

Overview of U.S. GHG Regulations: Final Rule for the 2012~2016 MY and Proposed Rule for 2017~2025 MY

MICHAEL OLECHIW DIRECTOR – DATA AND TESTING CENTER USEPA/ OTAQ/ASD

> ICCT GHG TECHNOLOGY WORKSHOP BRUSSELS, BELGIUM FEBRUARY 1, 2012

 Background on U.S. EPA's Office of Transportation and Air Quality (OTAQ)

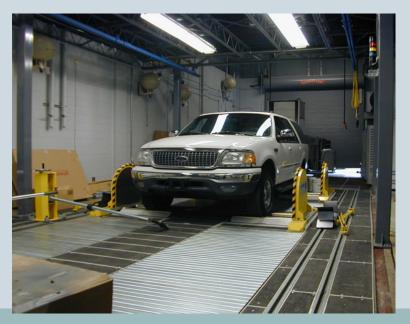
• 2012~2016 MY GHG Regulation

- Joint regulation EPA/NHTSA/CARB
- Final standards and program elements

Proposed 2017~2025 MY GHG Regulation

• Final standards and program elements

Core Analytical Work


- **o** Technology Effectiveness
- Technology Costs
- Modeling Tools

EPA's Office of Transportation and Air Quality

- OTAQ has authority under US Clean Air Act (1970) to regulate emissions from all mobile sources
- The Office of Transportation and Air Quality (OTAQ) is divided between EPA's headquarters in Washington, D.C., and the National Vehicle and Fuel Emissions Lab (NVFEL) in Ann Arbor, Michigan
- Over 400 employees (approximately 1/2 of the employees are engineers)
- The NVFEL is a world-class state of the art testing & research facility
- Major elements of CAFE data collection administered by EPA.

U.S. Vehicle Emissions History

- U.S. was regulatory pioneer in 1970's
 - In Clean Air Act, Congress gave EPA "technology forcing" powers and California ability to set its own standards

Since then successful and cost-effective regulations have come from OTAQ

- OTAQ rules responsible for 57% of benefits derived from all major federal rules
- Tier 0, 1 & 2 criteria as well as toxics exhaust and evaporative light-duty emissions standards
- **o** Gasoline and Diesel Fuel Standards
- Fuel economy labeling rule
- o 2012~2016 MY GHG regulations

EPA's principles

- Identify feasible and cost-effective technology
- Set performance standards to drive innovation and allow flexible compliance
- Allow lead time for normal business investment cycles
- Comprehensive approach with all subsectors and fuels
- Open and transparent process with broad stakeholder involvement

Corporate Average Fuel Economy (CAFE) vs GHG Regulations

- 1975: Congress passed Energy Policy and Conservation Act (EPCA) giving National Highway Traffic Safety Administration (NHTSA, part of DOT) mandate to establish Corporate Average Fuel Economy (CAFE) standards
- With CO2 having been established as a threat to human health, EPA is able to promulgate rules regulating GHG's under Clean Air Act (CAA)
- Both GHG and CAFE Performance are measured using two test procedures:
 - Federal Test Procedure (FTP) representing average city driving
 - Highway Fuel Economy Test (HFET) representing average highway driving
- CAFE is required by EPCA to use the same test procedures used for model year 1975
- CAA provides greater flexibility to EPA
 - Example: Advanced Technology credits for Electric Vehicles
 - Fleet-wide CO2 standard could be met partially through credits from improved air conditioner (A/C) operation
 - A/C credits include CO2 & hydrofluorocarbon (HFC) refrigerant reductions
 - **HFC refrigerant is a powerful GHG**

How do EPA/CARB/NHTSA Collaborate?

- Each agency is regulating the same fleet of vehicles
 - EPA and CARB regulating criteria pollutants and GHG's under CAA
 - NHTSA establishing CAFE requirements under EPCA and Energy Independence and Security Act (EISA)
- All 3 agencies draw from a similar set of vehicle performance data and analyses and have meetings with all stakeholders, both unilaterally and as a group.
- Goal has been to create one national program which sets harmonized requirements for GHG's and CAFE for the US
 - To this end CARB has deemed that compliance with the EPA program results in compliance with California's GHG standards.

US 2012~2016 MY CO₂ Standards

- EPA's standards estimated to achieve a fleet-wide level of 250 grams/mile (155 g/km) of CO2 in model year 2016
 Standards have begun phase in during model year 2012
- The 250 gram/mile CO2 standard corresponds to 35.5 mpg "equivalent" if all reductions resulted from fuel economy improvements (6.6 L/100km)
- NHTSA also adopted new CAFE standards which would lead to an estimated fleet average level of 34.1 mpg (6.9 L/ 100km) in 2016
 - The difference between the EPA and NHTSA standards lies mostly in the air conditioning technologies manufacturers are projected to

use

Standards are Footprint Attribute-based

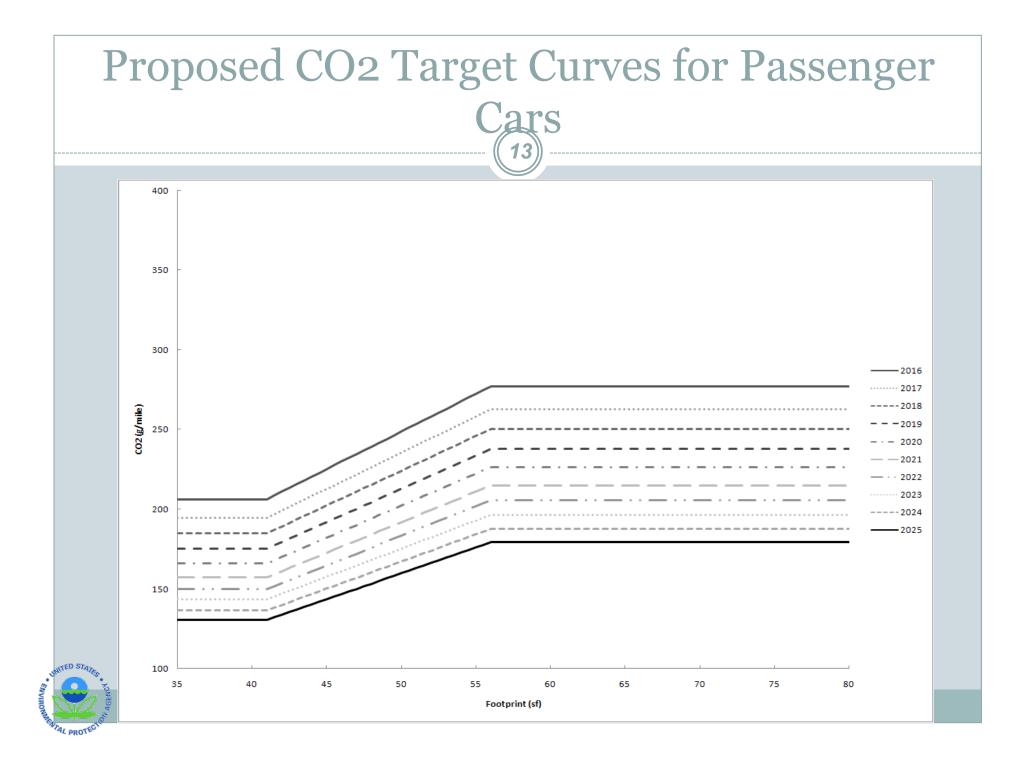
9

- Each manufacturer's standard based on the footprint of the vehicles produced actual standards are curves which equate a vehicle size to its specific CO₂ or MPG target.
- Each companies "standard" are footprint curves

Vehicle Type	Example Models	Example Model Footprint (sq. ft. / sq. m)	CO ₂ Emissions Target (g/ mi / g/km)	Fuel Economy Target (mpg / L/100 km)		
Example Passenger Cars						
Compact car	Honda Fit	40 / 3.7	204 / 127	41.4 / 5.7		
Midsize car	Ford Fusion	46 / 4.3	228 / 142	37.3 / 6.3		
Fullsize car	Chrysler 300	53 / 4.9	261 / 162	32.8 / 7.2		
Example Light-duty Trucks						
Small SUV	4WD Ford Escape	44 / 4.1	258 / 160	32.8 / 7.2		
Midsize crossover	Nissan Murano	49 / 4.6	278 / 173	30.6 / 7.7		
Minivan	Toyota Sienna	55 / 5.1	303 / 188	28.2 / 8.3		
Large pickup truck	Chevy Silverado	67 / <mark>6.2</mark>	347 / 216	24.7 / 9.5		

EPA Program Flexibilities

- Emission banking and trading elements
- Flex-fuel vehicle (FFV) credits
 - MY2012 2015 credits similar to CAFE, MY2016+ credits based on actual E85 fuel use
- Air conditioning HFC and CO2 reduction credits
- Early credit opportunities for doing better than California or CAFE
- Advance technology credits (electric vehicles)
- Innovative technology credits
- Manufacturers with limited product lines and/or have traditionally paid fines to NHTSA may be especially challenged technologically in the early years of the program
 - Under the Clean Air Act, manufacturers cannot pay fines in lieu of complying with motor vehicle emissions standards

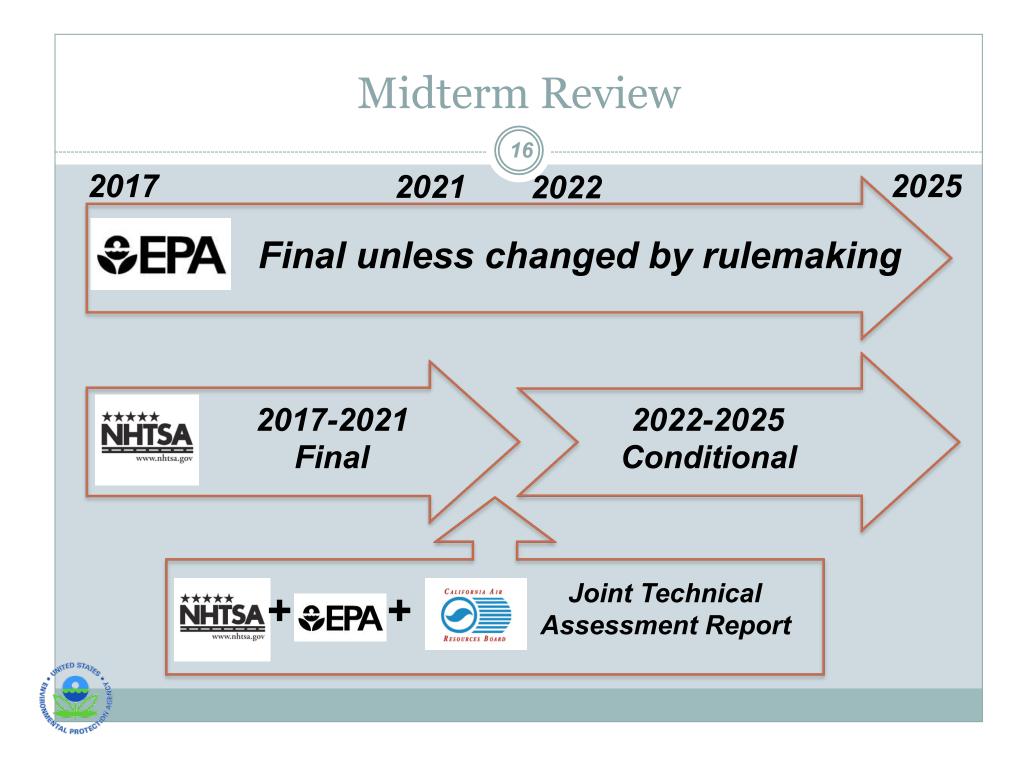


US 2017~2025 MY CO₂ Standards

- EPA's proposed standards estimated to achieve a fleet-wide level of 163 grams/mile (101 g/km) of CO2 in model year 2025
 - Standards would begin phase-in during model year 2017
 - 2025 Passenger Car Target = 144 g/mi CO2 (89 g/km)
 - × 5% year-over-year reduction in CO2
 - 2025 Light Truck target = 203 g/mi CO2 (126 g/km)
 - × 3.5% year-over-year reduction in CO2 from 2017~2021
 - × 5.0% year-over-year reduction in CO2 from 2022~2025
- The 163 gram/mile CO2 standard corresponds to 54.5 mpg (4.3 L/ 100km) "equivalent" if all reductions resulted from fuel economy improvements

US 2017~2025 MY CAFE Standards

- NHTSA's proposal is expected to result in a 40.9 mpg (5.8 L/100 km) in 2021 MY and 49.6 mpg (4.7 L/100 km) in 2025 MY
 - Standards would also begin phase-in during model year 2017
 - 2025 Passenger Car Target = 56 mpg (4.2 L/100 km)
 - \times 4.1% year-over-year increase in fuel economy from 2017~2021
 - × 4.5% year-over-year increase in fuel economy from 2022~2025
 - 2025 Light Truck target = 40.3 mpg (5.8 L//100 km)
 - × 2.9% year-over-year increase in fuel economy from 2017~2021
 - × 4.7% year-over-year increase in fuel economy from 2022~2025


Standards are Footprint Attribute-based

15

- Each manufacturer has a unique car fleet and truck fleet standard, derived from the footprint curves, based on the sales-weighted distribution of vehicles produced
- Footprint curves assign a specific CO2 or MPG target for each vehicle based on it's footprint (roughly the area between the tires)
- See Appendix for the actual CAFE and GHG footprint curves

Vehicle Type	Example Models	Example Model Footprint (sq. ft. / sq. m)	2025 CO ₂ Emissions Target (g/mi / g/km)	2025 Fuel Economy Target (mpg/ km/100)		
Example Passenge	Example Passenger Cars					
Compact car	Honda Fit	40 / 3.7	131 / <mark>81</mark>	61.1 / 3.9		
Midsize car	Ford Fusion	46 / 4.3	147 / <mark>91</mark>	54.9 / 4.3		
Fullsize car	Chrysler 300	53 / 4.9	170 / 106	48.0 / 4.9		
Example Light-duty Trucks						
Small SUV	4WD Ford Escape	44 / 4.1	170 / 106	47.5 / 4.9		
Midsize crossover	Nissan Murano	49 / 4.6	188 / 117	43.4 / 5.4		
Minivan	Toyota Sienna	55 / 5.1	209 / 130	39.2 / 6		
Large pickup	Chevy Silverado	67 / <mark>6.2</mark>	252 / 157	33.0 / 7.1		

Vehicle Technology Projections

- EPA/NHTSA technology assessment indicates the MY 2017-2025 standards can be met with a wide range of technologies
 - Advanced gasoline engines (turbocharged/downsized) and transmissions (8-speed transmission and high efficiency gear box)
 - Vehicle mass reduction
 - Lower tire rolling resistance
 - Improved aerodynamics
 - More efficient vehicle accessories
 - Improved air conditioning efficiency & alternative refrigerants
 - o Some increased hybrids, EVs, PHEVs
- EPA projects that MY2017-2025 vehicles will be 82% advanced gasoline, 15% hybrids, and 3% EV/PHEVs

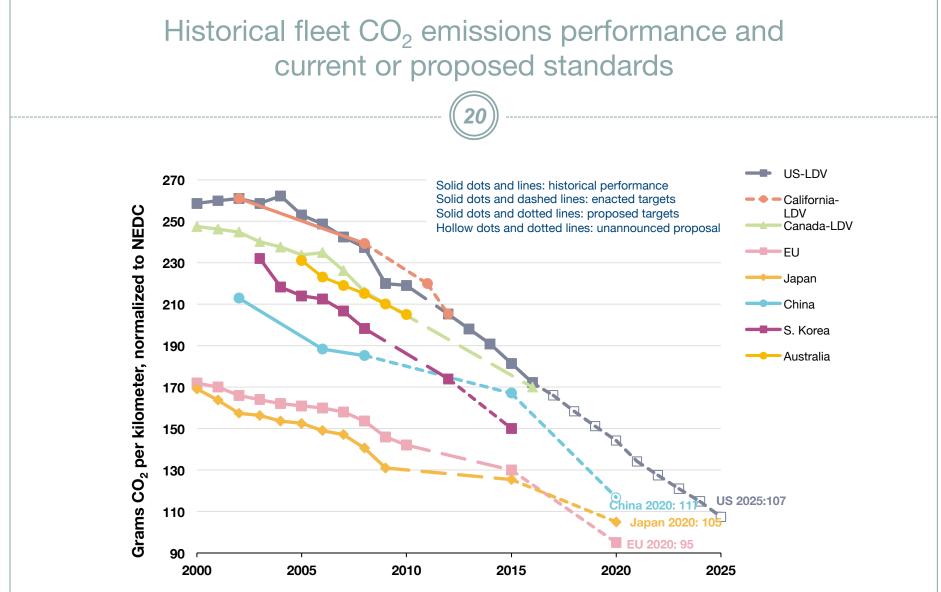
Key Program Elements

18

• 2012~2016 proposed GHG rule includes many program flexibilities, including:

- Multiplier for Advanced Technology Vehicles
- Off-cycle Credits
- Accounting for Upstream Emissions
- Incentive for Hybridization of Full-size Pick-ups

Overview of Regulation Specifications


Country or Region	Target Year	Standard Type	Unadjusted Fleet Target/Measure	Structure	Targeted Fleet	Test Cycle
U.S./California (enacted)	2016	Fuel economy/ GHG	34.1 mpg* or 250 gCO ₂ / mi (155 g/km)	Footprint-based corporate avg.	Cars/Light trucks	U.S. combined
U.S. (Notice of Public Rulemaking)	2025	Fuel economy/ GHG	49.6 mpg* or 163 gCO ₂ / mi (101 g/km)	Footprint-based corporate avg.	Cars/Light trucks	U.S. combined
Canada (enacted)	2016	GHG	153 (141)*** gCO ₂ /km	Footprint-based corporate avg.	Cars/Light trucks	U.S. combined
EU (enacted) EU (proposed)	2015 2020	CO ₂	130 gCO ₂ /km 95 gCO ₂ /km	Weight-based corporate average	Cars/SUVs	NEDC
Australia (voluntary)	2010	CO ₂	222 gCO ₂ /km	Fleet average	Cars/SUVs/light commercial vehicles	NEDC
Japan (enacted) Japan (proposed)	2015 2020	Fuel economy	16.8 km/L 20.3 km/L	Weight-class based corporate average	Cars	JCo8
China (proposed)	2015	Fuel consumption	7 L/100km	Weight-class based per vehicle and corporate average	Cars/SUVs	NEDC
S. Korea (proposed)	2015	Fuel economy/ GHG	17 km/L or 140 gCO ₂ /km	Weight-based corporate average	Cars/SUVs	U.S. combined

* Assumes manufacturers fully use A/C credit

** Proposed CAFE standard by NHTSA. It is equivalent to 163g/mi plus CO2 credits for using low-GWP A/C refrigerants.

*** In April 2010, Canada announced a target of 153 g/km for MY2016. Value in brackets is estimated target for MY2016, assuming that during 2008 and 2016 the fuel efficiency of the LDV fleet in Canada will achieve a 5.5% annual improvement rate (the same as the U.S.). This estimate is used in the accompanying charts.

[1] China's target reflects gasoline fleet scenario. If including other fuel types, the target will be lower. [2] US and Canada light-duty vehicles include light-commercial vehicles.

Core Analytical Work

- EPA has sponsored and/or performed our own work in a large number of areas relevant for light-duty vehicles and GHGs, including:
 - **o** Vehicle Miles Travelled (VMT) Rebound Effect
 - Energy Security
 - o Social Cost of Carbon
 - Economic Modeling for GHG Standards
 - Climate Modeling
 - o Criteria Pollutant Air Quality Modeling
 - **o** Baseline Fleet Projections

• This presentation focuses on just three elements:

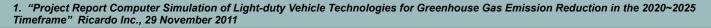
- Technology CO2 Effectiveness
 - × Ricardo Vehicle Simulation
- Technology Costs
 - × FEV Tear-down analyses
- **o** Modeling Tools
 - × EPA OMEGA

Technology CO₂ Effectiveness

- Projecting the CO₂ reduction potential of individual technologies and their combination is a core part of any future projection
- EPA has sponsored several programs in this area, and published a number of synthesis documents
- Several data sources considered:
 - Published reports/papers in the literature
 - Actual fuel economy data for real vehicles
 - Confidential data from suppliers/OEMs
 - Vehicle simulation modeling
 - × Vehicle simulation modeling is also used by vehicle manufacturers to make product decisions regarding fuel economy and performance.

- Sponsored by EPA, final peer reviewed report published in 2008
- Used a robust, science-based "full vehicle simulation" analysis to characterize consequences of combining multiple technologies for efficiency gains (e.g., quantify synergistic effects)
- Quantify how the individual technologies, and their combinations, provide different levels of vehicle efficiency improvement in different vehicle classes
- Focused on technologies available in the ~2010-2015 time frame
- Provided a foundation for the 2017~2025 GHG rule.

25


- EPA has completed the most comprehensive vehicle simulation todate to look at CO2 effectiveness for 2020-2025 technologies
 - Lean-burn gasoline engines
 - **o** GDI turbo-downsize with boosting, cooled EGR, higher BMEP
 - Next generation diesel engines
 - 8-speed AT and DCT transmissions
 - Power-split HEVs
 - P2 HEVs
- Modeling includes multiple degrees of freedom to examine a range of mass reductions, engine downsizing, and HEV motor size to seek out most efficient combinations under user-defined constraints (e.g., constant performance)

 5 vehicle classes from 2008 study, plus a B-segment small car and a 1-ton heavy-duty pickup truck

• Goals included¹:

- Extrapolation of selected technologies to their expected performance and efficiency levels in the 2020~2025 MY timeframe.
 - × Performance anchored to current and emerging technology
- Conduct detailed simulation of the technologies over a large design space including:
 - Range of types and sizes vehicles
 - Powertrain architectures
 - Engine designs
 - Parameters describing these configurations: engine displacement, final drive ratio, and vehicle rolling resistance
- Interpolate the results over the design space using a functional representation of the responses to the varied model input factors.
- Develop a Data Visualization Tool to facilitate interrogation of the simulation results over the design space.

Ricardo employed

- Complex System Modeling (CSM)
 - CSM is a rigorous computational strategy designed to mathematically account for multiple input variables and determine their respective significance.

Design of Experiment (DoE)

- DoE approach surveys the design space in a way that extracts the maximum information using a limited budget of simulation runs.
 - Still resulted in 2000 independent simulation runs for each of the 100+ vehicle packages. At 10 Hz output, the data files encompass 2 terabytes!
- Neural networks
 - Neural network approach was used to quantify the relationships between input and output factors over the design space explored in the simulations.
- Results of the Ricardo analyses were used to calibrate EPA's lumped parameter model which is a physics based model for evaluating the effectiveness of vehicle packages.

Technology Cost Estimation

- Vehicle technology costs quoted in public domain often vary widely
 - o Underlying basis for cost estimations are not always clear
 - Are they direct manufacturing costs? Are they retail prices? Are indirect costs included? For how long (what model years) are estimates valid?
 - Estimates often rely on expert opinion, CBI, or surveys of suppliers
- In past three years EPA has undertaken two major studies focused on providing robust, traceable cost assessments which are peer reviewed and the underlying information is open to review by all

• Indirect cost study with RTI International/U. of Michigan

• Direct manufacturing cost study with FEV Inc./Munro Assoc.

Two Major Types of Cost: Direct and Indirect

30

Direct Manufacturing Costs

- The costs to manufacture a product at the production facility, including:
 - Material costs (steel, copper, plastics, etc.)
 - o Labor costs
 - Utility costs at the production plant (water, electricity, etc.)

Indirect Manufacturing Costs

- All other costs of running an auto company, including:
 - Capital costs for production facilities
 - Tooling costs for production facilities
 - Research and development
 - Warranty
 - Corporate overhead (e.g. General and Administrative)
 - Pensions
 - Marketing
 - o Dealer Support
- Often captured in cost analyses via application of a multiplier to the direct manufacturing costs.

Two Major Types of Cost: Direct and Indirect

Direct Manufacturing Costs

- Established through "tear-down" activities conducted by FEV
 - Identical methodology used by vehicle manufacturers to "benchmark" competitive components and systems
- Bill of Material (BOM) roll-ups that break down direct manufacturing costs into their subsystems and components.
- Confidential Business
 Information (CBI) used where
 no other source was available –
 lacks transparency

Indirect Manufacturing Costs

- Application of Indirect Cost (IC) Multipliers in lieu of Retail Price Equivalent (RPE) Multipliers
- EPA developed in conjunction with RTI and Transportation Research Institute at University of Michigan
- Better reflects the actual impact of an individual technology on indirect costs and includes time element

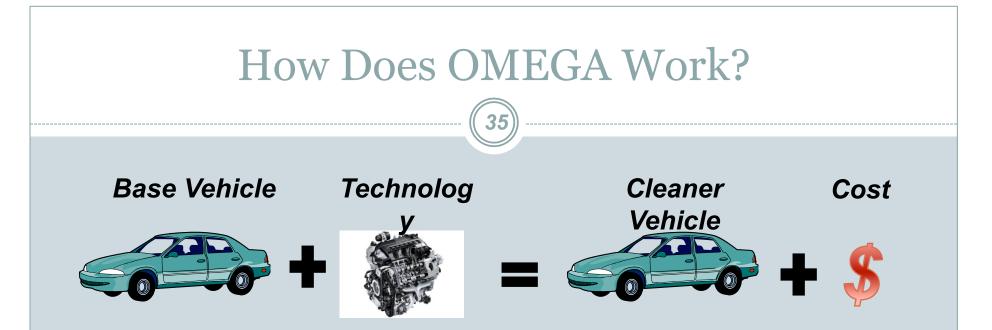
	Technology Complexity		
Time Frame	Low	Medium	High
Short-term effects	1.05	1.20	1.45
Long-term effects	1.02	1.05	1.26

2011 vs. 2017 CAFE Costs

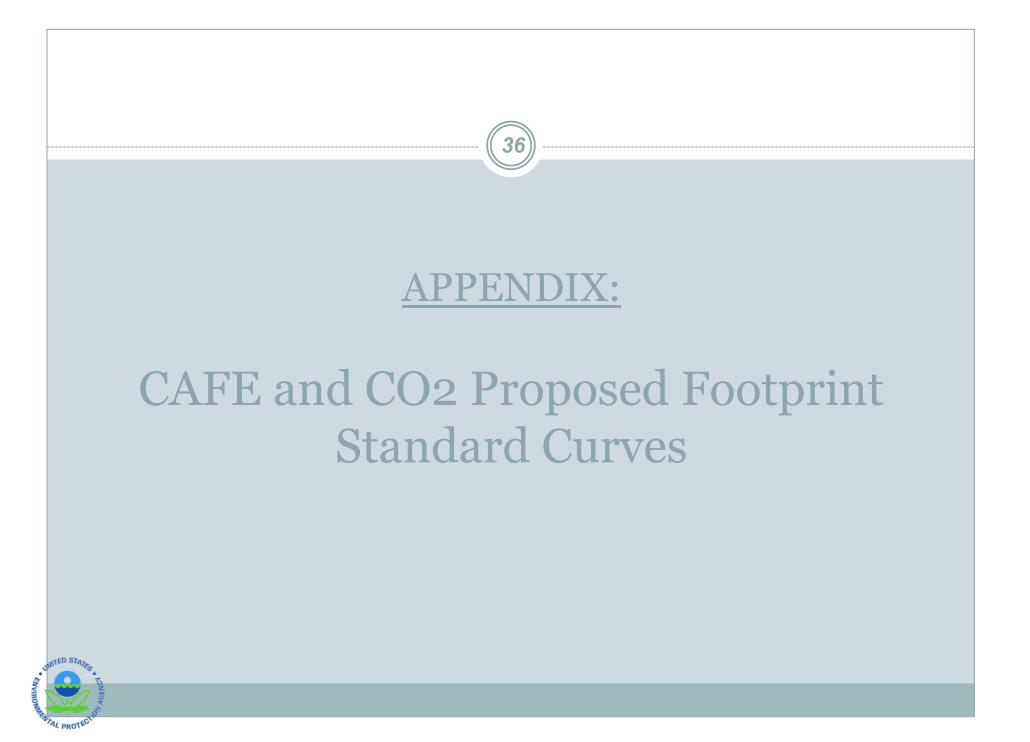
32

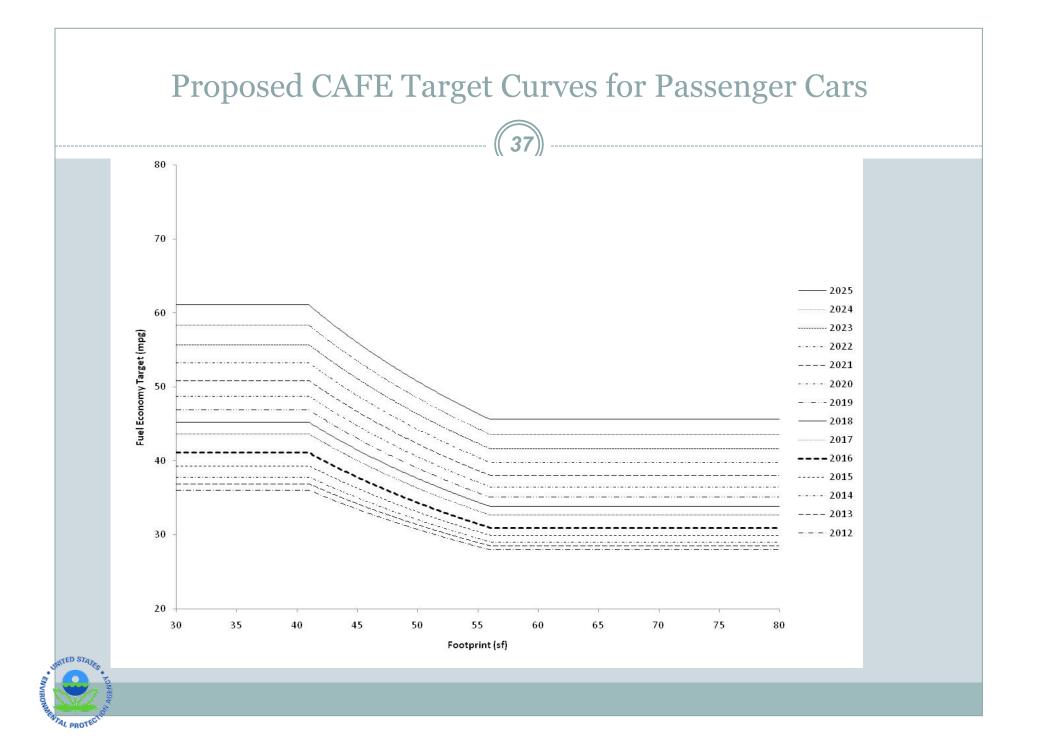
- Midsize car costs: I-4 PFI, 4-speed ATX
- Direct Manufacturing Costs
- 2017 costs reflect FEV tear-down results

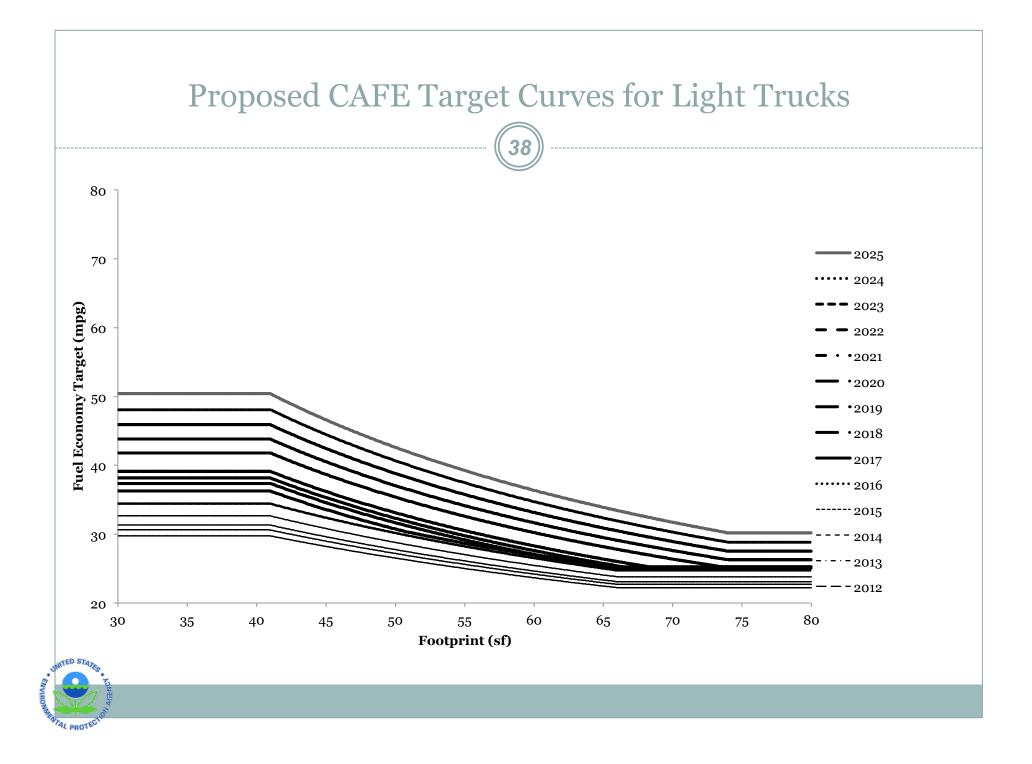
Technology	2011 Cost	2017 Cost	
6 speed ATX	\$215	-\$13	
DCT	\$145	-\$205	
Turbo/Downsizing	\$815	\$478	
GDI	\$195~\$293	\$191	

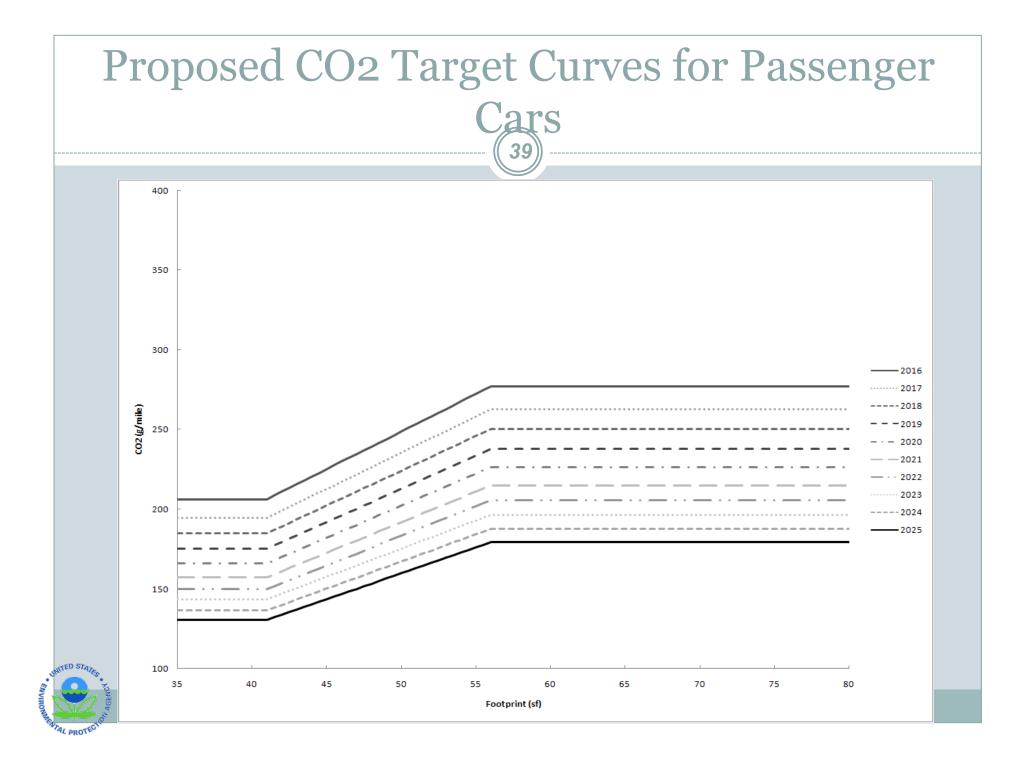


The OMEGA Model


- Optimization <u>Model for Reducing Emissions of</u> <u>Greenhouse gases from Automobiles</u>
- Purposes
 - Determine the most cost efficient path of adding technology to vehicles in order to achieve regulatory compliance.
 - Quantify the economic and environmental impacts of the changes in the vehicle fleet
- Design
 - Preprocessors (prepare OMEGA inputs)
 - OMEGA core model (calculate cost and compliance)
 - Benefits post-processor (calculate impacts)
- Outputs
 - Achieved compliance level and cost of compliance
 - Impact on fuel consumption and GHG emissions
 - Other impacts: criteria emissions, noise, congestion, accidents, saved refueling time, etc.






- OMEGA incrementally applies technology to vehicles in order to reduce emissions and determine manufacturer cost of compliance
 - "Technology" includes improvements to the engine, transmission, or any other change that reduces emissions from the vehicle
 - OMEGA inputs are informed by FEV work, Ricardo work, SAE papers and other literature.
- OMEGA is subject to a user's constraints (regulatory design, technology availability, feasibility of adoption)

