Real-world Emission Characterization

Judith C. Chow (judith.chow@dri.edu)
John G. Watson

Desert Research Institute
Nevada System of Higher Education
Reno, NV, USA

Presented at:
The Workshop on Vehicular Air Pollution and its Impact on Human Health
Indian Habitat Centre, New Delhi, India

September 2, 2011



ODbjectives

e Contrast real-world emissions
measurements for emission rates and
emission profiles to those made for other
purposes

e Present emerging technologies for
Improving source test methods

e |llustrate variations in organic carbon (oc)
and elemental carbon ¢cy abundances In
vehicle exhaust and biomass burning
source profiles



Real-world emissions need to be measured for emission
Inventories, source apportionment, and health assessment

*_—

Stack emissions Ship emissions Home heating Domestic cooking

Roadside vehicle exhaust Diesel vehicle exhaust Cooking emission sampling
monitoring sampling atop laboratory cookstoves



Key Issues in Emission Testing

e Emissions measured for one purpose are
typically inaccurate for other purposes

e Need to measure emission rates, particle
size, chemical composition, and temporal
variations

Roadside vehicle Diesel vehicle exhaust Cooking emission
exhaust monitoring sampling sampling atop laboratory
cookstoves



Real-world emissions represent hardware, processes,
operating conditions, and fuels.

(This contrasts with most emission tests that are made for certification and compliance)

e Certification: Verify that a process design is capable of

achieving emissions below a regulated limit. (e.g., FTP engine
tests)

e« Compliance: Determine that in-use processes are within

permitted values (e.g., vehicle smog tests, periodic stack tests, and opacity
tests)

e Emissions trading: Relate actual emissions to
allowances (e.g., continuous SO, monitors)

e Emission inventories: Real-world emissions for
pollution planning

e Source apportionment: Speciated emissions for source
and receptor modeling



Emission Characteristics

e Emission Factor:
Amount emitted per unit time or unit of activity.

* Particle Size:
Determines transport and deposition properties.

* Chemical Composition:
Fractional abundance of gaseous and particulate chemical
components in emissions. Used to speciate inventory and
to apportion ambient concentrations to sources.

* Temporal Variation:
Emissions change on daily, weekly, seasonal, and annual
cycles. Timing of emissions affects atmospheric transport
and dilution as well as human exposure to air pollution.



U.S. EPA’s stack emission certification and compliance
tests are taken with 50+ year old technology

(Ducted emissions: hot stack sampling with filters and impingers)

U.S. EPA, 1996, 1997



Dilution tunnel and sampling ports for
vehicle exhaust

Put generator on wheels and move it
and it is certified by dilution sampling

Install the generator permanently
and it is certified by hot stack
sampling and yields different
emissions




Impinger catch

Front filter catch

Sampling Date




The hot filter does not collect condensable material,
while the impingers collect soluble gases

(Preceding thermal denuders remove some ultrafine particles)
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Particle characteristics* often vary during
emission tests
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* ELPI and Grimm OPC Size Distributions from a casting foundry operation Chang et al., 2005, AST



Many of the chemical components in a source profile are
condensable (commonly measured elements, ions, carbon, and gases)
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Dilution sampling provides a more realistic estimate of
PM, . emission rates than hot stack sampling
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Specific pollution sources need to be tested
with a dilution sampling system

Casting foundry Dilution sampling system




Dilution Sampling Dilution Chamber
collects
condensables and
allows for
measurement of
many chemical Sampling Vanifola
components

Filter Packs

Six two-hour samples:

- Dilution ratio (22 — 45X) Portable GC System

e Residence time (28.2 sec)

e Stack and diluted

temperatures (86-497 °F) Gas Monitor

e Stack velocity (18.0-59 m/sec)



A stable ultrafine size distribution indicates a
sufficient residence time



Organic carbon and sulfates form at lower temperatures
In diluted ship stack emissions

Diluted Samples
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Buttonhook nozzles in current stack tests do
not pass many large particles



New nozzles are needed to measure large particle sizes
such as droplets from wet scrubbers

(Inertial Droplet Separator [IDS])
IR

An IDS (Baldwin Environmental, Reno, NV, USA) has been designed to
slow particles prior to extraction




IDS* Is tested In a wet-stack simulator

*inertial droplet separator
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Testing such Inlets requires an in-stack
measurement of droplet size distributions

(DMT forward scattering cloud droplet
probe [CDP])

www.dropletmeasurement.co



The CDP* needs to be reconfigured for wet stack
applications

*cloud droplet probe



The CDP* can be adapted to determine typical
droplet size distributions in a stack at the
extraction point
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PP Systems CO, 5ens0rs
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More compact and continuous in situ sensors are desired

Sample Conditioning Module (#1) Real-time Gas Module #2) Caterpillar 797B Heavy

-

Hauler (345 tons)
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Real-world sampling uses on-board instruments to sample
plumes and normalize concentrations to CO, and fuel carbon
content to obtain emission factor in g-pollutant/kg-fuel

Caterpillar 797B Heavy Hauler (345 tons)

Samples drawn from exhaust pipe.
No interference with vehicle operations.

eBattery powered

Particle light scattering
(bgear; Normalized to filter mass)

Particle size distribution

Black carbon (two
wavelengths)

Volatile organic
compounds (vocs)
Gases

- O,
CO,
CO
NO
NO,
SO,

e H,S
Filter-based samples

Chow et al., 2010; Watson et al., 2010



Sampling port Is connected to the exhaust pipe
(muffler outlet)
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Emission concentrations varied by operating conditions

(time series)
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Distributions of VOC and SVVOC varied between LDG\V2
and HDDVP Exhaust (Ft. McHenry Tunnel, Baltimore, MD)
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a LDGV: Light Duty Gasoline Vehicle
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arge Particulate PAH variations found in

lubrication oll (Gasoline/Diesel PM Split Study)

Concentration (ug/g)
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Combustion sources can be characterized In the
laboratory

Electric Arc Generator
(PALAS)

Carbon Black and
Graphite Powder



Many Instruments are needed for
source characterization
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Abundances of different carbon fractions vary by source

(reproducibility is + 15% for all except for wood burning)
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Characterizing biomass burning Is most
challenging

%

Flaming Phase: hot and dark; high Smoldering Phase: not-so-hot and

combustion efficiency white; low combustion efficiency
(Waterfall Fire near Carson City, NV; 14 July 2004)

 Optical Properties
» Size Distribution Phase Specific?

* Emission Factors



Experimental set-up for vegetative burning

(U.S. Forest Service Fire Science Laboratory; Missoula, MT, U.S.A)

Wildland Fuel

CRD/CED Tandem
Neph
TEOM/DustTrak

Controlled vegetative burning; Photoacoustic
Smoke Jumper Base (2 — 5 wavelength)

Gas Sampling P-Trak/ELPI/SEM filter

Pack

Sampling system —— Mixing Chamber

Sequential
Filter Pack




Carbon fractions in biomass burning varied by fuel and
combustion conditions (Ec varied from 3% to 80% in PM, )

120 -
=
B 100 [omomomm e e enoooooooooonni mOC1
C
= 0C2
> 80 S 0C3
% 60 mOC4
ol o
= N
& 40
DU_) -l 36 mECS3
(7))
§ 2 7 I Bpl©
0 | b 3

CU. (7)) o L § )] (] &J "5

5= 82 2§ ¢ 2 SO g 2

2 ez =2 g n S = © @

o2 c2 = N S 5 3

ta fta 8 SR

X

Chen et al., 2007, Environ. Sci. Technol.



Transmission
Electron
Microscope
(TEM) shows
degree of
carbonization
varies by
source

Flaming white oak Kerosene flame

.........

Smoldering pine bark  Burned plastic

Tumolva et al

., 2010, Aerosol Sci.Tech.



Complete characterization of filter samples allows markers to be identified

Chemical
Analyses?
I [ [ I ' I
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PTFE syringe filter

IC); NH,* (by AC); Na*, Mg*™*, K*,
and Ca** (by AAS)

1 ml speciated WSOC
separated into three
classes: NC, MDA, and
PA by HPLC-IEC and
UV/Vis detection at
254 nm

1 ml for NC
speciation (e.g.,
carbohydrates) by
IC-PAD

1 ml for MDA
speciation (e.g.,
organic acids) by IC
with conductivity
detector

1 ml for PA
speciation (e.g.,
HULIS) by HPLC—
SEC—ELSD-UV/VIS

SEC: Size-exclusion chromatography
TD-GC/MS: Thermal desorption-gas

chromatography/mass spectrometry
UV/VIS: Ultraviolet detector

XRF: X-ray fluorescence

Observables

OC: Organic carbon

EC: Elemental carbon

HULIS: Humic-like substances
MDA: Mono/dicarboxylic acids
NC: Neutral/basic compounds
PA: Polycarboxylic acids



Organic speciation allows better quantification of combustion sources

(Lactones, hopanes, guaiacols, syringols, steranes, and sterols)
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PM emission models for on-road engines are improving, but
these become less iImportant emitters with engine improvements
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OC and EC abundances in PM, : are highest
In diesel exhaust from older engines

OC and EC Percentage (%) in PM, .

OC abundances: 20—83%0 of PM, ¢
EC abundances: 15-74%bo of PM, 4 Chow et al., 2011, Atmos. Environ.



OC and EC abundance in PM, : are viable for biomass
burning

T f LA e B Wl U‘—lll“:"- " }UJIn PM25

OC abundances: 22—67%0 of PM, ¢
EC abundances: 3—-33%b of PM, ¢

IWC: Industrial Wood Combustion; RWC: Residential Wood Combustion Chow et al., 2011, Atmos. Environ.



OC and EC abundances in PM, - are generally low in industrial
stack emissions with efficient control measures

_ . .inPM,;g

OC abundances: 2—-82%b of PM,, ¢
EC abundances: below minimum detectable limit—0-5%b6 of PM,, Chow et al., 2011, Atmos. Environ.



Improvements are needed
for real-world emission source testing

Replace hot filter/impinger
stack testing method with
dilution sampling

Reconcile test methods
among stationary and

mobile sources

Ensure comparability between emission testing and

ambient sampling methods

Integrate multiple gas/
particle measurements
with a single source test




Conclusions

e U.S. EPA certification methods are costly to apply
and do not represent real-world emissions

e Resources used for certification and compliance
tests would yield more useful results If they were
directed toward more real-world emission testing

e A variety of modern emission characterization
methods exist that can practically obtain real-
world emission factors, profiles, and activity
levels for global emission inventories

e Black Carbon ¢c) or elemental carbon (&c)
abundances vary by an order of magnitude
among pollution sources, especially for vehicle
exhaust and biomass burning
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