Impacts of Electric Vehicles

The main results of the recent study by CE Delft, ICF and Ecologic
Presentation overview

• Brief overview of the study
• Impact assessment
 • Three scenarios
 • Impacts:
 - vehicle sales and fleet
 - fuel and electricity demand
 - electricity production
 - emissions
• Policy assessment (focus on vehicle regulation)
• Policy conclusions
Brief overview of the study

- Commissioned by DG CLIMA
- Carried out by CE Delft (lead), ICF and Ecologic
- Objectives:
 - Assessment of status and expectations
 - Impacts of market uptake of EVs in the EU
 - Up to 2030, focus on passenger cars
- Deliverables (www.cedelft.eu):
 - D1 - Market developments
 - D2 - Battery and vehicle technology
 - D3 - Future Electricity sector
 - D4 - Economic analysis and business models
 - D5 - Impact analysis rios and policy implications
 - Summary report
Scenario analysis

- Three EV scenarios designed to cover the playing field
- Reference scenario: TREMOVE 3.3.1
 - Current policy measures implemented, no EVs
- 4 vehicle types:
 - Internal Combustion Engine Vehicle (ICE)
 - Full Electric Vehicles (FEV)
 - Plug-in hybrid electric vehicles (PHEV)
 - Extended range electric vehicle (EREV)
- In all scenarios: EVs replace ICEs
 - i.e. number of vehicles and annual mileages are the same in all scenarios.
- Passenger cars only
Three EV scenarios

- **Scenario 1: ‘Most realistic’**
 - Input parameters based on results of WP1-4
 - Only ‘innovators’ interested while costs are high.
 - Production capacity, # of charging points increase over time.
 - Smart charging (i.e. during base load) from 2020 onwards

- **Scenario 2: ICE breakthrough**
 - Optimistic estimates for costs and fuel efficiency of ICEs
 - Battery costs reduce less fast than in scenario 1.
 - Consumer interest limited to innovators and niche markets, charging possibilities remain limited

- **Scenario 3: EV breakthrough**
 - Rapid decrease of battery cost, from 2015 onwards.
 - Cost become competitive, ranges increase and costs reduce
 - Volume growth restricted by production capacity, consumer scepticism, grid bottlenecks etc.
Vehicle sales and fleet: scenario 1
Vehicle sales and fleet: scenario 2

Scenario 2

EU27 car sales per year (million vehicles)

- conventional
- PHEV
- EREV
- FEV
- Reference conventional

Vehicle sales and fleet: scenario 2

number of vehicles in EU27 (million)

- conventional
- PHEV
- EREV
- FEV
Vehicle sales and fleet: scenario 3
Impact on fuel and electricity demand

- Petrol use EU 27 (PJ)
 - Scenario 1
 - Scenario 2
 - Scenario 3
 - Reference

- Electricity use EU 27 (PJ)
 - Scenario 1
 - Scenario 2
 - Scenario 3
Impact on electricity production

- Electricity sector modelled with IPM model (by ICF)
 - IPM distinguishes various EU regions
- Results:
 - Impact on capacity mix forecast
 - Impact on power generation forecast
 - Impact on electricity prices
 - Impact on emissions
Net changes in electricity production mix - scenario 1
Overall impact on emissions: CO₂

Direct vehicle emissions:

Excl. ETS effects
Overall impact on emissions: NO\textsubscript{x}

Direct vehicle emissions:
Impact of EV market uptake: main conclusions

- Petrol and diesel demand reduces
- Power capacity and production increases (mainly gas and coal)
- CO_2 emissions reduce (4-10% in 2030)
- NO_x emissions increase, PM$_{10}$ emissions reduce
- Effects limited, at least until 2020/2025
- Lithium: significant production increases required
- A large range of economic impacts
- Government revenues reduce over time, if not adapted
A large range of relevant (existing) policies

Vehicle regulation
- CO₂ and Cars Regulation, CO₂ regulation for light commercial vehicles
- Framework Directive for Type-approval of Motor Vehicles

Regulation of energy carriers
- Renewable Energy Directive
- Fuel Quality Directive
- ETS Directive

Fiscal policies
- Framework Directive for the Taxation of Energy Products and Electricity
- Eurovignette Directive

Other relevant policies
- Various goals may be pursued:
 - Facilitate EV market uptake
 - Influence impacts
 - Avoid harmful market distortions
- Policies may vary over time

EV related policy goals and timing

- Facilitate EV market uptake
- Influence impacts
- Avoid harmful market distortions
- Policies may vary over time
CO₂ and cars regulation (1)

- EVs may have significant impact on the CO₂ and cars regulation and vice versa
 - Zero counting
 - Super credits (temporary)
- Effective incentive for EV development and sales
- CO₂-emissions of electricity production neglected
 - Risk of market distortion
 - Actual (WTW) emissions higher than the CO₂ standard suggests
- Energy efficiency in EVs not promoted.
CO$_2$ and cars regulation (2)

- **Policy options:**
 - Maintain the current system
 - Add EV energy efficiency limits to existing regulation
 - Establish WTW GHG emission standards
 - Replace current system with energy efficiency standards

- **Conclusions:**
 - Current system effective for the short term,
 - but should be adapted if EV market shares increase.
 - Establish WTW emission standards, with EU average Well-to-Tank emissions for both fuels and electricity
Policy conclusions

- EVs impact on a large range of policy areas (and vice versa)
 - Many need to be adapted when EVs enter the market
 - Some may require action in the short term
 - e.g. standardisation of charging
 - Others should be reviewed to assess whether action is needed in the medium or longer term
 - e.g. CO₂ regulation of cars, harmonisation of fiscal policies, smart charging, charging infrastructure issues
Thank you

kampman@ce.nl
www.cedelft.eu