The GDI Revolution
World-Wide Powertrain Sales Forecast

Vehicle sales PC incl. LCV<6\(^1\)

<table>
<thead>
<tr>
<th>Year</th>
<th>EV</th>
<th>PHEV</th>
<th>HEV</th>
<th>CNG</th>
<th>GDI</th>
<th>PFI</th>
<th>Diesel</th>
<th>HEV</th>
<th>Pure ICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>0.6</td>
<td>20.9</td>
<td>48.9</td>
<td>18.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>0.8</td>
<td>35.8</td>
<td>86.7</td>
<td>19.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td>1.3</td>
<td>39.0</td>
<td>87.5</td>
<td>19.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Estimation Bosch
The GDI Revolution

Why GDI? Why Now?

Turbo Charging

Around since the 1960’s. Recuperates exhaust gas energy to boost intake air pressure, resulting in increased power. Remained a niche technology through 2010 primarily due to turbo lag.

Variable Valve Timing

Became common equipment in the mid-90’s. Allows precise control of airflow in/out of the cylinder.

Gasoline Direct Injection

First applied by Bosch in the 1950’s, industrialized from 2000 onwards. Allows precision injection of gasoline directly into the cylinder and optimization of the combustion process.

SCAVENGING

Air is swept through the combustion chamber to spool up the turbo charger even at low RPMs.
The GDI Revolution

Why GDI? Why Now?

Turbo Charging

Variable Valve Timing

Gasoline Direct Injection

SCAVENGING

Downsizing

More power from a smaller package…

- Fewer cylinders
- Less friction
- Less loss at idle
- Lower engine weight
- Lower vehicle weight

Fuel Economy

Fuel economy improves despite…

- More CUVs/SUVs/Pick-ups
- Larger footprint
- Increased horsepower

The GDI Revolution
Picking up the Pace of ICE Technology

Powertrain Technology Milestones:

- GDI
- CVT
- GTDI
- 8 Speed AT
- 10 Speed AT
- CVO
- 2nd Gen GTDI
- PFDI
- 350 Bar
- Cooled EGR?
- Water Injection?

GDI Engine Production in NA

Source: Bosch Internal Estimate (AMPI 2016)
The GDI Revolution

Optimizing the Powertrain

Background:
- Overall goal is to operate engine at high fuel efficiency regions as frequently as possible. Best fuel efficiency normally at high load/low engine speed conditions.
- Traditional PFI engines generally operated at higher engine speeds and lower loads.

Powertrain Optimization:
- GTDI enables **downsizing**, which moves the operating point into the higher load area.
- High speed transmissions enable **downspeeding**, which keeps the engine speed low.

Fuel Economy Strategy:
The GDI Revolution

CO2 Reduction Roadmap

Engine Measures

Powertrain Measures

Simulation for FTP75 test cycle
The GDI Revolution

Next Steps in GDI – Meeting the Emissions Challenge

Sources of Particles

1. Piston surface wetting
2. Combustion chamber roof wetting
3. Injector tip fuel deposits
4. Droplets in combustion zone

Diffusion Combustion:

Inhomogeneous Mixture:

1. Fuel vapor phase (l<1)
2. HC in crevices (l<1)

System Approaches to Increase Efficiency and Reduce Particulates

Increased Pressure:

Advanced Combustion:
Optimized Calibration, CVO, & Multi-Injection:

Spray Targeting:

Laser Drilling:

Reduced penetration
Thank you for your attention!

Questions?