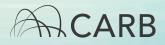
CARB'S HEAVY-DUTY IN-USE COMPLIANCE TESTING PROGRAM

Presentation for Chinese Ministry of Ecology and Environment

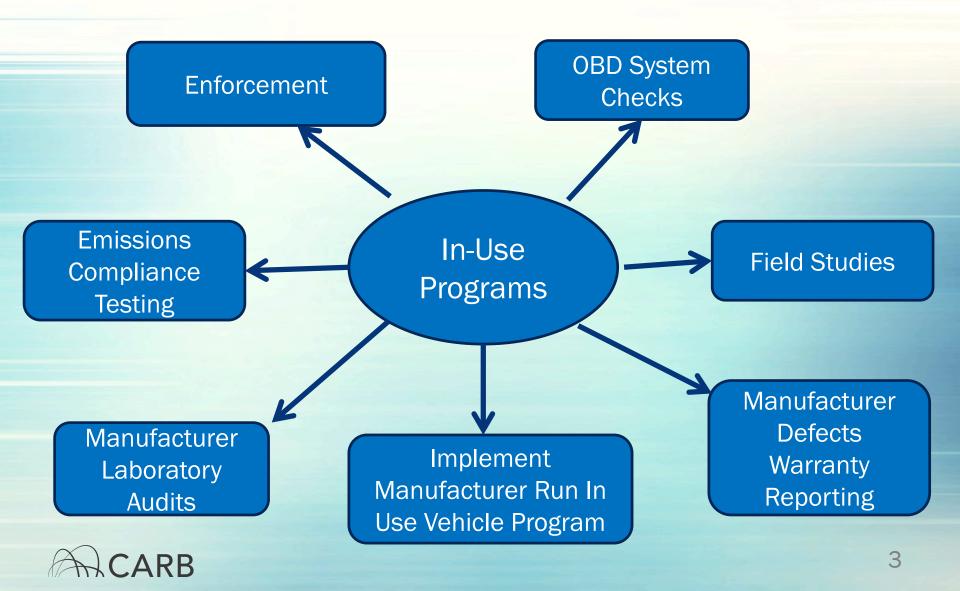
November 28, 2018 Haggen-Smit Laboratory El Monte, California


Look How Far We have Come Much Work Still Ahead

September 13, 1955

September 9, 2014

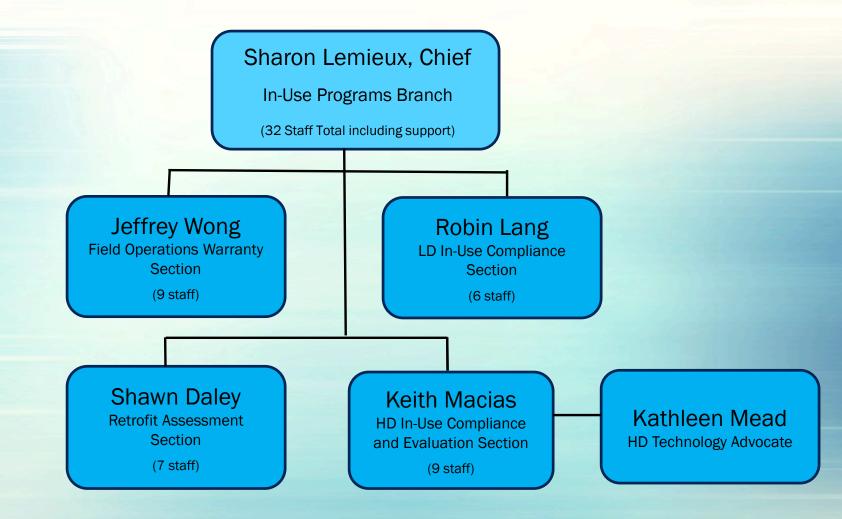
Outline


Background

- In-Use Compliance (IUC) Programs
- Manufacturer-Run Heavy-Duty In-Use Testing (Mfr. HDIUT) Program
- CARB's Heavy-Duty In-Use Compliance (HDIUC) Program
- CARB's HDIUC Program
 - Program Implementation & Testing Results
 - Comparisons with Mfr. HDIUT data

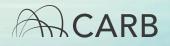
Conclusions

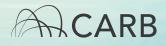
In-Use Programs Activities



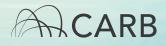
In-Use Compliance Programs

- One of CARB's key air quality improvement strategies
- Helps guarantee vehicles and engines meet emission standards throughout their useful lives as certified
- Very successful Light-Duty (LD) IUC Program
 - Emission recalls over 3 million vehicles: Fixes vehicles emissions back to applicable standards
- Current regulation for Heavy-Duty (HD) in-use compliance: Mfr. HDIUT according to EPA/CARB Regulations established Sept 2006
- □ CARB's HDIUC Program initiated August 2016
 - Pilot program: Resulted in noncompliance for a certain engine family (EF), presented at CRC Workshop in 2016 (O'Cain et al.)
 - Noncompliance results of the first EF tested, presented at CRC Workshop in 2017 (Lee et al.)
 - Noncompliance HDIUC results and comparisons of OEM testing (Mfr. HDIUT) and CARB testing (HDIUC), presented at CRC Workshop in 2018 (Lee et al.)
 - > As a result, over 500,000 HD trucks identified in an emissions recall program in 2018

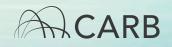

In-Use Programs Branch Organization


Current Mfr. HDIUT Program

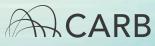
- Manufacturer-run HDIUT program intended to "...assess compliance with the Not-to-Exceed (NTE) requirements..." and help ensure overall compliance with "...all applicable emission standards throughout the engine's useful life..." (CARB ISOR 2006)
- Has not fulfilled program goals of enacting needed corrective actions such as recalls and/or extended warranties despite high warranty claims, consumer complaints and high emissions observed in surveillance and roadside testing
- Mfr. HDIUT data show insignificant amount of valid NTE events with many data excluded
- Due to Mfr. HDIUT shortcomings, CARB initiated HDIUC testing using similar protocol to the manufacturer-run program


HDIUC Program – Overview

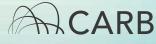
- Over the road testing using the NTE protocol
- With 1065 Compliant Portable Emissions Measurement Systems (PEMS)
- □ A minimum of 10 engines for each EF are tested
 - Candidate vehicles are subject to thorough screening and selected based on:
 - ✓ HDIUT in-use engine selection and screening requirements: 40 CFR 86.1908
 - ✓ U.S. EPA's HDIUT Program Vehicle Screening Guidance Document: CISD-06-010 (HD)
 - ✓ CARB's rigorous procurement process used in LD IUC programs
 - ✓ Properly maintained and used (CCR 2137)
 - ✓ Perform Restorative Maintenance
- Vehicles driven over a common route used for freight movement
- Same Mfr. HDIUT compliance criteria used: 3 or more of test vehicles failing vehicle-pass ratios (i.e., failing to meet emissions requirements during greater than 90% of time of NTE events)


HDIUC Program – Test Route

- Designed to garner maximum number of NTE Events to help ensure representative engine assessment
- Exercised the engine in a variety of load conditions within the NTE zone
- Heavily travelled California goods movement routes
 - Distance: 292 Miles
 - Elevation: 0 to 4285 ft.
 - Driving time: Around 6.5 hours depending on traffic
 - A non-idle operation time: The average of 5.6 hours (over 3 hours, a NTE regulation requirement)

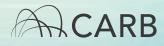

Restorative Maintenance

- Check OBD system for stored codes
- Check for obvious tampering
- Adjust all parameters to manufacturer specifications
- Verify or perform scheduled maintenance
- Prepare vehicle for test


HDIUC Program – Testing Vehicle

HDIUC Program – Implementation

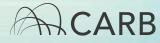
- Trucks are obtained and screened with cooperation from fleets and engine manufacturers
 - Fleet Test vehicle and maintenance history
 - Engine manufacturer
 - ✓ Candidate vehicle warranty history checks
 - Technical support for and observation of the program with data logging during the testing
- Collected HDIUC testing data
 - Used for compliance determination Noncompliance for EF tested
 - Chassis and engine dynamometer (dyno) test results has confirmed noncompliance
 - Emission recall discussions with manufacturers
 - Informs certification, OBD and regulatory programs



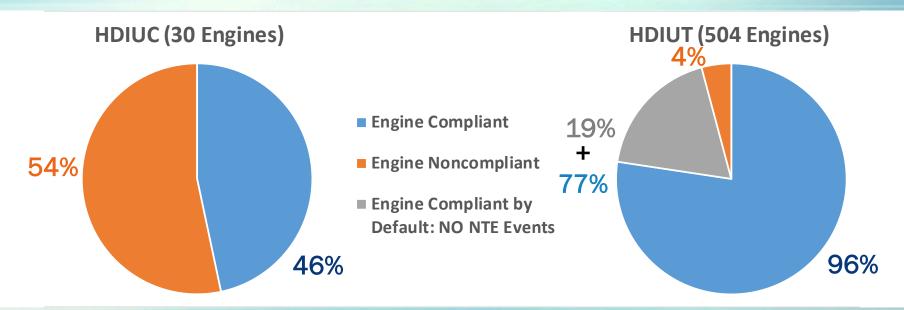
HDIUC Program – Status

HDIUC PEMS Testing

- ➢ Four (4) EFs − Total of 33 engines
 - ✓3 EF: Testing completed (10 engines for each EF)
 - ✓1 EF: On-going (3 engines tested as of October 2018)


Extra testing: Chassis and/or engine dynamometer testing to support PEMS noncompliant findings, including tests conducted at manufacturer test facility

PEMS Testing Results – Overview


	EF A	EF B	EF C	EF D
Model Year	2013	2012	2014	2012
R _{pass}	0.29 ~ 1.00	0.00 ~ 1.00	0.15 ~ 1.00	0.69 ~ 1.00
NOx Emission Standard (g/bhp-hr)	<u>0.20</u>	<u>0.30</u>	<u>0.20</u>	<u>0.50</u>
Average NTE NOx Emission for Noncompliant Engines (g/bhp-hr)	0.59	1.02	0.47	N/A*
Compliance	NO	NO	YES	TBD**
Number of Noncompliant Vehicles	6 (out of 10 tested)	8 (out of 10 tested)	2 (out of 10 tested)	2 (out of 3 Tested)
Odometer (Miles)	258 ~ 326 K	71 ~ 414 K	145 ~ 413 K	236 ~ 267 K
	* N/A: Not Applicable, yet.		** TBD: To Be Determined	

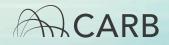
<u>PM, NMHC, & CO emissions results for all vehicles were compliant with</u> the corresponding NTE emissions requirements; that is, R_{pass} were 0.90 or higher.

Findings – HDIUC vs. Mfr. HDIUT

Based on data collected as of October 2018,
CARB's HDIUC testing more effective than
Mfr. HDIUT program in identifying noncomplying engines in need of corrective actions

Conclusions

CARB's HDIUC testing using NTE protocol

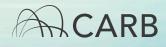

A valuable tool to identify and correct noncomplying HD EFs and defective emissions control components

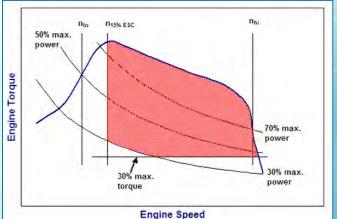
- Chassis and engine dyno testing support PEMS noncompliant findings
- Current Mfr. HDIUT program needs improvement
 - Not fulfilling its intended program goals
- HD in-use influenced corrective actions initiated: Both OEMs for EF A and B
- On-going testing: Fourth EF (EF D) and more EFs
- Engine manufacturers should conduct testing programs similar to CARB's HDIUC program to better assess in-use performance of engines

Thank you!

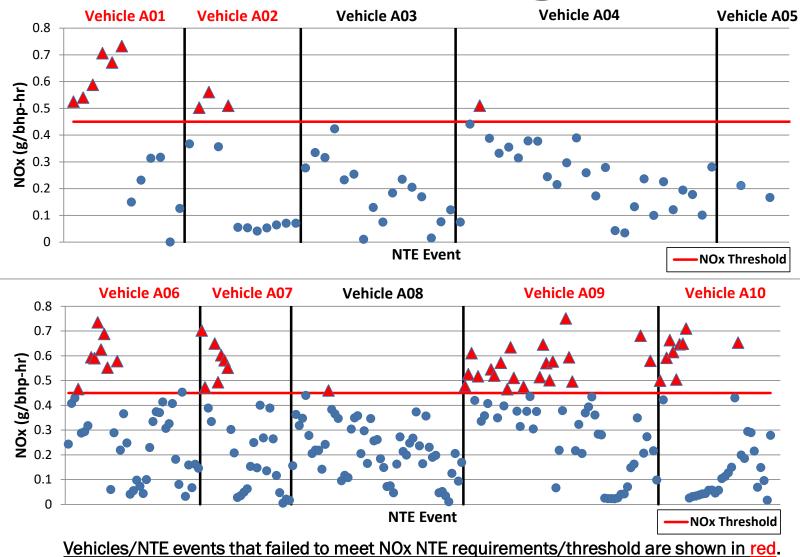
Questions?

Backup Slides

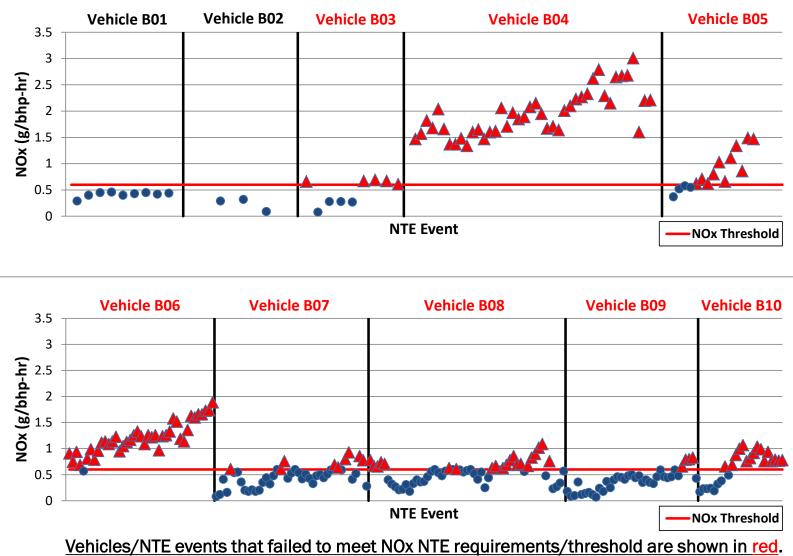

NTE Testing Requirements


Heavy-duty in-use engine compliance program is designed to control diesel truck emissions during "normal vehicle operation and use" consistent with the not-to-exceed (NTE) requirements (40CFR86.1910(e))

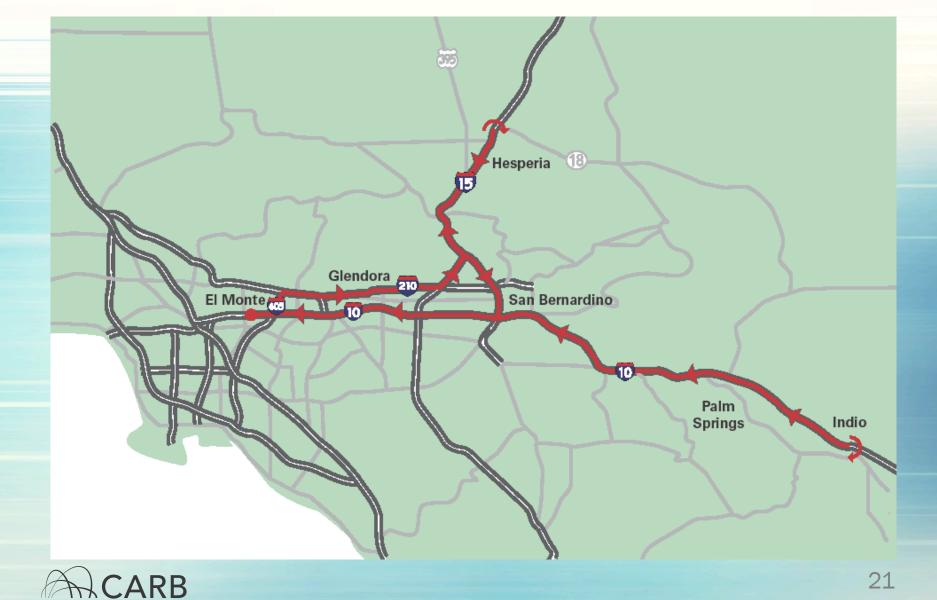
- Test duration
 - At least 3 hours of non-idling vehicle operation for testing of a shiftday or two days
- NTE zone definition
 - ✓ Above 30% max engine power
 - ✓ Above 30% max engine torque
 - ✓ Above 15% ESC RPM


Duration and temperature (T) limits

- ✓ At least 30 consecutive seconds
- ✓ > 250 ° C for Aftertreatment (AT)/SCR T
- ✓ EGR (Cold T Operation) Exclusion: IMT & ECT
- ✓ Ambient T Exclusion
- Other provisions: BSFC, LTR/TWCOLTR, EMD/OBD, Deficiency, Regeneration, Zero Check



EF A – PEMS Testing Results



EF B – PEMS Testing Results

HDIUC Program – Test Route

