Diesel Particulate Filters for PM Control from Marine Engines

September 7, 2016
Vancouver, BC
Canada
MECA Portfolio Covers Criteria and GHG Emission Control Technologies

- Fuel Combustion Controls
- Air Handling
- Exhaust System Integration
- Filters & Substrates
- Evaporative Controls
- Powertrain Electrification
- OBD Sensors
- Waste Heat Recovery
Clean Diesel Technology Driven By a Decade of U.S. EPA Mobile Source Emission Regulations

Average Benefit:Cost = 20:1

Tier 2 Light-Duty
final rule 1999
fully phased in 2009
Diesels held to same standards as gasoline vehicles
Diesel sulfur now 15 ppm

Ocean-going Vessels
final rule 2009; IMO ECA in 2010
ECA: 1000 ppm Sulfur by 2015;
80% lower NOx by 2016

Heavy-Duty Highway
final rule 2000
Sulfur now 15 ppm
fully phased in 2007-2010

Locomotive / Marine Tier 4
final rule 2008
Sulfur now 15 ppm
fully phased in 2017

Nonroad Diesel Tier 4
final rule 2004
Sulfur now 15 ppm
fully phased in 2015
U.S. EPA Tier 4 Emission Standards in Place for Commercial Marine Engines

Tier 4 Standards for Commercial Marine Diesel C1 and C2 (g/bhp-hr)

<table>
<thead>
<tr>
<th>Rated kW</th>
<th>Model Year</th>
<th>PM</th>
<th>NOx</th>
<th>HC</th>
</tr>
</thead>
<tbody>
<tr>
<td>3700 kW or above</td>
<td>2014<sup>c</sup></td>
<td>0.09<sup>a</sup></td>
<td>1.3</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>2016<sup>b,c</sup></td>
<td>0.04</td>
<td>1.3</td>
<td>0.14</td>
</tr>
<tr>
<td>2000≤ kW < 3700</td>
<td>2014<sup>c,d</sup></td>
<td>0.03</td>
<td>1.3</td>
<td>0.14</td>
</tr>
<tr>
<td>1400≤ kW < 2000</td>
<td>2016<sup>e</sup></td>
<td>0.03</td>
<td>1.3</td>
<td>0.14</td>
</tr>
<tr>
<td>600≤ kW<1400</td>
<td>2017<sup>b</sup></td>
<td>0.03</td>
<td>1.3</td>
<td>0.14</td>
</tr>
</tbody>
</table>

^a This standard is 0.19 for engines with 15-30 L/cylinder displacement.
^b Optional compliance start dates are included within these model years.
^c Option for C2 engines: Tier 3 PM/NOx+HC at 0.10/5.8 in 2012 and Tier 4 in 2015.
^d Tier 3 PM standards continue to apply for these engines in 2014 and 2015.

Category 1: < 7 liters/cyl.;
Category 2: 7-30 liters/cyl.

15 ppm Marine Diesel Fuel Sulfur Limit Began in June 2012
Stage V EU Off-Road Standards

Stage V Emission Standards for Inland Waterway Vessels

<table>
<thead>
<tr>
<th>Category</th>
<th>Net Power kW</th>
<th>Date</th>
<th>CO</th>
<th>HC</th>
<th>NOx</th>
<th>PM</th>
<th>PN 1/kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propulsion Engines—Category IWP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IWP-v/c-1</td>
<td>37 ≤ P < 75</td>
<td>2019</td>
<td>5.00</td>
<td>4.70<sup>b</sup></td>
<td>0.30<sup>b</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IWP-v/c-2</td>
<td>75 ≤ P < 130</td>
<td>2019</td>
<td>5.00</td>
<td>5.40<sup>b</sup></td>
<td>0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IWP-v/c-3</td>
<td>130 ≤ P < 300</td>
<td>2019</td>
<td>3.50</td>
<td>1.00</td>
<td>2.10</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>IWP-v/c-4</td>
<td>300 ≤ P < 1000</td>
<td>2020</td>
<td>3.50</td>
<td>0.19</td>
<td>1.20</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>IWP-v/c-5</td>
<td>P ≥ 1000</td>
<td>2021</td>
<td>3.50</td>
<td>0.19</td>
<td>0.40</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Auxiliary Engines—Category IWA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IWA-v/c-1</td>
<td>560 ≤ P < 1000</td>
<td>2020</td>
<td>3.50</td>
<td>0.19</td>
<td>1.20</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>IWA-v/c-2</td>
<td>P ≥ 1000</td>
<td>2021</td>
<td>3.50</td>
<td>0.19</td>
<td>0.40</td>
<td>0.01</td>
<td></td>
</tr>
</tbody>
</table>

Stage V Emission Standards for Nonroad Engines

<table>
<thead>
<tr>
<th>Category</th>
<th>Ign.</th>
<th>Net Power kW</th>
<th>Date</th>
<th>CO</th>
<th>HC</th>
<th>NOx</th>
<th>PM</th>
<th>PN 1/kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRE-v/c-1</td>
<td>CI</td>
<td>P < 8</td>
<td>2019</td>
<td>8.00</td>
<td>7.50<sup>a,c</sup></td>
<td>0.40<sup>b</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRE-v/c-2</td>
<td>CI</td>
<td>8 ≤ P < 19</td>
<td>2019</td>
<td>6.60</td>
<td>7.50<sup>a,c</sup></td>
<td>0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRE-v/c-3</td>
<td>CI</td>
<td>19 ≤ P < 37</td>
<td>2019</td>
<td>5.00</td>
<td>4.70<sup>a,c</sup></td>
<td>0.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRE-v/c-4</td>
<td>CI</td>
<td>37 ≤ P < 56</td>
<td>2019</td>
<td>5.00</td>
<td>4.70<sup>a,c</sup></td>
<td>0.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRE-v/c-5</td>
<td>All</td>
<td>56 ≤ P < 130</td>
<td>2020</td>
<td>5.00</td>
<td>0.19<sup>c</sup></td>
<td>0.40</td>
<td>0.015</td>
<td>1×10<sup>12</sup></td>
</tr>
<tr>
<td>NRE-v/c-6</td>
<td>All</td>
<td>130 ≤ P ≤ 560</td>
<td>2019</td>
<td>3.50</td>
<td>0.19<sup>c</sup></td>
<td>0.40</td>
<td>0.015</td>
<td>1×10<sup>12</sup></td>
</tr>
<tr>
<td>NRE-v/c-7</td>
<td>All</td>
<td>P > 560</td>
<td>2019</td>
<td>3.50</td>
<td>0.19<sup>d</sup></td>
<td>3.50</td>
<td>0.045</td>
<td></td>
</tr>
</tbody>
</table>

- PN standards for inland waterway vessel propulsion engines > 300 kW and aux engines > 560 kW
- Stage V will result in DPF use

Source: www.dieselnet.com
Diesel Particulate Filters (DPFs)

- Wall flow ceramic filter element with high capture efficiency for particulates over a broad size range (cordierite or SiC filter elements)
- Captured soot needs to be burned off (regenerated) at regular intervals to manage backpressure on engine (passive and active regen. options)
- Commercialized on light-duty diesels in Europe in 2000, on US LDD starting in 2006; standard on US 2007+ trucks/buses, on 2013+ Euro VI trucks/buses – 10s of millions in-use worldwide
- Capture soot and inorganic-based particles associated with engine wear, lubricant consumption: regular maintenance required (filter cleaning)
DPFs Have High BC/PN Filtration Efficiency: Heavy-duty Diesel Engine Example

- ETC tailpipe emissions $\sim 4 \times 10^{11}/\text{kWh}$
- DPF Efficiency $> 99.9\%$

- WHTC tailpipe emissions $< 5 \times 10^{11}/\text{kWh}$
- DPF Efficiency $> 99.8\%$

DPFs Capture Ultrafine Diesel Particulates
Clean Diesel Technology Expanding into U.S. Off-road Applications

Tier 4 Machines with DPFs

Locomotives with DPFs and/or SCR systems

Marine DPFs and/or SCR systems
Marine DPF Experience Includes Filters with Passive & Active Regeneration; Little Experience with OGVs

Experience/Issues
- LSD/ULSD provides best PM performance
- Installations designed for marine environment (stainless steel housings exclude water intrusion, insulated, creative packaging in a limited space)
- Filter also provides sound attenuation
- Engine backpressure issues need to be addressed (filter design, bypass loop, monitor)
- Filter maintenance friendly installations

Applications
- Numerous large yachts: mostly auxiliary engines, some propulsion engines (100 – 1500 hp)
- Limited applications on harborcraft (tugs, ferries, pilot boats) & inland vessels (barges, ferries, excursion boats)
- DPF demonstration on OGV medium speed, auxiliary engine: relatively poor PM performance due to use of high sulfur fuel/high ash lube (700 ppm S fuel, PM dominated by organic carbon)
- Few reports of OGV filter demos (Mitsui OSK Lines 2010 coastal ferry trial/2012 OGV trial, Queen Victoria 2014)
Passive DPF Locomotive Retrofit Completed in California

- Tier 2 locomotive powered by three 19 liter, 522 kW Cummins gen-sets each retrofit with a DOC+catalyzed DPF (passive regeneration)

- Operated 3000 hours in switcher rail service with ULSD

- PM levels reduced by ca. 80% (19 mg/bhp-hr PM measured after 3000 h of service; below EPA Tier 4 PM limit of 30 mg/bhp-hr); HCs: 90%, CO: 99% reduced vs. baseline

- Report available at: http://www.arb.ca.gov/msprog/aqip/demo.htm
Tug Active DPF+SCR Retrofit at Port of LA

- Powered by two Detroit Diesel 525 hp, 14 liter, 2-stroke turbocharged & supercharged engines rebuilt to EPA Tier 2 emission levels
- Each engine retrofit with catalyzed DPF+SCR system; DPF regeneration managed by in-line diesel fuel burner
- With ULSD PM reduced by > 95% (ca. 5-7 mg/ kWh after ca. 200 h service) NOx reduced by > 90%
- Report available at: http://www.arb.ca.gov/msprog/aqip/demo.htm
HFO DPF Challenge & Solution

Challenge
• Sulfur content in fuel up to 3.5% and no NO₂
• Ash content in HFO up to 0.2%
• Filter pressure drop max 25–60 mBar

Solution
• SiC filter substrate coated with Pd/V₂O₅
• Passive soot combustion
• HC (PAH) conversion and CO conversion
• Ash removed by reverse pulse flow
• Sulfur-tolerant with low SO₂ oxidation
Particulate Removal Process with Passively Regenerated Catalyzed DPF

Queen Victoria Cruise Ship Soot Removal Summary

Soot removal: 80 – 92%

\[\Delta p_{\text{max}} = 40 \text{ mBar} \]

www.meca.org
Your emission control technology resources on the web

- Emission control technology white papers and fact sheets
- Retrofit technology descriptions
- Case study reports
- Regulatory info
Appendix
U.S. 2007 HD Emission Performance Provides Significant Reductions in PM, CO, Air Toxic HCs

<table>
<thead>
<tr>
<th></th>
<th>2007 EPA Standard (g/hp-hr)</th>
<th>Average ACES Engine Emissions (g/hp-hr)</th>
<th>ACES Emissions % Reduction Relative to the 2007 Certification Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>15.5</td>
<td>0.33</td>
<td>98</td>
</tr>
<tr>
<td>NMHC</td>
<td>0.14</td>
<td>0.0064</td>
<td>95</td>
</tr>
<tr>
<td>PM</td>
<td>0.01</td>
<td>0.0011</td>
<td>89</td>
</tr>
<tr>
<td>NOₓ</td>
<td>1.2 ±</td>
<td>1.075</td>
<td>10</td>
</tr>
</tbody>
</table>

^n= Average value between 2007 and 2009, with full enforcement in 2010 at 0.20 g/hp-hr

<table>
<thead>
<tr>
<th>Compounds</th>
<th>16-Hour Cycle % Lower Than 2004 Engine Technology</th>
<th>CARBx-ICT % Lower Than 2004 Engine Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Ring Aromatics</td>
<td>82%</td>
<td>69%</td>
</tr>
<tr>
<td>PAH</td>
<td>79%</td>
<td>26%</td>
</tr>
<tr>
<td>Nitro-PAH</td>
<td>81%</td>
<td>49%</td>
</tr>
<tr>
<td>Alkanes</td>
<td>85%</td>
<td>84%</td>
</tr>
<tr>
<td>Polar</td>
<td>81%</td>
<td>12%</td>
</tr>
<tr>
<td>Hopanes/Steranes</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>Carbonyls</td>
<td>98%</td>
<td>78%</td>
</tr>
<tr>
<td>Inorganic Ions</td>
<td>38%</td>
<td>100%</td>
</tr>
<tr>
<td>Metals and Elements</td>
<td>98%</td>
<td>90%</td>
</tr>
<tr>
<td>Organic Carbon</td>
<td>96%</td>
<td>78%</td>
</tr>
<tr>
<td>Elemental Carbon</td>
<td>99%</td>
<td>100%</td>
</tr>
<tr>
<td>Dioxins/Furans</td>
<td>99%</td>
<td>N/A</td>
</tr>
</tbody>
</table>

* Relative to 1998 Engine Technology
Emission Control Industry Has Long Standing Relationships with CARB, EPA, Vehicle and Engine Manufacturers

Manufacturing Flow

Emission Control Industry supports more than 65,000 jobs in North America

EXHAUST SYSTEMS (includes sensors, canning)

EVAP SYSTEMS (e.g., carbon canisters)

Sourcing Made by the OEM

Decisions Made by the OEM
DOCs and DPFs Form the Technology Base for Reducing PM Emissions from US 2007 Diesel Engines

Diesel Particulate Filters

Crankcase Filters Provide Additional PM Control

US 2007+ HD DPF Systems Feature Active & Passive Filter Regeneration

Catalyzed DPF

Heat

DOC

Fuel Injection Unit

Exhaust gas

Diesel vapor

MECA
US 2010 Technologies Deliver Surplus Health Benefits

- 2010 on-highway emission controls employing Cu and Fe based SCR catalysts have evolved into 2nd generation technologies.
- U.S. ACES study shows that 2010 commercial emission control technology significantly exceeds the standards, esp. on PM.
- > 3 million DPF equipped trucks & buses operating on U.S. highways
Availability of ULSD Enables Variety of CARB/EPA Verified Diesel Retrofit Technologies

- On-Road & Off-Road DPFs with Active Soot Regeneration
- On-Road & Off-Road DPFs with Passive Soot Regeneration
- Retrofit DPFs for Stationary Diesel Engines
- SCR Retrofits for On-Road & Off-Road Engines
- U.S. EPA (epa.gov/cleandiesel/verification/verif-list.htm)
- California ARB (www.arb.ca.gov/diesel/verdev/vt/cvt.htm)