Comparison of US and EU programs to control lightduty vehicle emissions

Kate Blumberg, Francisco Posada

April 8, 2015

Outline

- Overview on new vehicle standards
 - Weight classifications
 - Test cycles
- New vehicle emissions standards
 - Limit values
 - Durability
 - Evaporative emissions
 - OBD
- New vehicle greenhouse gas standards
- Compliance and enforcement of new vehicle standards
- Standards and programs for vehicles in circulation
 - Vehicle inspection
 - Remote sensing
 - Low emission zones

Overview

	US & California	European Union
Fuel quality	 Gasoline: 30 ppm sulfur average / 80 max (2006); 10 ppm average / 80 max (2017) Diesel: 15 ppm sulfur max (2007) 	 Gasoline & diesel: 50 ppm sulfur max (2005) Gasoline & diesel: 10 ppm sulfur max (2009)
Test cycle	 Federal Test Procedures + Supplemental Cycles: FTP-75 (city cycle, includes cold start) US06 (high speed) SC03 (air conditioning) HWFET (highway cycle, fuel economy only) 	 New European Drive Cycle: NEDC (city and extra urban, includes cold start) World-Harmonized Light-Duty Vehicle Test Procedure: WLTP (cold start, low, medium, high and aggressive driving in a single cycle) Expected implementation in 2017
Coverage	 Emissions: Tier 2 standards cover all vehicles up to 3,855 kg GVWR and passenger vehicles up to 4,535 LEV II and III and Tier 3 extend coverage to all complete vehicles up to 6,350 kg GVWR GHG: Light-duty standards cover all LDVs (up to 3855 kg) and MDPVs (up to 4535kg) Heavy-duty standards (all other on-road vehicles, including all trucks above 3855 kg) 	 Emissions: Limit values set for passenger cars & light commercial vehicles by vehicle class/weight up to 2610 kg (RM) CO₂: Passenger car standards apply to vehicles designed for the carriage of passengers (up to 3.5 tonnes GVWR) Light commercial vehicle standards include all light trucks with RM up to 2610 kg in the N1 category (up to 3.5 tonnes GVWR)
Timeframe	 Emissions: US Tier 2 (phase in 2004-2009), Tier 3 (phase in 2017-2025) California LEV II (phase in 2004-2010), LEV III (phase in 2015-2028) GHG: Light-duty standards include 2012-2016 standards and 2017-2025 standards 	 Emissions: Euro 4 (2005 for new vehicle type approval, 2006 all) Euro 5a (2009 new, 2011 all); 5b (2011 new, 2013 all) Euro 6 (2014 new, 2015 all); Euro 6c adds RDE (~2017) CO₂: Current standards apply for the 2015 model year. 2020 standards are fully phased in for the 2021 model year and apply for all years beyond, until replaced.

Overview continued

	US & California	European Union
Pollutants	 Emissions: NO_x + NMOG and CO (bin certification, fleet averaging) HCHO (limit value) PM mass (limit values, phased in) GHG: CO₂ (fleet average) CH₄, N₂O (limit values) F-gases (credits available) 	 Emissions: NO_x, HC, NO_x+HC (diesels), PM and PN (limit values per vehicle category) CO₂: CO₂ (fleet average)
Design	 Emissions: All passenger vehicles and vehicles under 3,856 kg GVWR certify to a single set of bins, with a fleet average requirements Different bins for medium-duty cargo vehicles (3,856 – 6,350 kg GVWR) Standards phase in over time, as fleets are required to meet lower average emissions and/or higher-emission bins are eliminated GHG: Annual, footprint-based standards, increasing in stringency each year. Banking of credits and debits for annual targets. Credits for off-cycle emissions, hybrid trucks, F-gases and air conditioning, and electric vehicles. 	 Emissions: Different maximum limit values set for diesel and gasoline Values stay stable until for multiple years, until new standards are introduced CO₂: Single year, mass-based standard, applying to an increasing percentage of the fleet in preceding years. Super credits (for vehicles with 50 g/km or less CO2 emissions) and eco-innovation credits (up to 7 g/km).
Durability (emissions)	 193,000 km or 10 years (Tier 2/LEV II) 240,000 km or 15 years (Tier 3/LEV III) 	 160,000 km or 5 years, whichever comes first

Light and medium-duty weight classifications

ON CLEAN TRANSPORTATIO

Slide 5

Weight classification mismatch between European and North American standards

Weight classifications

Standard	Classification		tion	RM (EU) o LVW (US)	GVWR	
EU, Euro 6	Euro 6			Up to 2610 kg, up to 2840 kg at manufacturer request		
	PV			All		
	LT	N1	Class II	0-1305 kg		
			Class II	1306-1760 kg	0-3500 kg	
			Class II	More than 1760 kg		
	N2				3500-12,000 kg	
US, Tier 3	Tier 3				Up to 6350 kg	
	PV		PV		3856 kg	
			MDPV		3856-4536 kg	
	LDT		LDT1	0-1701 kg		
			LDT2	More than 1701 kg	Less than 3856 kg	
	MDV		Class 2b		3856-4536 kg	
			Class 3		4536-6350 kg	
Mexico, NOM 042					Up to 3856 kg	

Test cycles

Emissions standards

Tier 2 Bins	NMOG	NOx	PM ^a	CO	НСНО	
(FTP)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	
Bin 8	78	124	12	2610	11	
Bin 7	56	93	12	2610	11	
Bin 6	56	62	6	2610	11	
Bin 5	56	44	6	2610	11	->
Bin 4	44	25	6	1305	7	
Bin 3	34	19	6	1305	7	
Bin 2	6	12	6	1305	2	
Bin 1	0	0	0	0	0	

Euro 6 standards by	NMOG+ NOX	PM ^a	СО	PN			
vehicle class	(mg/km)	(mg/km)	(mg/km)	(#/km)			
Diesel		-					
LT, N2 & N1, III	215	5	740	6.0 x 10 ¹¹			
LT N1, II	195	5	630	6.0 x 10 ¹¹			
LT N1, I & PV	170	5	500	6.0 x 10 ¹¹			
Gasoline (NMOG & NOx are set as separate limits)							
LT, N2 & N1, III	242	5	2270	6.0 x 10 ¹¹			
LT N1, II	205	5	1810	6.0 x 10 ¹¹			
LT N1, I & PV	160	5	1000	6.0 x 10 ¹¹			

Tier 3 Bins	NMOG+ NOX	PM ^a	CO	нсно	
(FTP)	(mg/km)	(mg/km)	(mg/km)	(mg/km)	
Tier 2 Bin 5/	56+44=100	6	2610	11	
Bin 160	100	2	2610	2	
Bin 125	78	2	1305	2	
Bin 70	44	2	1057	2	
Bin 50	31	2	1057	2	
Bin 30	19	2	622	2	
Bin 20	12	2	622	2	
Bin 0	0	0	0	0	

- Bin 5 (fleet average) becomes the highest (interim) bin in Tier 3
- Euro 6 standards are similar in stringency to Tier 2
- Realworld NOx emissions from Euro 6-certified diesels are ~600 mg/km.

US EPA Tier 3 and CA LEV III Program

- Unlike Euro standards, US Tier 3 & CA LEV III standards:
 - Are fuel-neutral (same for gasoline and diesel).
 - Apply to all passenger vehicles and light trucks, phasing down to a single fleet average for all.
 - Cover medium-duty commercial trucks (separate bins provided), previously regulated with heavy-duty engine standards.
- Fleet average, bin standards:
 - NMOG+NOx are fleet average standards: each vehicle certified to a per-vehicle "bin" standard and values are sales weighted to calculate fleet-average emissions.
 - Bin structure allows manufacturers flexibility, provides motivation for marketing of significantly cleaner vehicles.
- PM is a per-vehicle limit:
 - Phased-in as a % of new vehicle sales.
 - Final Tier 3 limit is 3 mg/mi (1.9 mg/km) in 2022, LEV III includes additional phase-in period to 1 mg/mi (0.6 mg/km).

Tier 3 NMOG+NOx (mg/mi)	201	7	2018	2019	20	20	2021	2022	2	023	2024		2025+
LDV & LDT1	86		79	72	65	;	58	51	4	4	37		30
LDT2, 3,4 & MDPV	101		92	83	74	-	65	56	4	7	38		
Tier 3 PM (mg/mi)			17	2018		201	9	2020		2021		20	022
Phase-in (%)		20	%	20%		40%	>	70%		100%	6	1(00%
FTP certification (mg/mi)		3		3		3	3		3			3	
FTP In-use (mg/mi)		6		6		6		6		6		3	

US and European standards are not equivalent

Slide 10

- Very little change from Euro 3 to 6 in exhaust emissions. Evaporative emissions go down for Euro 6 gasoline vehicles.
- Diesel emissions might decline as WLTC and Real Driving Emissions (RDE) are incorporated into Euro 6.
- Different test cycle complicate comparison: NEDC is a little stronger for gasoline vehicles (cold start is more important) but weaker for diesels (higher loads are more important). WLTP is more similar to FTP.
- US Tier 2 and 3 standards are fleet average standards, whereas Euro 6 is based on maximum limits. Current NOM 042 standards also set maximum value limits, which do not provide incentive to introduce cleaner models.

Test cycle makes a difference in stringency

On-Road Testing and PEMS Data Analysis for two Euro 6 Diesel Vehicles. J. May, C. Favre, D. Bosteels, J. Andersson, D. Clarke and M. Heaney, 20th International Transport and Air Pollution Conference 2014

Slide | |

- Lack of aggressive driving and high load conditions make NEDC particularly weak for diesel vehicles.
- In contrast, the high apportionment of cold start makes it a more stringent cycle for gasoline vehicles.

Comparison of Standards – NOx and NMHC/NMOG

Slide 12

- Values for ARB LEV and EPA Tier programs are fleet average values; Euro program values are max-per-vehicle values
- Only LEV III and Tier 3 have set NMOG+NOx standards; all other "standards" presented here are the summation of independent NOx Standards and NMHC or NMOG

Useful Life of Emissions Control Systems

Real NO_x emissions of Euro 6 diesel cars are on average 7 times higher than allowed limit

 \bigcirc

icct

4

ON CLEAN TRANSPORTATI

Passenger vehicle GHG standards

Light truck GHG standards

CICCT THE INTERNATIONAL COUNCIL ON CLEAN TRANSPORTATION Slide 16

GHG standards

- Standard stringency
 - Similar stringency for both passenger cars and light trucks, standards are similarly split
- US standards
 - Annual fleet average standards with banking of credits and debits, ensure ongoing fleet improvement while allowing flexibility in compliance
 - Footprint-based standards allow for GHG reductions/efficiency improvement due to weight reductions
 - Rigorous testing requirements, more comprehensive test cycles, and real compliance enforcement
- European standards
 - Standards are 4 years ahead of US standards
 - Fewer light trucks result in better overall fleet average
 - Higher share of diesels further increase fuel economy

In-Use Emissions

Compliance and Enforcement

U.S. Fines Hyundai, Kia for Fuel Claims

Penalty of \$300 Million Is Largest Ever, Could Set Pricey Precedent for Other Auto Makers

NO_x emissions of Euro 6 diesel cars higher than the Euro 3 limit value

ON CLEAN TRANSPORTATIO

Real-world fuel consumption of new cars in EU is about 30+% higher than claimed by manufacturers

http://www.theicct.org/laboratory-road-2014-update

ON CLEAN TRANSPORTATI

The growing gap appears to be largely attributable models being strongly optimized to the test cycle

ON CLEAN TRANSPORTATIO

A growing gap means that only part of the expected fuel consumption/ CO_2 reduction may be real

There are many ways to optimize vehicles **icct** for the laboratory testing 24

Vehicle inspection

- European Union
 - Requires periodic inspection of all vehicles and trailers at regular intervals
 - Allows for unannounced roadside inspections of commercial vehicles in any EU country, regardless of place of registration
 - Sets standards for implementation
 - Member states are responsible for implementation
- United States
 - Clean Air Act requires I/M for certain regions, based on air quality, population and location
 - Sets standards for implementation and QA/QC
 - States are responsible for I/M implementation
 - State programs may include tailpipe emissions tests (idle, acceleration, etc) and/or OBD tests for MY1996+, along with visual checks, evaporative emissions tests (primarily gas cap)
 - Mostly focus on gasoline vehicles, set cutpoints, frequency, and MY requirements by state

- Widely used in US and Europe
 - US OBDII and EU EOBD Systems are very different, with different software and hardware requirements
 - EOBD systems: Euro 5 communication compliant with ISO 15031-5 Euro 6 communication complaint with ISO 15765-4
 - OBDII systems are complaint with ISO 15765-4
- Ensuring proper implementation
 - Provisions (like those to be discussed by ARB) are critical to guard against cheating are critical to ensure effectiveness of programs
 - Also need requirements in place for reporting of defects, doing field fixes and implementing running changes
- OBD appears to be a relatively robust tool for controlling emissions from vehicles in use, if proper safeguards and procedures are in place

Remote sensing

- Programs are widespread in Europe and U.S.
- Useful tool for monitoring mean on-road fleet emissions
 - Ensure that new vehicle standards are operating as intended
 - Ensuring the effectiveness of I/M programs, including guarding against corruption in test centers
 - Can be used to better calibrate emissions modeling
- Challenging to use results for enforcement or to replace I/M
 - Requires a mandate to repair/further inspect identified high emitters
 - Clean screen can reduce the burden of I/M programs

Remote sensing: OBD effective

Copyright © 2007 Envirotest Systems

Fig. 4. Mean hot NO_x emission factors of gasoline (left) and diesel (right) passenger cars and light commercial vehicles as a function of model year. Whiskers represent the 95% confidence interval over the mean. Added are the type approval limit values for Euro 1 to Euro 5 passenger cars over the homologation test cycle in force in the respective year. For conversion from limit values in g per km see SI (using measured fuel consumption rates from Hausberger (2010)). For color plot consult online version.

Low Emission Zones

- Definition: designated geographic areas within which certain categories of vehicles – usually the highest-emitting vehicles in a fleet – are restricted from operating.
 - Outright ban of certain class of vehicles or emission standard
 - Ban during certain times of the day
- LEZs are very popular in Europe and China, not in the U.S.
- Labeling is a strong complementary policy to LEZ
 - Generally based on original certification level, with retrofit option if available

Emission groups	1	2	3	4
Stickers	no sticker	2	3	Space for car registration number
Requierements for diesel engines	Euro 1 or worse	Euro 2 or Euro 1 + particulate filter	Euro 3 or Euro 2 + particulate filter	Euro 4 or Euro 3 + particulate filter
Requierements for petrol engines	Without a reg. cat according to Ann. XXIII StVZO			Without a reg. cat according to Ann. XXIII StVZO or. Euro 1 or better

- Clearly specified timelines for implementation with increasing stringency
- Effective enforcement with appropriate penalties to deter non-compliance
 - "Appropriate" varies by region. In Italy, equal to a parking ticket (70 Euros). In Denmark, equal to the cost of a DPF (10,000 Euros).

Low Emission Zones – selected results

City / Region	Year of LEZ Introduction / Measurement	Indicator
Berlin	2008 / 2009	-24% diesel PM -8% overall PM ₁₀
Munich	2006-7 / 2008 / 2009-10	-60% transport contribution from 1.1 to 0.5 μg/m ³ elemental carbon ¹⁸
Netherlands – 9 cities	2007 / 2008	up to 2µg/m ³ PM reduction
London	2008 / 2008-2012	-5.8% PM ₁₀ -13% average annual PM ₁₀ concentration ¹⁹
Cologne	2008	4μg/m ³ PM ₁₀ reduction 1.2μg/m ³ NO ₂ reduction
Stockholm	1996 / 2000	-60% PM ₁₀ -20% <u>NQx</u>
Milan – emission-based congestion charge	2011 / 2012	-19% PM10 ²⁰ -14% <u>NOX</u> -15% CO ₂

Conclusions

- Compliance and enforcement is the most critical aspect of all regulations and the key to success of US and CA policies
- US/CA programs are both more complex and more rigorous while providing more flexibilities to manufacturers
 - Bin system encourages manufacturers to design and market increasingly clean vehicles
 - Footprint-based GHG standards reward weight reduction
 - Enforcement is a real threat, standards are very detailed to eliminate loopholes
 - OBD enforcement mechanisms both reduce ability to cheat and increase increase information to regulators (defect reporting requirements)
- European LEZs have been effective in reducing air pollution in key areas and accelerating fleet turnover

Autoline interview with Oliver Schmidt, Powertrain Development, VW

