Greenhouse Gas Reduction Potential
Estimations for Light-Duty Vehicle Technologies in 2020–2025

ICCT International Workshop, Brussels
1 February 2012

John J. Kasab, Ph.D., P.E.
Prof. Neville Jackson

Project Team: Paul Deller, Anrico Casadei, Daniel Shepard, Daniel Gross, Velliyiur Subbarao
Agenda

- Introduction to Ricardo
- Technology Roadmaps
Ricardo Overview
Ricardo delivers world class strategy, engineering and technology programs to the global automotive, transportation, defense, and energy industries

Company
- Established in 1915 and independent
- £196.5 million revenue (FY 10/11)
- More than 1,500 employees with more than 1,300 technically qualified and engineering staff
- Global presence in 16 locations

Positioning
- Emphasis on achieving enhanced value propositions for our clients
- Multi-sector oriented with relevant domain expertise
- Global footprint with local understanding
- Strategic perspectives and consulting
- Unique holistic vehicle and powertrain experience
- Systems engineering approach that considers integrated solutions for the entire product lifecycle
- Significant self-funded R&D investment
- Technology led product innovation
- Extensive production vehicle and major sub-system introduction experience
- Delivery focused
- Specialist manufacturing and assembly capability for niche product applications

Values
RESPECT · INTEGRITY · CREATIVITY & INNOVATION · PASSION
Ricardo History

Almost 100 years of successful project delivery

1915 Engine Patents Ltd. Est.
- Harry Ricardo formed Engine Patents Ltd, the precursor of today's Ricardo Plc becoming famous for the design of a revolutionary engine which was utilised in tanks, trains and generators.

1930 Fundamental Fuel Research
- Development of a variable compression engine which was used to quantify the performance of different fuels. This was the forerunner of today's octane rating scale (RON).

1931 Comet Combustion Chamber
- The famous Ricardo Comet IDI diesel Combustion system for high-speed diesel engines was developed for AEC for use in London Buses.

1935 Citroën Rosalie
- The world's first diesel production passenger car was introduced featuring a Comet Mk III combustion chamber. Derivatives of this design are still used by the major OEMs of today.

1951 Fell Locomotive
- The 2000bhp Fell Locomotive was the world's first diesel mechanical locomotive, with a novel transmission invented by Lt. Col Fell. It was powered by four Paxman-Ricardo engines.

1966 Jensen FF
- The 4WD system of the world’s first 4WD passenger car, was developed by Ferguson Research Ltd (which later became part of Ricardo) and was launched at the British Motor Show.

1986 Voyager
- The first aircraft to fly around the world non-stop without refuelling. Ricardo redesigned the Teledyne Continental engine, thus improving fuel economy and reducing the aircraft’s drag.

1999 Le Mans Success
- Advanced technology helped Audi to secure its special place in motorsport history with a novel transmission to win 5 races out of 6 entries at the 24-hour race of Le Mans.

2006 Record Breaking Year
- Development of the world’s fastest diesel engine for JCB. The DieselMax set the diesel land speed record at Bonneville with a speed of 350 mph (563 kph).

2008 Olympic Games, Beijing
- 50 off "Olympic Green Messenger" vehicles co-developed by Chery Automobile and Ricardo.
Ricardo Client Base
Represented across a number of key market sectors each with unique drivers

<table>
<thead>
<tr>
<th>Sector</th>
<th>Logos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger Car</td>
<td></td>
</tr>
<tr>
<td>High Performance Vehicles & Motorsport</td>
<td></td>
</tr>
<tr>
<td>Commercial Vehicles</td>
<td></td>
</tr>
<tr>
<td>Agricultural & Industrial Vehicles</td>
<td></td>
</tr>
<tr>
<td>Motorcycles & Personal Transportation</td>
<td></td>
</tr>
<tr>
<td>Marine</td>
<td></td>
</tr>
<tr>
<td>Rail</td>
<td></td>
</tr>
<tr>
<td>Clean Energy & Power Generation</td>
<td></td>
</tr>
<tr>
<td>Defence</td>
<td></td>
</tr>
<tr>
<td>Government</td>
<td></td>
</tr>
</tbody>
</table>
Ricardo Locations

Our Global footprint allows us to understand the local needs of our clients
Agenda

- Introduction to Ricardo
- **Technology Roadmaps**
Future Trends in Vehicle Technology

- **Regulation is driving new technology & innovation to higher efficiency**
 - Accelerating the rate of technology introduction to passenger cars
 - European regulation likely for Commercial vehicles following US/Japan lead

- **Passenger car efficiency dominated by ICE technologies in the short/med term**
 - There is no “silver bullet” - we will need a range of technologies to meet targets
 - A better understanding of life cycle emissions will enable more informed choices
 - Electrification is a longer term trend but we need a breakthrough in batteries

- **Both evolutionary and disruptive technologies are likely to be successful**
 - Intelligent Electrification is a key approach to enable more radical ICE technology
 - Mechanical Hybrids could offer substantial cost reductions over electric systems
Future Trends in Vehicle Technology

● **Regulation is driving new technology & innovation to higher efficiency**
 – Accelerating the rate of technology introduction to passenger cars
 – European regulation likely for Commercial vehicles following US/Japan lead

● **Passenger car efficiency dominated by ICE technologies in the short/med term**
 – There is no “silver bullet” - we will need a range of technologies to meet targets
 – A better understanding of life cycle emissions will enable more informed choices
 – Electrification is a longer term trend but we need a breakthrough in batteries

● **Both evolutionary and disruptive technologies are likely to be successful**
 – Intelligent Electrification is a key approach to enable more radical ICE technology
 – Mechanical Hybrids could offer substantial cost reductions over electric systems
Recent CO$_2$ focus on passenger car but governments are expanding GHG targets to other applications

- UK emissions data: Only half of vehicle CO$_2$ is produced by passenger cars

Energy Supply 39%

Public Sector 2%

Industrial Processes, 3%

Residential 16%

Business Sector

Vehicles 25%

On Road: Off Road Vehicle CO$_2$ ~ 80%:20%

Source: DECC & Ricardo analysis
Similarly in U.S., light-duty vehicles account for 57% of CO$_2$ emissions—a comprehensive approach is required.
The growth of both regulation and targets for Low Carbon Vehicles sets a major challenge for the road transport sector

- EU, USA, Canada, Australia, China & Japan – Legislation / agreements for fuel economy or CO₂
- EU Proposal for Vans
 - 175 g/km from 2014-16
 - 135 g/km by 2020
- USA has proposed target of
 - 35.5 mpg by 2016
 - 54.5 mpg by 2025
 - Implemented over whole of USA by EPA
- Challenging Targets:
 - EU 3.9% pa to 2020
 - US 4.7% pa to 2025

[1] China’s target reflects gasoline fleet scenario. If including other fuel types, the target will be lower.

European regulation will continue to drive lower toxic emissions with additional CO₂ legislation likely

Passenger car and light commercial vehicle tailpipe emission targets including high performance vehicles

<table>
<thead>
<tr>
<th>Year</th>
<th>PC Target</th>
<th>LT Target</th>
<th>LT2 Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>140 g/km CO₂</td>
<td>175 g/km CO₂</td>
<td>160 g/km CO₂</td>
</tr>
<tr>
<td>2010</td>
<td>120 g/km CO₂</td>
<td>150 g/km CO₂</td>
<td>140 g/km CO₂</td>
</tr>
<tr>
<td>2015</td>
<td>130 g/km CO₂</td>
<td>175 g/km CO₂</td>
<td>150 g/km CO₂</td>
</tr>
<tr>
<td>2020</td>
<td>95 g/km CO₂</td>
<td>70 g/km CO₂</td>
<td>65 g/km CO₂</td>
</tr>
<tr>
<td>2025</td>
<td>Diesel harmonization with gasoline</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These targets were voluntarily set by the ACEA for 2008, and JAMA/KAMA for 2009; they were not met but good progress was made.

Medium & heavy duty tailpipe emission targets

No CO₂ targets for trucks yet, but this is now being discussed and is likely to be introduced.

<table>
<thead>
<tr>
<th>Year</th>
<th>Stage</th>
<th>CO₂ Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>Stage II</td>
<td>1.0–1.5 CO 6.0–9.2 CO 3.5–6.5 CO 0.2–0.85 g/kWhr</td>
</tr>
<tr>
<td>2009</td>
<td>Stage IIIA (37–56kW)</td>
<td>4.0–4.7 CO 3.5–5.0 CO 0.2–0.4 g/kWhr</td>
</tr>
<tr>
<td>2013</td>
<td>Stage IIIA (56–560kW)</td>
<td>0.19 NOx 2.0–3.3 CO 3.5–5.0 CO 0.025 g/kWhr</td>
</tr>
<tr>
<td>2013</td>
<td>Stage IIIB (37–56kW)</td>
<td>4.7 CO 3.5–5.0 CO 3.5–5.0 CO 0.025 g/kWhr</td>
</tr>
<tr>
<td>2013</td>
<td>Stage IV (56–560kW)</td>
<td>0.19 NOx 0.4 CO 3.5–5.0 CO 0.025 g/kWhr</td>
</tr>
</tbody>
</table>

Flexibility Scheme

- Stage III & IV: Ammonia emissions are also limited to a mean of 25 ppm over the test cycle.

Key:
- Tailpipe emission target
- CO₂ emissions / fuel economy target

Sources: Ricardo & National government publications.
Progress has been made against EU emissions legislation, but Pass Car OEMs have a lot to do in a comparatively short time.

Comments
- **OEMs have an average annual CO₂ reduction of ~3% since 2005**
 - Toyota and BMW lead with 6.5% and 4.7%
 - Ford and Renault are laggards with 1.4% and 1.8%
- **Market still has average of ~6.6% to go to hit targets**
 - PSA & Toyota have ~2%
 - Daimler has 15%
- **Ricardo calculated that average non-compliance penalties could be €2,900 per car**
 - Up to €4,300 for Daimler

Progress against 2015 130g CO₂ / kM target

Source: Bernstein & Ricardo analysis
Future Trends in Vehicle Technology

- Regulation is driving new technology & innovation to higher efficiency
 - Accelerating the rate of technology introduction to passenger cars
 - European regulation likely for Commercial vehicles following US/Japan lead

- **Passenger car efficiency dominated by ICE technologies in the short/med term**
 - There is no “silver bullet” - we will need a range of technologies to meet targets
 - A better understanding of life cycle emissions will enable more informed choices
 - Electrification is a longer term trend but we need a breakthrough in batteries

- Both evolutionary and disruptive technologies are likely to be successful
 - Intelligent Electrification is a key approach to enable more radical ICE technology
 - Mechanical Hybrids could offer substantial cost reductions over electric systems
There are three interlinked phases of change required to current light duty powertrain technology and strategy

<table>
<thead>
<tr>
<th>SHORT TERM: ~2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Boosting & downsizing</td>
</tr>
<tr>
<td>– Turbocharging</td>
</tr>
<tr>
<td>– Supercharging</td>
</tr>
<tr>
<td>• Low speed torque enhancements</td>
</tr>
<tr>
<td>• Stop/Start & low cost Micro Hybrid technology</td>
</tr>
<tr>
<td>• Friction reduction</td>
</tr>
<tr>
<td>• Advanced thermal systems</td>
</tr>
<tr>
<td>• Niche Hybrid, PHEV’s and Electric Vehicles</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEDIUM TERM: ~2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>• High Efficiency</td>
</tr>
<tr>
<td>Advanced Combustion:</td>
</tr>
<tr>
<td>– Lean Stratified SI</td>
</tr>
<tr>
<td>– Low temperature combustion</td>
</tr>
<tr>
<td>• Combined turbo/supercharging systems</td>
</tr>
<tr>
<td>• Advanced low carbon fuel formulations</td>
</tr>
<tr>
<td>• PHEV’s in premium & performance products</td>
</tr>
<tr>
<td>• EV’s for city vehicles</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LONG TERM: ~2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Plug-in/Hybrid electric systems dominate</td>
</tr>
<tr>
<td>– Very high specific power ICE’s</td>
</tr>
<tr>
<td>• Range of application specific low carbon fuels</td>
</tr>
<tr>
<td>• Exhaust & Coolant energy recovery</td>
</tr>
<tr>
<td>• Advanced thermodynamic Cycles</td>
</tr>
<tr>
<td>– Split Cycle?</td>
</tr>
<tr>
<td>– Heat Pumps?</td>
</tr>
</tbody>
</table>
“Consensus” mass market roadmap developed by Ricardo for UK Auto Council shows that a range of technologies will be required to meet regulatory targets.

Ricardo results show hybrids & EVs will have lower life cycle CO₂, but embedded emissions will be more significant

Future Technologies for Mid Size (1350–1500kg) Vehicle

Assumptions:
- Vehicle specifications based on roadmap projections for 2015.
- Assumed lifetime mileage 150,000 km.
- Gasoline fuel E10. Diesel fuel B7
- Fischer-Tropsch diesel from farmed wood (WTW = 6 gCO₂eq/MJ via UK RED)
- Hydrogen carbon intensity 99.7 gCO₂e/MJ (from Natural Gas Steam Reforming)
- Electricity carbon intensity assumed to be 594 gCO₂/kWh.
- Hybrid Battery 1.8 kW.hr NiMH, 56 kW Motor
- EV Battery 32 kW.hr Li-ion ~ 150 km range
- PHEV Battery 5 kW.hr ~ 20 km range
- FCEV Battery 1.8 kW.hr

Source: Ricardo report for LowCVP, “Preparing for a life cycle CO₂ measure” (RD.11/124801.5), plus additional Ricardo analysis
Agenda

- Introduction to Ricardo
- Technology Roadmaps

Approach
- Ricardo team identified future technology packages and estimated their effects on fuel consumption
- Created new vehicle classes, implemented hybrid powertrains and controls (P2 and Powersplit), and incorporated new technology packages to define a broad design space
- Ricardo's complex systems modeling approach used to examine the extensive design space

Situation and objective
- EPA wanted objective technical input to support Notice of Proposed Rule Making (NPRM)
- Analysis estimates greenhouse gas emissions of future vehicles based on future technology packages and combinations thereof
- Use a defensible rationale for technology section revisions to rule including new/ revised technology definitions, technology selection logic, vehicle classes, and applicability

Results and benefits
- Improved accuracy of technology applicability, and a defensible rationale for rule making
- Broad design space allows examination of several combinations of technologies, and their synergistic effects
- Data visualization tool facilitates exploration of the design space
- Fully documented approach and results for use in rule by EPA
Ricardo brought its global expertise to bear, first for EPA looking at the U.S. market, then for ICCT looking at the EU.
Ricardo and EPA used an agreed process to evaluate technologies for inclusion in the study design space.
Ricardo, EPA, ICCT, and Calif ARB identified several LDV technologies for further evaluation by Ricardo SMEs

- Engine technologies and configurations
 - Fuel injection, boost system, valvetrain, combustion, and controls
- Hybrid powertrain technologies and configurations
- Transmission technologies and configurations
 - Advanced automatics, CVT, DCT, launch devices
 - Transmission technologies
- Vehicle technologies
 - Mass reduction, aerodynamic improvements, rolling resistance, accessories
Gasoline engines focus will be on CO₂ reduction as emission legislation remains less challenging, even under LEV III

Technology Roadmap for Light Duty Gasoline

<table>
<thead>
<tr>
<th></th>
<th>2010</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US GHG and CAFE (mpg)</td>
<td>27.3</td>
<td>35.5</td>
<td>54.5</td>
<td></td>
</tr>
<tr>
<td>Power Density</td>
<td>Reduce CO₂ and increase kW/ℓ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine Concept</td>
<td>Engine Downsizing, Downspeeding & Hybridization</td>
<td>Energy Recovery / Split Cycle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine Design</td>
<td>Thermal & Lubrication Systems</td>
<td>Advanced Structures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Handling</td>
<td>Variable Tumble Intake Ports</td>
<td>VGT, E-boost, Compounded Boost</td>
<td>Cylinder Deactivation, CPS, VVL</td>
<td></td>
</tr>
<tr>
<td>Combustion</td>
<td>Biofuel</td>
<td>Homogeneous GDI</td>
<td>2nd Generation Stratified GDI</td>
<td>CAI, WOT, EGR, Lean Boost, Deep Miller Cycle</td>
</tr>
<tr>
<td>Emissions Control</td>
<td>TWC – Optimizing Formulation and Substrates</td>
<td>Lean NOx Trap (for lean SI)</td>
<td>GPF</td>
<td></td>
</tr>
</tbody>
</table>

Source: Ricardo Analysis *
Pathways for gasoline engine development
Progress from research to premium product to mass market

- PFI, NA
 - PFI, Boosted
 - DI, Boosted
 - EGR
 - DI, Boosted
 - No enrichm't
- DI, NA
 - DI, Boosted
 - Fuel-lean
- Atkinson
 - 2-stroke/4-stroke

NA = naturally aspirated
PFI = port flow injection
DI = direct injection
EGR = exhaust gas recirculation

Mass production
Premium product
Research / demo

Source: Ricardo Analysis
Technology Assessment – Diesel Engines

Ricardo SME assessment example
Advanced Boosting Technologies

Technology and Status

- **Concept:** Improvements in air handling through a suite of boosting technologies either standalone or in combination
- **Base Functioning:** Provision of higher specific torque and power to enable downsized engines. Technologies include eBoost (e-machine in CHRA or electrical separation by e-Turbine and e-Compressor); supercharging (advances to avoid variable drive); variable nozzle compressor
- **CO₂ Benefit:** 2% (more if engine downsized for equivalent performance)
- **Costs:** Increase in turbocharger air system matching and development time, increased complexity in engine controller. Variable cost of turbocharger doubles plus additional air cooling requirement, sensors and actuators

Technology Applicability

- Technology applicable to all sectors of diesel application
- Highway benefits – improved transient response from engine allows downsizing. More air allows improved emission performance for NOx and PM control giving leeway for CO₂ reduction.
- City benefits – much improved transient performance allowing downsizing. Operation in more efficient area of turbocharger map gives more noticeable CO₂ benefit in city driving
- In conjunction with enhanced EGR allows for premixed or homogeneous combustion in part load operation for very clean emissions. Design can facilitate the use of pre-TC catalyst for quick aftertreatment light-off

Ratings of Technology

- Effectiveness: 3
- Availability: 7
- Market Penetration: 5
- Long-Term Cost Viability: 7
- Current Maturity: 4

Visualization

Picture: http://honeywellbooster.com
Technology Assessment – Transmissions

Ricardo SME assessment example
Launch Device: Damp Clutch

Technology and Status

- **Concept:** Similar concept as a wet clutch but only a limited spray is applied to achieve cooling
- **Base Functioning:** Still requires a lubrication system but is more efficient due to controlled environment (less windage and churning)
- **CO₂ Benefit:** Similar benefits as a dry clutch
- **Costs:** slight increase to wet clutch

Technology Applicability

- Applicable to most automatic transmissions – best of both worlds, efficiency of a dry clutch matched with the longevity and higher torque capacity of a wet clutch
- As for the other launch devices, the increase in efficiency is applicable mostly to city driving.

*Note: Effectiveness relates to improvement in transmission efficiency

Ratings of Technology

Effectiveness: 7
Availability: 2
Market Penetration: 3
Long-Term Cost Viability: 5
Current Maturity: 4

Visualization

Picture: www.cerom.lsu.edu
Technology Assessment – Vehicle

Ricardo SME assessment example
Aerodynamics: Active

Technology and Status

- **Concept**: Opportunity exists to reduce overall vehicle drag through improved control of drag-affecting features (cooling apertures, ride-height etc). Radiator grill sizing is designed for maximum thermal rejection; at high ambient / high vehicle loads. Most of the time, the majority of vehicles need much less cooling. Thus openings can be significantly reduced, reducing vehicle drag.

- **Base Functioning**: A reduction in C_D has a direct affect on reduction of the force required to enable forward motion. As drag force is dependent on the square of vehicle speed, at higher speeds, the fuel economy gain is increased.

- **CO₂ Benefit**: Active cooling aperture control could give an 8-10% vehicle drag reduction. A 10% reduction in drag can give a 2.5% improvement in fuel economy.

- **Costs**: Some associated on-cost

Technology Applicability

- The faster the vehicle is required to travel, the greater benefit this is. Most effective where significant freeway travel is required. Suits all powertrain variations.

- Has some (small) weight penalty, thus city-only vehicles may be penalized; however, city-only cars could have altered drive-cycles, as unlikely to need to drive up mountains in Death Valley, at GVW.

- Potential improvements through cooling system aperture control C_D 0.008 for small and medium cars and 0.03 for large passenger cars and SUVs.

- Where available, ride height reduction with increasing speed reduces the effective frontal area, and increases tire coverage.

Ratings of Technology

<table>
<thead>
<tr>
<th></th>
<th>1 (worst)</th>
<th>10 (best)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effectiveness</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Availability</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Market Penetration</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Long-Term Cost Viability</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Current Maturity</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

Visualization

Picture: www.parkviewbmw.com
Ricardo SME assessments were then reviewed, and technology packages developed for further evaluation.
Technology packages in the 2020–2025 Design Space

- Vehicle classes: (EPA study only in blue)
 - B Class (Small Car)
 - C Class
 - D Class (Standard Car)
 - E Class (Full Size Car)
 - Small crossover utility vehicle (Small multi-purpose vehicle)
 - Small N1
 - Large N1 (Large MPV)
 - Light-Duty Truck
 - Light Commercial Vehicle (Light Heavy-Duty Truck)

- Powertrain architectures:
 - Conventional, with stop-start
 - Powersplit hybrid
 - P2 hybrid
Technology packages in the 2020–2025 Design Space

- **Engines:**
 - Stoichiometric direct-injection turbocharged (SDIT) SI engine
 - Lean-stoichiometric direct-injection turbocharged (LDIT) SI engine
 - EGR direct-injection turbocharged (EDIT) SI engine
 - Atkinson cycle SI engine with cam-profile switching (CPS)
 - Atkinson cycle SI engine with digital valve actuation (DVA)
 - Advanced European Diesel
 - Advanced U.S. Diesel
 - 2010 Baseline SI engines
 - 2010 Baseline Diesel engines

- **Transmissions:**
 - 2010 baseline six-speed automatic
 - Advanced automatic transmission, eight-speed
 - Dual clutch transmission, eight-speed, dry or wet clutch
 - Powersplit planetary gearbox
Ricardo developed model inputs for technology packages, e.g., Stoichiometric, Direct Injection Turbocharged Engine

Efficiency map generated by Ricardo for EPA program (left) is based on benchmarking and research data, and compares favorably to research results from 2011 General Motors paper (right) from demonstration engine.

Source: Ricardo Analysis

Source: Schmuck-Soldan, S., A. Königstein, and F. Westin, 2011
The 2020–2025 Design Space was defined and sampled for simulation results

- The complete design space covered by the EPA and ICCT studies includes
 - 9 light-duty vehicle classes (7 for EPA, 6 for ICCT)
 - 3 powertrain architectures (conventional, Powersplit Hybrid, and P2 Hybrid)
 - 9 engine types (two baseline + seven advanced)
 - 4 transmission types (baseline, advanced automatic, wet & dry DCT)
 - 6 vehicle-level continuous parameters (mass, final drive ratio, aero, etc.)
 - 6 drive cycles (NEDC, FTP, HWFET, US06, JC08, performance)

- With DoE method, needed ≈400,000 simulations to sample the design space
Results from DoE simulations fit to Response Surface Models, which were then implemented into a Data Visualization Tool

RSM were fit using neural nets

<table>
<thead>
<tr>
<th>Input Factors</th>
<th>Output Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle class</td>
<td>Drive cycle fuel economy</td>
</tr>
<tr>
<td>Powertrain configuration</td>
<td>NEDC, JC08, US06</td>
</tr>
<tr>
<td>Engine</td>
<td>FTP, HWFET, and combined</td>
</tr>
<tr>
<td>Transmission</td>
<td>Drive cycle CO₂ emissions</td>
</tr>
<tr>
<td>Engine displacement</td>
<td>NEDC, JC08, US06</td>
</tr>
<tr>
<td>Final drive ratio</td>
<td>FTP, HWFET, and combined</td>
</tr>
<tr>
<td>Rolling resistance</td>
<td>Acceleration times</td>
</tr>
<tr>
<td>Aerodynamic drag (C_d \cdot A)</td>
<td>0-10, 0-30, 0-50, 0-60, 0-70 mph</td>
</tr>
<tr>
<td>Vehicle mass</td>
<td>30-50 mph, 50-70 mph</td>
</tr>
<tr>
<td>Engine efficiency</td>
<td>Top speed on 5% or 10% grade</td>
</tr>
<tr>
<td>Electric machine size</td>
<td>Velocity or distance at 1.3 s</td>
</tr>
<tr>
<td></td>
<td>Velocity or distance at 3.0 s</td>
</tr>
</tbody>
</table>

Source: 8pt Dark Grey (R 167, G 169, B 172)
Individual advanced vehicle configurations can be assessed

- Various C Class vehicle configurations can achieve similar GHG levels

<table>
<thead>
<tr>
<th>C Class Vehicle Configuration</th>
<th>Vehicle Mass</th>
<th>Rolling Resist.</th>
<th>Aero. Drag</th>
<th>g CO₂/km on NEDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline with SI engine</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>165</td>
</tr>
<tr>
<td>Baseline with Diesel engine</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>107</td>
</tr>
<tr>
<td>Stoich DI Turbo + 8-spd DCT</td>
<td>85%</td>
<td>90%</td>
<td>90%</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>70%</td>
<td>80%</td>
<td>80%</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>104</td>
</tr>
<tr>
<td>Adv EU Diesel + 8-spd DCT</td>
<td>85%</td>
<td>90%</td>
<td>90%</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>70%</td>
<td>80%</td>
<td>80%</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>96</td>
</tr>
<tr>
<td>Atkinson (CPS) Powersplit Hybrid</td>
<td>85%</td>
<td>90%</td>
<td>90%</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>70%</td>
<td>80%</td>
<td>80%</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>81</td>
</tr>
<tr>
<td>Atkinson (CPS) P2 Hybrid</td>
<td>85%</td>
<td>90%</td>
<td>90%</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>70%</td>
<td>80%</td>
<td>80%</td>
<td>62</td>
</tr>
</tbody>
</table>

- All other parameters are at 100% of nominal C Class value
Hybrid and conventional powertrains can lead to similar GHG emissions

Results are for C Class Car, varying powertrain configuration, engine displacement, vehicle mass, and electric machine size (for hybrids). Rolling resistance and $C_d \cdot A$ are 90% of Nominal.
Hybrid and conventional powertrains can lead to similar GHG emissions

Results are for C Class Car, varying powertrain configuration, engine displacement, vehicle mass, and electric machine size (for hybrids). Rolling resistance and $C_d\cdot A$ are 90% of Nominal.
Conclusions – Lower GHG emissions will drive innovation in LDV segments

- Several technology combinations will be pursued in parallel to help meet new GHG emissions
 - Mix will include more than just hybrids
 - Downsized engines and advanced transmissions have a role to play
- Trends and product announcements from the industry are consistent with those predicted by Ricardo for this study
 - E.g., 2012 Ford Escape with downsized engine replacing hybrid option
- With eye on 2016 requirements and knowing that tougher rules are coming in the US, EU, and Japan, manufacturers and suppliers have not been sitting idle
 - Several manufacturers implementing advanced valvetrain designs
 - Several manufacturers implementing turbocharging and direct injection to support downsizing engines
 - Hybridization and electrification of vehicles continues
Thanks for your attention. Questions?

Dr John J. Kasab, P.E.
Chief Engineer
Chemical Technology and Innovations

Direct Dial: +1 734 394 3951
Reception +1 734 397 6666
Facsimile: +1 734.397.6677
john.kasab@ricardo.com

Ricardo US – Detroit Technology Campus
40000 Ricardo Drive, Van Buren Twp., MI 48111
USA

www.ricardo.com