International Experience with Electric and Zero Emission Buses

Ray Minjares

International Seminar

Electric Mobility in Public Bus Transport: Challenges, Benefits and Opportunities

9 May 2018

Ministry of Cities - Brazil

Buses are a visible entry point for cleaner fuels and vehicles

Old diesel technology can give the best BRT the worst image

Antonio Navarro @navarrowolff

Respirando veneno

10:33 AM - 13 Apr 2018

INSISTEN EN DUDAS EXPRESADAS POR ENTES DE CONTROL, CONCEJALES Y AMBIENTALISTAS

Desde el Congreso piden revocar licitación para renovar buses de Transmilenio

Bogotá 18 Abr 2018 – 11:47 PM Por: -Redacción Bogotá -bogota@elespectador.com

Senadores y representantes cuestionaron el proceso y pidieron una nueva convocatoria que incluya buses de tecnología limpia. Criticon el elceldo Peñalosa porque en la licitación "prima el interés financiano **Desp**bienestar de los bogotanos".

o THE INTERNATIONAL COUNCIL ON Clean Transportation

Después de críticas, Peñalosa cambia puntos de licitación para nuevos buses de Transmilenio

Bogotá 24 Abr 2018 - 10:27 AM Por: -Redacción Bogotá -bogota@elespectador.com

Quienes incluyan buses con tecnología Euro VI, una de las más limpias que se conocen en la actualidad, podrán tener hasta 400 puntos. En la primera propuesta presentada por el Distrito este ítem solo representaba 50 puntos.

9 out of 10 people breathe polluted air

But we also face a climate challenge

Effect of current pledges and policies

Global greenhouse gas emissions

Clean Transportation

Energy consumption of on-road diesel engines* has increased more than 400% since 1980

THE INTERNATIONAL COUNCIL ON Clean Transportation

Based on IEA data from the World Energy Balances Data Service © OECD/IEA 2017, www.iea.org/statistics. Licence: www.iea.org/t&c; as modified by ICCT.

7

China Airpocalypse (2013 Jan)

China National Ten Measures (2013)

60% of new buses in major cities must be NEVs

- Battery electric
- Plug-in Hybrid Electric
- Fuel Cell Electric

Figure 1. Vehicle population in China's provinces and municipalities in 2014 (10,000 units)

China Industrial Policy: 48 Billion USD in NEV Subsidies since 2009

Figure 1. Timeline of China's national NEV subsidy policies.

Clean Transportation

Cui, H. Adjustment to Subsidies for New Energy Vehicles in China. Policy Update *ICCT* **2017**, 1–11.

Chinese manufacturers dominate sales

Source: Bloomberg New Energy Finance, OFweek

Source: Bloomberg New Energy Finance, OFweek

icct THE INTERNATIONAL COUNCIL ON Clean Transportation

Electric Buses in Cities; Bloomberg New Energy Finance, 2018; pp 1–63.

California

icct THE INTERNATIONAL COUNCIL ON Clean Transportation

Source: Frank Schulenburg, CC BY-SA 4.0,

California statewide goals

- Meet federal ozone air quality standards in 2023 and 2031
- 40% reduction in GHG emissions from 1990 by 2030
- 80 % reduction in GHG emissions from 1990 by 2050
- 50 % reduction in petroleum consumption by 2030

Requires maximum deployment of zero emission technologies

Battery and Fuel Cell Electric Buses in California¹

(107 in operation and 340 on order/awarded as of September 2017)

¹ Buses in transit fleets and universities

California Statewide Fiscal Incentives

Approved Funding Plan - Vouchers

- Hybrid and Zero-Emission Truck and Bus Voucher Incentive Project (HVIP) and Low NOx Engine Incentives
- >\$188 million for FY 17-18

THE INTERNATIONAL COUNCIL ON Clean Transportation

- Increased voucher amounts
- \$35 million set aside for ZEBs
- Rest is first come first served for ZE trucks, ZEBs, low-NOx engines, other
- Infrastructure voucher enhancement
 - Up to \$30,000 per charger for BEB
 - Up to \$100,000 per FCEB with purchase of 5 or more

Category	Base Amount*
Low NOx Engine (8.9 Liter)	\$10,000
Zero Emission Bus (20 ft – 24 ft)	\$80,000
Zero Emission Bus (25 ft – 29 ft)	\$90,000
Zero Emission Bus (30 ft – 39 ft)	\$120,000
Battery Electric Bus (40 ft - 59 ft)	\$150,000
Battery Electric Bus (60 ft)	\$175,000
Double Decker Bus (40 ft)	\$175,000
Fuel Cell Electric Bus (≥ 40 ft)**	\$300,000
* Up to \$15,000 more for use in a disadvantaged community	

Proposed FY 2017-18 Funding Plan https://www.arb.ca.gov/msprog/aqip/fundplan/proposed_1718_funding_plan_final.pdf

8

Los Angeles

City of Los Angeles: 100% ZEB Goal by 2030

Challenges Transitioning to 100% Zero Emissions

- 1. Long-term demand for equal or greater service and operating performance
 - 1. 400+ km range in stop/go driving with 1.4 passenger load factor
 - 2. Less than 14,000 kg curb weight for 12m ZEB
 - 3. 400km range throughout the 12 year vehicle life
 - 4. 100km/h top speed; ability to sustain 10% grade
- 2. New Up Front Investment in Charging Equipment and Infrastructure
- 3. Known and unknown technology risks, particularly batteries
- 4. Additional funding needed to deploy 100% ZEB program.

Impacts to other capital and operating costs, deployment schedule and/or service levels and reliability. May require replacement on greater than 1:1 ratio.

Los Angeles – Two Phase Plan

Phase 1:

- Electrify 2 BRT lines
- Continue replacing existing fleet with low-NOx CNG engines (~ 200 per year)
- Develop ZEB Technology Assessment and Master Plan (2019-2020)

Phase 2:

Implement ZEB Master Plan to deploy 100% zero emission buses.

Metro Orange Line – Project Details

- 40 New Flyer All Electric Buses 18m, and 5 BYD 18m buses
- 2 Shop Chargers
 Installed at Division 8
 in Chatsworth
- 8 En-Route
 Opportunity Chargers
 Installed at MOL
 Terminals in
 Chatsworth, Canoga
 and North Hollywood

BEB ROUTE DESIGN FOR SANTIAGO PUBLIC TRANSPORT SYSTEM

Santiago Principle: Diesel Equivalent Operation

Routes with highest potential to meet the following:

- Productivity: the size of the fleet and the number of drivers must be the same with BEB, and TCO must not be much higher
- Operation: BEB must operate with same frequencies and regularity
- Reliability System of buses and recharging solutions must run with similar reliability

Criteria for route selection

Google earth

- Ten routes selected for TCO analysis
- Final recommendations under development

UN	Ruta	Longitud (km)	Operación (hr/día)	Flota mínima necesaria (bus/día)		diente edio %		te máxima %
1	103Ida	13.22	20	17	0.9	-1.1	4.2	-6.4
1	103Ret	14.95	20	17	1.1	-0.8	6.3	-3.0
1	104Ida	19.72	24	43	1.3	-1	6.1	-3.8
1	104Ret	19.33	24	43	1	-1.4	2.1	-9.1
1	121Ida	16.95	19	19	0.8	-0.6	3.9	-4.8
1	121Ret	18.46	19	19	0.7	-0.9	5.4	-3.9
2	G11Ida	14.62	20	15	1	-1	3.4	-5.9
2	G11Ret	17.99	20	15	1.1	1	5.9	-4.1
2	G13Ida	12.33	19	27	1	-0.7	5.5	-4.1
2	G13Ret	11.8	19	27	0.6	-1	2.9	-6.6
2	G22Ida	13.24	19	19	0.9	-0.9	5.5	-4.8
2	G22Ret	14.59	19	19	0.7	-0.7	2.8	-4.6
3	I08Ida	8.71	19	20	0.7	-0.7	3.7	-2.7
3	I08Ret	8.0225	22	20	0.9	-1.1	5.1	-4.2
3	1091da	17.55	20	22	0.8	-0.6	5.1	-4.7
3	I09Ret	18.1	20	22	0.6	-0.9	4.7	-6.9
3	E04Ida	14.25	19	15	0.6	-1.1	2.9	5.7
3	E04Ret	14.57	19	15	0.9	-0.7	4.2	-2.7
3	301clda	15.93	24	15	0.5	-0.7	2.7	-5.0
3	301cRet	15.72	22	15	0.7	-0.7	4.2	-4.4
4	402Ida	14.37	20	22	1.4	-1.2	8	-6.4
4	402Ret	14.97	20	22	1.1	-1.3	4.2	-8.4
4	403Ida	18.45	24	16	2	-1.2	9	-4.3
4	403Ret	16.7	24	16	0.8	-1.8	3.7	-8.0
4	D05Ida	16.72	20	23	1.6	-0.7	7.2	-3.8
4	D05Ret	17.2	20	23	0.7	-1.5	3.8	-7.2
5	501Ida	11.08	19	28	2.3	-1.4	11.9	-14.8
5	501Ret	10.84	18	28	1.8	-2	15.3	-13.4
6	B03Ida	17.37	23	18	1.2	-0.9	4.5	-6.4
6	B03Ret	14.82	21	18	0.9	-1.2	3.5	-9.0
6	B06Ida	16.91	20	20	1.1	-1	8.9	-4.8
6	B06Ret	16.16	19	20	1.1	-1.2	5.3	-9.2
6	C05Ida	14.85	20	22	2.8	-2.2	9.3	-13.5
6	C05Ret	16.03	20	22	2.1	-2.2	8.6	-12.3
7	F10lda	14.02	21	20	1.2	-1	5.1	-4.4
7	F10Ret	13.93	20	20	1.1	-1.4	3.1	-5.1
7	F13lda	9.42	19	21	1.3	-1.1	5.6	-6.5
7	F13Ret	9.88	19	21	0.9	-1	2.9	-3.5
7	F14lda	14.42	20	28	1	-1.1	4.9	-4.3
7	F14Ret	15.4	20	28	1.1	-1.2	7.1	-8.1

Shenzhen, China: 16,359 electric buses

icct

THE INTERNATIONAL COUNCIL ON Clean Transportation

https://qz.com/1169690/shenzhen-in-china-has-16359-electricbuses-more-than-americas-biggest-citiess-conventional-busfleet/

City	Target	Scope	Base Year	Target Year
Beijing	60%	Existing fleet	2017	2020
Shaanxi	7000	Existing fleet		2020
Hainan	90%	New and replacement buses		2020
Guangdong	75%	Existing Fleet		2020
Pearl River Delta	90%	New and replacement		2019
Chongming Island	100%	Existing Fleet		2020
Harbin	80%	Existing Fleet		2020
Changsha	100%	Existing Fleet		2020

Conclusions: Dual Transition Strategy

National Actions

- Fiscal incentives
- National targets
- Evaluation

Local Actions

- 1. Demonstration
- 2. Route electrification
- 3. ZEB Strategy
 - % ZEB Target
 - Implementation Plan

OBRIGADO

ray@theicct.org

@theicct / @mrminjares

