ICCT Black Carbon Workshop
Marine policy strategies

Sustainable Intermodal Freight Transportation Research (SIFTR)

University of Delaware, Rochester Institute of Technology
National Partnership for Intermodal Infrastructure Improvement (PI3)
6 January 2009

Containership
Tanker
Bulk Carrier
General Cargo
Refrigerated Cargo
Ro-Ro
Passenger

2009 © J.J. Winebrake & J.J. Corbett
Concluding thoughts

- Ship BC emissions context: large or just important?
- Trends in ship emissions will increase CO₂, BC
- CLE ↓ sulfur by 2020 (dramatic unmasking), ↓ NOx slower
- Reductions for health benefits do not appear optional
- Control technologies and ops options exist, but expensive
 - This may not fit the onroad/nonroad paradigm of ULSD first
- Policy resolve slow to emerge at IMO without “help”
 - Urgency helps: unmasking sounds like urgency increases

Discussion question (for my source anyway):
What impact metric(s) would reveal that BC from [ships] deserves to be first/last on the list for BC quick-action?
What do we want for the Future of Freight?

- **Modernize** existing fleets
 ... replace fleet with best technology

- **Maximize** current fleet usage
 ... use current fleet to maximum performance

- **Optimize** system performance
 ... logistics, infrastructure, operation

Might these be shared goals, depending on targets, timeframe?

Business Goals ➠ Environmental Goals

2009 © J.J. Winebrake & J.J. Corbett
Intermodal freight network optimization model to evaluate objective tradeoffs.

Developing resources for “table-top” exercises with industry and agencies.

Evaluates performance against benchmarks and optimizes with respect to possible targets.

Web-version in development.

Decision makers can explore tradeoffs among alternative routes, across modes, and identify optimal routes for economic, energy and environmental objectives.

BC more than a ships issue: a freight systems problem. Today’s focus is on shipping mode

Outline

BC formation in marine engines (review)

Global inventory overview

Arctic as potential area of importance for BC impacts

Technology options

Issues and challenges

Toward policy strategies (discussion starter)
Particle formation in HTHP engines

- Particle formation: complex, dynamic, confusing
 - Classification challenge of primary and secondary particles, semivolatiles. Not only mass, but size and number matter.

- Basic constituents of PM (at least from ships)
 - Ash and other stuff (e.g., trace metals) in fuel (0.1-0.2% m/m)
 - Cylinder lube oil consumption (~1 g/kWh)
 - Flame generated PM (BC is flame generated)
 - Particles formed from gaseous oxidation and hydration (sulfates, nitrates, etc.), called secondary except when measured in stack rather than plume rather than marine air

- Marine diesel BC forms in HTHP lean combustion
Marine engine combustion and BC emission rates

Consensus BC rates still uncertain but converging

- Others making stack tests (measurement issues)

- Slow speed diesels (SSDs) produce BC particles in small size ranges
- Medium speed diesels (MSDs) produce more BC mass (~2x)
- BC varies more with engine combustion; other PM varies more with sulfur changes

Ocean shipping uses very advanced engines designed to combust very low-cost fuels

Marine diesel engines are among the most thermally efficient (fuel-efficient) combustion systems ever built; efficiency has been devoted to economic more than environmental performance to date.

Intuition: less BC mass per fuel input than other diesels (but size matters)
Activity-based methodology

1. Fleet statistics (Lloyds)
2. Fleet activity (AIS, industry data, other)
3. Fuel and combustion characteristics (BLG 12/6/INF.10, IPCC, etc.)

Fuel consumption

- Fleet fuel consumption
- Fleet emissions

- Average installed power
- Average operating time
- Average engine load
- Average SFOC
- Average Carbon content
- Other emissions rates

2009 © J.J. Winebrake & J.J. Corbett
Global shipping inventories being updated

<table>
<thead>
<tr>
<th>Pollutant (2007)</th>
<th>Annual metric tons</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC</td>
<td>104,000 to 118,282</td>
</tr>
<tr>
<td>CO</td>
<td>2,500,828</td>
</tr>
<tr>
<td>NMVOC</td>
<td>811,079</td>
</tr>
<tr>
<td>CH₄</td>
<td>101,385</td>
</tr>
<tr>
<td>NOₓ</td>
<td>25,315,540</td>
</tr>
<tr>
<td>N₂O</td>
<td>27,036</td>
</tr>
<tr>
<td>SOₓ</td>
<td>18,249,284</td>
</tr>
<tr>
<td>POM</td>
<td>1,470,000</td>
</tr>
<tr>
<td>SO₄ (primary)</td>
<td>1,086,442</td>
</tr>
</tbody>
</table>

BC rates among modes should differ from CO₂ modal comparisons:
Probably more BC mass, larger size ranges in onroad/nonroad diesels

2009 © J.J. Winebrake & J.J. Corbett
2004 Arctic BC Emissions (flux)

Ships may be important source of local BC (and other GHGs) in sensitive Arctic region

Growth is likely, although perhaps at lower rate than suggested by comparison with prior projections.

New routes likely to emerge as ice melts

More importantly?: Potential impacts to Arctic may not be from local activity by ships, but from major shipping lanes.
Arctic BC Impacts

Potential impacts to Arctic may not be from local activity by ships, but from major shipping lanes. Consider roughly the contribution by latitude.

Question: Where is the latitude of diminishing impact to Arctic?

Question: Does fast reduction of BC globally or in some region(s) address unmasking concerns for ship fuel sulfur changes?
Would a “rapid” decrease in BC from ships offset some “unmasking” from reducing ship sulfur?

Only if the effects of ship BC changes is ~50-500 times greater than sulfur unmasking.

2009 © J.J. Winebrake & J.J. Corbett
Freight Impacts Motivate Policy Action

AIR QUALITY
CLIMATE CHANGE
ECOSYSTEMS
HUMAN HEALTH

Sources
- Engine Emissions
 e.g., CO2, NOx, CO, HC, SOx, Particles and soot

Exposure processes
- Fate and Transport
 e.g., urban and plume effects, atmospheric chemistry, physics, meteorology

Impacts
- Local
 e.g., diesel PM, workers and communities
- Regional
 e.g., air quality, ecosystems, health
- Global
 e.g., climate change, long-range pollution

2009 © J.J. Winebrake & J.J. Corbett
Increased risk is broadly distributed

Ship emissions increase mortality risk for significant populations across the globe. Most coastal regions and many inland regions face a mortality risk greater than 10 in a million (1:100,000). Key regions face greater mortality risk from ship emissions.

Initial results from ongoing work show that sulphur and PM reductions substantially decrease in human health risk.

Corbett et al., ES&T, 2007
Can anything feasible reduce BC from ships?

The Phoenicians were great sailors for their time, and ventured further than any before. Their ships were known for being well designed for carrying both cargo and supplies needed by the sailors.

If the Phoenicians did not invent it, the industry has resisted it.

Anonymous

http://maritime-history.suite101.com/article.cfm/the_phoenicians_great_sailors
What options do we have to control BC? Do metrics primarily need to be in science impact terms or also in terms of control?

REDUCE PM MASS, REDUCE PM$_{2.5}$ MASS
SELECTIVELY REDUCE NON-BC PM MASS, REDUCE BC MASS
CONTROL SIZE OR NUMBER OR OTHER THAN MASS?
REDUCE GWP, ΔT, OTHER IMPACT METRIC?

| Fuels | • IMO Low-sulfur (😊?)
| | • Onroad compliant sulfur
| | • Ultra low sulfur
| Combustion | • Water-fuel Emulsions
| After treatment| • CDPFs
| | • ADPFs
| | • Scrubbers, etc.
| Operations | • Speed reduction

2009 © J.J. Winebrake & J.J. Corbett
What could change during BC policy timeframe?

- National registry of ships, crew nationalities, etc.
- Ship technologies
- Ship fuels
- Patterns of shipping

Question 1: will these change without policy anyway?

Question 2: will efficacy of GHG or BC or Annex VI instrument be modified if changes occur in any case?
Fleet capacity (gross tonnage) increased significantly with globalization.

Vessel flags have largely transitioned from OECD nations to others.

Is there an Annex 1 advantage supporting CBDR claims?
Policy action at IMO now focused on GHGs

One short list of policy instruments (grossly general)

- Ship design index (mandatory for new ships, with or without phase out requirement)
- Ship operational index (voluntary or mandatory?)
- Arbitrary (Regulatory-based) Levies, fees, taxes, etc.
- Market-based instruments (ETS)

All these can be debated on merits, but their ability to be implemented by IMO, regionally, unilaterally may determine which one(s) get chosen.
Possible “Rules of thumb”

- Urgency helps policy – unmasking sounds urgent
 - The time for half measures has passed. We are entering a period of consequences.

 - Control targets more often set in terms of emissions than in terms of endpoint goals (at first anyway)

- Technology enablers for other transport may be blinders for full set of feasible options in shipping
 - ULSD helps CDPFs to work more cost-effectively than ACDPs, but new source may not be controlled same as the old source

- Remember: industry is a partner in IMO process

2009 © J.J. Winebrake & J.J. Corbett
For discussion: Can we move forward based on good that uncertain science suggests we can achieve?

In physics the truth is rarely perfectly clear, and that is certainly universally the case in human affairs. Hence, what is not surrounded by uncertainty cannot be truth. Richard Feynman

It is not the clear-sighted who rule the world. Great achievements are accomplished in a blessed, warm fog.

Joseph Conrad 1904-06: http://www.gutenberg.org/dirs/etext97/tmots10h.htm
Discussion Welcome

More, better, cleaner, sustainable goods movement

CONTACT:

JAMES J. CORBETT, P.E.
UNIV. OF DELAWARE
JCORBETT@UDEL.EDU
TEL: 302-831-0768

2009 © J.J. Winebrake & J.J. Corbett