Black carbon controls in California: emissions, abatement, and knowledge gaps

Dr. Alberto Ayala1,2, Dr. Jianjun Chen1, and Dr. Nehzat Motallebi1

1Research Division, California Air Resources Board
2Mechanical Engineering, West Virginia University

Picture courtesy of Dr. D. Su, Fritz-Haber Institute
The case for BC abatement is well made in the scientific/policy mainstream

Air Quality and Health

American Clean Energy and Security Act 2009 (House)
Carper’s Amendment to Interior Appropriations Bill (Senate)
– direct EPA to find the most cost-effective ways to reduce BC emissions
First, the caveats

- You can’t manage it if you can’t measure it
 - Optical and thermal methods (to measure BC and EC) in contradiction
 - No single universally accepted standard (yet!) for BC or EC measurement
 - Separation of organic carbon (OC) from EC is difficult
 - Discrepancies due to local aerosol characteristics and meteorology

- Properties most relevant to climate
 - Optical (absorption), mixing state (aged aerosol), size distribution not yet measured consistently

- BC climate impacts differ at global, regional, and local scales

- Principal uncertainties: projection of future emissions and indirect BC effects*

- Preferred inventories are bottom-up approaches
 - Experimental data scant for specific emission factors and activities

- California-specific emission factors account for
 - Unique mix of fuels, combustion technology, operating conditions, and aggressive emission control programs

References:
3) CARB study (04-307) by Chow et al. (2008).
California BC emissions

- Wildfire: 29%
- Managed Burning: 14%
- Residential: 8%
- Miscellaneous: 6%
- On-Road Transportation: 20%
- Off-Road Transportation: 23%

- PM2.5, from emissions inventory
- PM2.5, X [BC/EC and OC],
- BC/EC and OC for source, (i.e., source profile)
Transportation emissions are key focus for air quality and climate
Trends in gasoline car emissions

1965
- CO: 87.0 g/m
- HC: 8.8 g/m
- NOx: 3.6 g/m
- PM: 0.2 g/m
- BC: 0.04 g/m

1975
- CO: 9.0 g/m
- NOx: 2.0 g/m
- PM: 0.08 g/m
- BC: 0.02 g/m

2003
- CO: 1.4 g/m
- NOx: 0.1 g/m
- PM: 0.003 g/m
- BC: 0.6 mg/m

2009
- CO: 1.4 g/m
- NOx: 0.05 g/m
- PM: 0.003 g/m
- BC: 0.6 mg/m

Source: PM emission factors from US EPA Kansas City Study
Trends in diesel truck emissions

Data source: CARB’s EMFAC model
Research confirms progress on PM reductions

SULEV limit = 10mg/mi

Fleet averaged emission rates of OC and EC for SULEVs, not corrected with background.

GASOLINE

DIESEL

Diesel Soot Emissions/Fuel Consumed
(Estimated)

Engine diesel soot ~18 fold
Fuel usage ~6 fold
Ambient diesel soot ~3 fold
Diesel control
Health = #1 policy driver for diesel PM/BC control

Air pollution and premature death*
California estimates for 2005

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Annual Deaths*</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM2.5</td>
<td>18,000</td>
</tr>
<tr>
<td>Ozone</td>
<td>540</td>
</tr>
<tr>
<td>Toxic Air Contaminants</td>
<td>400</td>
</tr>
</tbody>
</table>

* At least a factor of two uncertainty.

Relative cancer risk by inhalation from airborne toxics

Impact of diesel PM on California*

Premature death (3500 per year*)
Lung cancer (250 per year)
Decreased lung function in children
Chronic bronchitis
Increased hospitalizations
Aggravated asthma
Increased respiratory symptoms
Lost work days
Reduction in visibility (10-75% of total)

* www.arb.ca.gov/research/health/pm-mort/pm-mort.htm

CARB’s Diesel Risk Reduction Plan (DRRP) (Diesel PM 85% below 2000 in 2020)

New engines 90% NOx & PM reduction

Low sulfur Fuels 15 ppm S content (2006)

In-use engines* (2000-2018)

Trucks (2007-2010)

Off-road (2011-2015)

Diesel GHG Reduction

EPA SmartWay Standards

Idling limits

Replace

Repower

Retire

Retrofit

Urban bus

Trash trucks

Portable equipment

Stationary engines

Cargo handling equip.

Municipal fleets

TRUs

Locomotive & rail yard (under study)

School bus

Port trucks

Stationary agri. engines

Off-road non-agri.

Aux. engine OGV

Private trucks

Ag. equip. (2010)

*With millions $ per year in incentive funding provided

www.arb.ca.gov/diesel/dieselrrp.htm
Diesel engine applications covered by DRRP

On-road Vehicles
- On-road Truck
- Passenger Bus
- Concrete Mixer
- Hay Squeeze
- Water Truck
- Fuel Tank Truck
- Reefer Van
- Drill Rig
- Dump Truck
- Tow Truck

Off-road Vehicles
- Aerial Lift
- Loader
- Backhoe Loader
- Ground support equipment
- Skid Steer
- Belt Loader
- Mast Forklift
- Dozer
- Telescopic Forklift
BC fraction in PM vehicle emissions

Gasoline Car

<table>
<thead>
<tr>
<th>Conventional</th>
<th>Direct injection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic carbon</td>
<td>Elemental carbon</td>
</tr>
</tbody>
</table>

- **Conventional**
 - PM emissions < 1 mg/mile
 - $<<$ current SULEV PM standard of 10 mg/mile
 - Most PM is OC
 - BC increases for high PM emitters

- **Direct injection**
 - Very good for CO$_2$ reduction
 - still $<$ current SULEV PM standard
 - But PM $>$ conventional gasoline
 - Also $>$ particle counts
 - Most PM is BC or soot like diesel

Diesel Truck

<table>
<thead>
<tr>
<th>Pre-2007</th>
<th>2010</th>
</tr>
</thead>
</table>

- **Pre-2007**
 - PM standard at 100 mg/bhp-hr
 - Most PM is EC or soot

- **2010**
 - PM emissions $<<$ standard 10mg/bhp-hr
 - Little BC (EC or soot)

CARB evaluating LEV III (more stringent PM standard)

DPF (for retrofit or OE installation) is a game changing solution.

Pre-DPF soot agglomerates

Post-DPF clean sample

SEM images courtesy of Dr. D. Su, Fritz-Haber Institute
Significant PM(BC) reductions by various types of DPFs

Clean diesel exhaust (Post-DPF particles)

EC(soot or BC) is eliminated; if particles present, they are mostly very small sulfate

Global warming emissions

Diesel w/o DPF

- CO\(_2\): 2074
- BC: 142
- N\(_2\)O: 7

2010 Prototype Diesel Retrofit (DPF+SCR)

- CO\(_2\): 2075
- BC: 1
- N\(_2\)O: 223

[Diagram showing CO\(_2\) Equivalent Emissions for Diesel w/o DPF and 2010 Prototype Diesel Retrofit (DPF+SCR)]
Other BC sources

Southern California Wildfire

Managed Burning

Residential - Fireplace
- **Residential wood burning**
 - Mandatory wood burning curtailment when air quality is poor in winter (e.g., in Bay Area, Sacramento, San Joaquin Valley, South Coast)
 - Wood stoves & fireplace change out incentive program to replace older polluting units with cleaner units (e.g., $150-750 voucher in the Sacramento County)

- **Managed burning**
 - ARB Smoke Management Program provides guidelines for agricultural and prescribed burning operations in California (effective in 2001)
 - Agricultural burning prohibited unless no economically feasible alternatives available (e.g., in San Joaquin Valley)
 - Working groups involving different stakeholders to find alternatives to burning (e.g., use as a fuel in biomass plants)
Closing remarks

- Science supports co-benefits of BC reductions for air quality and climate protection
- California implementing clear policies
- Taking aggressive action for reducing PM (and BC)
 - Major programs in place for mobile sources (gasoline, diesel, etc.)
 - Tangible progress
 - Diesel PM reductions is key focus for air quality and health
 - Concurrent climate benefit from BC reductions
- New policies will emerge
 - California’s LEVIII program
 - US Congress directs EPA to look into BC