Major drivers in 2020 from global HD powertrain perspective differ across markets

<table>
<thead>
<tr>
<th>Competition</th>
<th>Legislation</th>
<th>Cost Reduction</th>
<th>Size/Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE</td>
<td>CO₂</td>
<td></td>
<td>Weight</td>
</tr>
<tr>
<td>Fuel Economy Leadership</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TN</td>
<td>GHG 2020</td>
<td></td>
<td>Weight</td>
</tr>
<tr>
<td>Fuel Economy Leadership</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA</td>
<td></td>
<td>pjP15 FES (2023?) tbd</td>
<td>Weight</td>
</tr>
<tr>
<td>Fuel Economy Leadership</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuel Economy Leadership is a, if not the, major driver in all marketplaces!
Vehicle and Drivetrain

Vehicle Improvements
- Aerodynamic improvements
 - Tractor
 - Trailer
- Tire rolling resistance
- Accessory management
- Weight
- Other

Optimization for fuel efficiency requires integrated vehicle, engine, transmission, axle and controls development approach.
Daimler Truck SuperTruck Program Goals

Evaluate technologies capable of demonstrating potential for a 50% increase in vehicle freight efficiency:

- 30% increase via vehicle improvements.
- 20% increase via engine improvements; specifically 50% brake thermal efficiency.
 - Identify pathway to 55% brake thermal efficiency via modeling and analysis.

PARTNERS
- Department of Energy
- Oak Ridge National Laboratory
- Massachusetts Institute of Technology
- Atkinson LLC
SuperTruck Concept: Engine Down-Speed and Down-Size

- **1 → 2**
 - Efficient vehicle – better aerodynamics, reduced rolling resistance, etc.
- **2 → 3**
 - Downspeeding
- **3 → 4**
 - Downsize from 15L to 11L to increase road load BMEP
Downspeeding – industry snapshot

- Push to optimized drivetrains having lower operating speeds is consistent across the HD Class 8 truck industry.

Volvo “XE” powertrain packages optimized to max torque @ 1050 RPM engines – 200 RPM reduction

Cummins – SAE 2013-24-0094

Actual on-road operation of same engine in customer vehicles (~600 long-haul trucks, 82 million miles)

13-point Ramp Mode Cycle used for GHG & engine efficiency regulation

Courtesy of Volvo

These test conditions almost never occur in use. Do you really want us to optimize here?
Downspeeding – comparison to emissions test cycle

- Development towards lower operating speeds for fuel efficiency improvement
 - Shifts operation to lowest speeds of existing Supplemental Emissions Test cycle (SET) test speeds

Inclusion of actual engine fuel map within drive cycle simulation tool will link actual engine operation with evolving drivetrains and changing operation speeds.
Downspeeding – Efficiency Improvement

Efficiency improvements are realized as operating speeds decrease and losses due to friction and pumping are reduced, actual fuel map in GEM is essential.

EPA Phase 1 Generic GEM fuel map

Efficiency improvement potential: Dependent on multiple factors including map characteristics, axle ratio, transmission ratios, tire size, vehicle aero, weight, tire rolling resistance, vehicle drive cycle, governed vehicle speed.

Decreased friction and pumping losses with decreased speed
Downspeeding – Drivability

Drivability:
Shrinkage of operating range with usable torque creates new demands
- Extension of max torque to lower engine speeds
- Rapid shifting automated transmissions

EPA Phase 1 Generic GEM fuel map

Constant power: Driveline optimization for reduced operating speed necessitates higher operating torque to meet road load requirements.

Downspeed operation requires development of higher torque capacity at lower engine speeds. Actual torque curve in simulation tools is needed.
Downspeeding – Areas of Development

• To maintain required road load horsepower at reduced engine speeds, higher drivetrain torque capacity is required since \[HP = \frac{(\text{Engine speed}) \times (\text{Torque})}{\text{Constant}} \]
 • Driveline robustness to handle higher operating torques
 • Size and weight tradeoff
 • Engine redesign for higher torque output at lower engine speeds
 • Limited by thermodynamics and
 • Mechanical limits of core engine
• As engine speed at highway cruise conditions decreases, the usable engine speed range diminishes (since minimum engine speeds are unchanged)
 • Automated manual transmissions for faster shift capability
 • Possible need for dual clutch technology
Downsizing Limitations for Commercial Trucking

<table>
<thead>
<tr>
<th></th>
<th>2014 LDV</th>
<th>2014 Cascadia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine</td>
<td>2.0L L-4</td>
<td>12.8L DD13</td>
</tr>
<tr>
<td>Horsepower</td>
<td>160hp @ 6500rpm</td>
<td>350hp @ 1800rpm</td>
</tr>
<tr>
<td>Torque</td>
<td>146lb-ft @ 4450rpm</td>
<td>1350lb-ft @ 1100 rpm</td>
</tr>
<tr>
<td>Curb Weight/GVW (lbs)</td>
<td>2,948</td>
<td>60,000</td>
</tr>
<tr>
<td>Speed (mph)</td>
<td>62</td>
<td>62</td>
</tr>
<tr>
<td>Grade Resistance (hp)</td>
<td>15</td>
<td>298</td>
</tr>
<tr>
<td>Grade Power % of Total Power</td>
<td>9%</td>
<td>85%</td>
</tr>
</tbody>
</table>

+298 hp due to 3% Grade

+15 hp due to 3% Grade
Engine Downsizing - Concept

EPA Phase 1 Generic GEM fuel map

- Constant power

Vehicles improvements reduce road load power requirements – largest impact under relatively level conditions.

Reducing displacement (and related friction losses) theoretically has potential to move efficiency islands to lower torque region.
Benefits of downsizing for improved efficiency are not recognized by the RMC, but will be in simulations using the actual torque curve and map.
Engine Downsizing – tradeoffs

- Improved efficiencies at lower displacement have not been demonstrated
 - Increased thermal losses due to less favorable surface/volume ratio, exacerbated at lower operating speeds
- Torque capacity diminishes as displacement decreases, especially at low engine speeds, due to brake mean effective pressure constraints.
 - Compromises drivability
 - Increased operation at higher BMEP generally sacrifices B50 Life to wearout
- Residual value – The secondary market places a higher value on larger displacement engines which factors into the customer’s TCO equation at the end of the trade cycle.
Engine downsizing trade-offs

<table>
<thead>
<tr>
<th>Factor</th>
<th>Larger Displacement</th>
<th>Smaller Displacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Gradability</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Friction</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Life Expectancy</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Packaging</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Heat Rejection</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>ATS Performance</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>NVH</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Backpressure sensitivity</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

“+” = advantage
“-” = disadvantage
Summary

- Truck and engine manufacturers are focused, and can be expected to continue to focus, on powertrain optimization at lower operating speeds for efficiency improvement.
 - Trends show increasing customer adoption of downsped powertrains
 - Development of drivetrain components (transmissions, prop shafts, joints, differentials, axles, etc.) with increased robustness goes hand in hand with downspeeding.
 - Engine operating speed range, torque capacity, and associated tradeoffs must be considered.

- Engine downsizing must consider numerous trade-offs
 - No “one size fits all” solution.
 - A range of displacements is necessary to meet power and torque requirements across a broad range of applications.
Thank you for your time! Questions?