

Dr. Morgan Andreae Director, Cummins Inc.

ICCT Workshop October 22, 2013

Agenda

Background: Engine development

Future engine development to reduce CO2

Regulation and GHG reduction

The Road to Clean Diesel – US On-Highway

Oil consumption projections in the U.S. transportation sector by vehicle type

28% of US Energy is Consumed by the Transportation Sector.....

^{*}MMBD – Million Barrels Per Day

**VMT – Vehicle Miles Traveled

U.S. Department of Energy, Energy Information Administration. 2009b. Ar Outlook 2009. Report No. DOE/EIADOE/EIA-0383(2009). Washington, D.C. March 2009

Evolution of HD Diesel Engine Efficiency

Brake Thermal Efficiency (BTE) - the engine output divided by the fuel energy input

Vehicle Energy Analysis

Engine Losses

Interstate: 56% - 59%

Urban: 58% - 61%

Aerodynamic Losses

Interstate: 16% - 25%

Urban: 3% - 11%

Interstate: 0% - 2%

Urban: 12% - 22%

Auxiliary Loads

Interstate: 1% - 4%

Urban: 7% - 10%

Drive Train

Interstate: 2% - 6%

Urban: 5% - 9%

Rolling Resistance

Interstate: 12% - 17%

Urban: 4% - 14%

Opportunities for Improvement

SuperTruck Demonstration **Engine Downspeeding** High Eff NOx AT Line-haul Technology Demonstration **Lubricant Viscosity** <u>SuperTruck</u>: Industry and US Department Turbomachinery Eff. of Energy Co-sponsored Program to Variable Flow Oil & Water Improve Engine Efficiency and Vehicle Pump Freight Efficiency Reduced EGR Ports, Air Compressor, EGR DP Advanced **Fuel System** Combustion Friction Reduction Base Engine Friction/Parasitics Reduced Heat Transfer Controls **Emission Sensors**

Fuel Consumption Improvement (%) 2010 Baseline

15

10

Technology Demonstration

Vehicle Demonstration of Freight Efficiency Improvement

Controlling GHGs – A Systems Approach

Fuels

- Reduced carbon intensity
- Bio Diesel, CNG, LNG

Engines / Power Trains

- Advanced Engines and Aftertreatment
- Waste Heat Recovery
- Integrated Power Trains
- Hybrids / Automated Transmissions

Tractor / Trailer

- Aerodynamics
- Tires / Rolling Resistance
- Idling Technologies

Fleets / Operators

- Incentives for low GHG vehicles
- Logistics, Driver training & aids

Highways / Infrastructure

- Highway Construction / Congestion
- Speed limits
- GVW

US EPA Phase 1 GHG: Engine *AND* Vehicle Regulation

ISX15 SmartTorque2 Eaton Fuller Advantage Automated Transmission

Proposal for EPA Phase 2 GHG Rule: Engine/Powertrain *AND* Vehicle Regulation

Summary

 Engine regulation has been successful in reducing real world criteria emissions

- Future engine technology development will be focused on CO2 reduction
 - New engine & powertrain technology has the potential to make significant reductions in CO2 emissions

- Regulatory framework and approach can play an important role
 - Engine/powertrain program AND vehicle program can help efficiently drive technology development to reduce emissions

Hear no diesel. See no diesel. Smell no diesel.