Current BC testing efforts in Japan

Chiori TAKAHASHI
Chiori@nmri.go.jp
National Maritime Research Institute
JAPAN
Goal

• To establish the measurement and evaluation methods of BC for marine diesel engines
• To determine the correction factors to evaluate BC values obtained by various BC measurement methods

Procedure

• To evaluate measurement and sampling methods for marine diesel engines
• To specify the influence factors on BC measurement
<table>
<thead>
<tr>
<th>Engine</th>
<th>A1</th>
<th>A2</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>4 stroke Middle speed</td>
<td>2 stroke Low speed</td>
<td></td>
</tr>
<tr>
<td>N. of cylinders</td>
<td>3</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Cylinder bore</td>
<td>230mm</td>
<td>190mm</td>
<td>330mm</td>
</tr>
<tr>
<td>Piston stroke</td>
<td>380mm</td>
<td>260mm</td>
<td>1050mm</td>
</tr>
<tr>
<td>Rated power max.</td>
<td>257 kW</td>
<td>750 kW</td>
<td>1275 kW</td>
</tr>
<tr>
<td>Speed max.</td>
<td>420 rpm</td>
<td>1000 rpm</td>
<td>162 rpm</td>
</tr>
<tr>
<td>Fuel injection control</td>
<td>Mechanical</td>
<td>Electronic</td>
<td>Electronic</td>
</tr>
<tr>
<td>Fuel</td>
<td>HFO(2.6%) MDO(0.6%) LS MDO(0.08%)</td>
<td>MDO(0.6%) LS MDO(0.08%)</td>
<td>HFO(2.5%) LS MDO(0.085%)</td>
</tr>
</tbody>
</table>

NMRI
Tokyo Univ. of Marine Sci. & Tech.
Marine diesel engines

NMRI

Tokyo Univ. of Marine Sci. & Tech.
Measurement methods for lab testing

> Methods discussed at IMO

- FSN / Filter Smoke Meter
- Multi-Angle Absorption Photometry (MAAP)
- Photo Acoustic Spectrometry (PAS)
- Thermal Optical Analysis (TOA)
 - Laser Induced Incandescence (LII)*

> Other measurements

- PM gravimetric analysis (PM)
- Light extinction and scattering method
 / Laser Smoke Meter (LSM)

* LII equipment was not available in this study.
Instruments for lab testing

<table>
<thead>
<tr>
<th>Method</th>
<th>Instrument</th>
<th>Measurement conditions</th>
<th>Dilution ratio</th>
<th>Heating option</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSN</td>
<td>415S AVL</td>
<td>Sampling line: 70°C</td>
<td>******</td>
<td>Auto-range presampling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Measurement unit: 70°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAAP</td>
<td>MAAP 5012 Thermo Scientific</td>
<td>Dilution unit: 150°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>External diluter MD-9E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000 - 3000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAS</td>
<td>MSS 483 AVL</td>
<td>Dilution cell: 120°C</td>
<td>4 – 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sampling line: 65°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Measurement cell: 52°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOA</td>
<td>Model-5 Sunset Laboratory</td>
<td></td>
<td></td>
<td>TOR, TOT NIOSH, IMPROVE</td>
</tr>
<tr>
<td>PM</td>
<td>ISO 8178-1:1996</td>
<td>Dilution tunnel 7 – 26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSM</td>
<td>LEX-635s* Tsukasa Sokken</td>
<td>Sampling line: 120°C</td>
<td>******</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Measurement cell: 120°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sampling for TOA and PM

ISO 8178-1:1996

Partial flow dilution tunnel connected directly to the exhaust pipe

- 1. PTFE coated glass fibre filter (TX40HI-20-WW, Pall)
- 2. Tissuequartz filter (2500 QAT-UP, Pall)
- TOA (OC/EC analysis TOR/TOT) measured by both IMPROVE & NIOSH protocols

Gravimetric analysis weighted before and after sampling
Results of BC measurements for lab testing

MDO

A1
4 stroke

B
2 stroke

Engine load

25% 50% 75% 100%

Note:
1) BC concentration values in these figures are “as-displayed” values on each instrument.
Relation between measurement methods

MDO

- **Graph**:
 - Graph shows the relationship between BC concentration (MSS) and BC concentration (FSN, LSM).
 - Equation: $y = 1.3514x$, $R^2 = 0.9788$

HFO

- **Graph**:
 - Graph shows the relationship between BC concentration (MSS) and BC concentration (FSN, LSM).
 - Equation: $y = 1.8373x$, $R^2 = 0.9936$

Note:

1) BC concentration value of MSS was corrected concerning particle losses due to thermophoresis inside the sampling line.

2) BC concentration unit: mg/Nm3-wet (0°C, 1 atm)
Onboard testing

Cement carrier “Pacific Seagull”
Azuma Shipping Co.

Jan. 2014 FSN, LSM
Feb. 2015 FSN, MSS

ME : Low speed 2 stroke engine

HFO (2.42%)
Issues to be discussed

Factors
- Engine operation
 - Engine type
 - Operating conditions
 - Fuel
 - Lubricant oil
 ...
- Sampling condition
 - Sampling line
 - Sampling point
 - Dilution
 ...

Effects
- Particle property
 - PM composition (OC/EC)
 - PM morphology
 (aggregates, particle size)
 ...
- Particle losses
 - Electrostatic deposition
 - Thermophoresis
 - Diffusion
 ...

Results
- Measured value
 - FSN
 - PAS
 - MAAP
 - LII
 - TOA

Correction factors
Future plans:

1. The NMRI will conduct further experimental research on BC measurement.

2. LII method will be also tested in November of this year in the NMRI.

ACKNOWLEDGEMENTS

Part of this research was conducted as research project funded by the Maritime Bureau, Ministry of Land, Infrastructure, Transport and Tourism. We would also like to show our gratitude to Professor Tatsuro Tsukamoto and Research Assistant Hidetsugu Sasaki at Tokyo University of Marine Science and Technology and Azuma Shipping Co., Ltd. for their valuable support.