEDC 

S. Korea (proposed) 2015 Fuel economy/
GHG 17 km/L or 140 gCO2/km Weight-based 

corporate average Cars/SUVs U.S. combined 

* Assumes manufacturers fully use A/C credit

** Proposed CAFE standard by NHTSA. It is equivalent to 163g/mi plus CO2 credits for using low-GWP A/C refrigerants.

“** In April 2010, Canada announced a target of 153 g/km for MY2016. Value in brackets is estimated target for MY2016, assuming that during 2008 and 2016 the fuel 

efficiency of the LDV fleet in Canada will achieve a 5.5% annual improvement rate (the same as the U.S.). This estimate is used in the accompanying charts.




Historical fleet CO2 emissions performance and!
current or proposed standards
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Japan 2020: 105
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US-LDV


California-
LDV

Canada-LDV


EU


Japan


China


S. Korea


Australia


  Solid dots and lines: historical performance

  Solid dots and dashed lines: enacted targets 

  Solid dots and dotted lines: proposed targets

  Hollow dots and dotted lines: unannounced proposal


[1] China's target reflects gasoline fleet scenario. If including other fuel types, the target will be lower. 

[2] US and Canada light-duty vehicles include light-commercial vehicles.
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Core Analytical Work 
21 

  EPA has sponsored and/or performed our own work in a 
large number of areas relevant for light-duty vehicles and 
GHGs, including: 
  Vehicle Miles Travelled (VMT) Rebound Effect 
  Energy Security 
  Social Cost of Carbon 
  Economic Modeling for GHG Standards 
  Climate Modeling 
  Criteria Pollutant Air Quality Modeling 
  Baseline Fleet Projections 

  This presentation focuses on just three elements: 
  Technology CO2 Effectiveness 

  Ricardo Vehicle Simulation 
  Technology Costs 

  FEV Tear-down analyses 
  Modeling Tools 

  EPA OMEGA 



Technology CO2 Effectiveness 

22 



Technology  CO2 Effectiveness 

  Projecting the CO2 reduction potential of individual 
technologies and their combination is a core part of any 
future projection 

  EPA has sponsored several programs in this area, and 
published a number of synthesis documents 

  Several data sources considered: 
  Published reports/papers in the literature 
  Actual fuel economy data for real vehicles 
  Confidential data from suppliers/OEMs  
  Vehicle simulation modeling 

 Vehicle simulation modeling is also used by vehicle manufacturers to 
make product decisions regarding fuel economy and performance. 
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2008 Ricardo Vehicle Simulation 
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  Sponsored by EPA, final peer reviewed report published in 
2008 

  Used a robust, science-based “full vehicle simulation” 
analysis to characterize consequences of combining 
multiple technologies for efficiency gains (e.g., quantify 
synergistic effects) 

  Quantify how the individual technologies, and their 
combinations, provide different levels of vehicle efficiency 
improvement in different vehicle classes 

  Focused on technologies available in the ~2010-2015 time 
frame 

  Provided a foundation for the 2017~2025 GHG rule. 
 



2011 Ricardo Vehicle Simulation 
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  EPA has completed the most comprehensive vehicle simulation to-
date to look at CO2 effectiveness for 2020-2025 technologies 
  Lean-burn gasoline engines 
  GDI turbo-downsize with boosting, cooled EGR, higher BMEP 
  Next generation diesel engines 
  8-speed AT and DCT transmissions 
  Power-split HEVs 
  P2 HEVs 

  Modeling includes multiple degrees of freedom to examine a range 
of mass reductions, engine downsizing, and HEV motor size to seek 
out most efficient combinations under user-defined constraints 
(e.g., constant performance) 

  5 vehicle classes from 2008 study, plus a B-segment small car and a 
1-ton heavy-duty pickup truck 

 



2011 Ricardo Vehicle Simulation 
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  Goals included1: 
  Extrapolation of selected technologies to their expected 

performance and efficiency levels in the 2020~2025 MY 
timeframe. 
  Performance anchored to current and emerging technology 

  Conduct detailed simulation of the technologies over a large 
design space including: 
  Range of types and sizes vehicles 
  Powertrain architectures 
  Engine designs 
  Parameters describing these configurations:  engine displacement, final 

drive ratio, and vehicle rolling resistance 
  Interpolate the results over the design space using a functional 

representation of the responses to the varied model input factors. 
  Develop a Data Visualization Tool to facilitate interrogation of the 

simulation results over the design space. 
 1.  “Project Report Computer Simulation of Light-duty Vehicle Technologies for Greenhouse Gas Emission Reduction in the 2020~2025 

Timeframe”  Ricardo Inc., 29 November 2011 



2011 Ricardo Vehicle Simulation 
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  Ricardo employed  
  Complex System Modeling  (CSM)  

  CSM is a rigorous computational strategy designed to mathematically account for 
multiple input variables and determine their respective significance.  

  Design of Experiment (DoE)  
  DoE approach surveys the design space in a way that extracts the maximum 

information using a limited budget of simulation runs. 
  Still resulted in 2000 independent simulation runs for each of the 100+ vehicle 

packages.  At 10 Hz output, the data files encompass 2 terabytes! 
  Neural networks 

  Neural network approach was used to quantify the relationships between input 
and output factors over the design space explored in the simulations. 

  Results of the Ricardo analyses were used to calibrate EPA’s 
lumped parameter model which is a physics based model for 
evaluating the effectiveness of vehicle packages. 

 



Technology Costs 
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Technology Cost Estimation 

  Vehicle technology costs quoted in public domain often 
vary widely 
  Underlying  basis for cost estimations are not always clear 
  Are they direct manufacturing costs? Are they retail prices? Are 

indirect costs included? For how long (what model years) are 
estimates valid? 

  Estimates often rely on expert opinion, CBI, or surveys of suppliers 

  In past three years EPA has undertaken two major 
studies focused on providing robust, traceable  cost 
assessments which are peer reviewed and the underlying 
information is open to review by all 
  Indirect cost study with RTI International/U. of Michigan 
  Direct manufacturing cost study with FEV Inc./Munro Assoc. 
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Two Major Types of Cost:  Direct and Indirect 
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Direct Manufacturing Costs 
  The costs to manufacture a 

product at the production 
facility, including: 
  Material costs (steel, copper, 

plastics, etc.) 
  Labor costs 
  Utility costs at the production plant 

(water, electricity, etc.) 

 

Indirect Manufacturing Costs 
•  All other costs of running an auto 
company, including: 

  Capital costs for production facilities 
  Tooling costs for production facilities 
  Research and development 
  Warranty 
  Corporate overhead (e.g. General and 

Administrative) 
  Pensions 
  Marketing 
  Dealer Support 

•  Often captured in cost analyses via 
application of a multiplier to the 
direct manufacturing costs. 



Two Major Types of Cost:  Direct and Indirect 
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Direct Manufacturing Costs 
  Established through “tear-down” 

activities conducted by FEV 
  Identical methodology used by vehicle 

manufacturers to “benchmark” 
competitive components and systems 

  Bill of Material (BOM) roll-ups 
that break down direct 
manufacturing costs into their 
subsystems and components. 

  Confidential Business 
Information (CBI) used where 
no other source was available – 
lacks transparency 

Indirect Manufacturing Costs 
•  Application of Indirect Cost (IC) 
Multipliers  in lieu of Retail Price 
Equivalent (RPE) Multipliers 

•  EPA developed in conjunction with 
RTI and Transportation Research 
Institute at University of Michigan 

•  Better reflects the actual impact of 
an individual technology on indirect 
costs and includes time element 

Technology Complexity 

Time Frame Low Medium High 

Short-term effects 1.05 1.20 1.45 

Long-term effects 1.02 1.05 1.26 



2011 vs. 2017 CAFE Costs 
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Technology 2011 Cost 2017 Cost 

6 speed ATX $215 -$13 

DCT $145 -$205 

Turbo/Downsizing $815 $478 

GDI $195~$293 $191 

  Midsize car costs:  I-4 PFI, 4-speed ATX 
  Direct Manufacturing Costs 
  2017 costs reflect FEV tear-down results 



Modeling Tools 
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The OMEGA Model 

  Optimization Model for Reducing Emissions of 
Greenhouse gases from Automobiles 

  Purposes 
  Determine the most cost efficient path of adding technology to 

vehicles in order to achieve regulatory compliance. 
  Quantify the economic and environmental impacts of the changes in 

the vehicle fleet 
  Design 

  Preprocessors (prepare OMEGA inputs) 
  OMEGA core model (calculate cost and compliance) 
  Benefits post-processor (calculate impacts) 

  Outputs 
  Achieved compliance level and cost of compliance 
  Impact on fuel consumption and GHG emissions 
  Other impacts: criteria emissions, noise, congestion, accidents, saved 

refueling time, etc. 



How Does OMEGA Work? 

  OMEGA incrementally applies technology to vehicles in 
order to reduce emissions and determine manufacturer 
cost of compliance 
  “Technology” includes improvements to the engine, transmission, or 

any other change that reduces emissions from the vehicle 
  OMEGA inputs are informed by FEV work, Ricardo work, SAE papers 

and other literature. 
  OMEGA is subject to a user’s constraints (regulatory 

design, technology availability, feasibility of adoption) 

Base Vehicle  Technolog
y 

Cleaner 
Vehicle 

Cost 
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APPENDIX: 
 

CAFE and CO2 Proposed Footprint 
Standard Curves 
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Proposed CAFE Target Curves for Passenger Cars 
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Proposed CAFE Target Curves for Light Trucks 
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Proposed CO2 Target Curves for Passenger 
Cars 
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Proposed CO2 Target Curves for 
Light Trucks 
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Resources 
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  Proposed 2017~2025 MY GHG Regulation 
  http://www.gpo.gov/fdsys/pkg/FR-2011-12-01/pdf/

2011-30358.pdf 
  Joint (EPA and NHTSA) Draft Technical Support 

Document 
  http://epa.gov/otaq/climate/documents/420d11901.pdf 

  Supporting Documents 
  http://www.epa.gov/otaq/climate/

publications.htm#vehicletechnologies 
 Ricardo Computer Simulation of Light-duty Technologies 
 Ricardo Response Surface Model Tool 
 Cost analyses 


