Using Top-down and Bottom-up Source Apportionment Studies to Evaluate Benefits and Co-Benefits

Dr. Sarath Guttikunda

Founder @ UrbanEmissions.Info, New Delhi, India Affiliate Assistant Research Professor, Desert Research Institute, Reno, USA

Workshop on Vehicular Air Pollution and Its Impact on Human Health
Jointly Organized by MOEF / CPCB / EPCA / ICCT
New Delhi, India
September 2nd, 2011

Let's talk about...

- the sources of air pollution
- the source apportionment methods
- using results for evaluations and decisions

Sources

.... what we need to know for better evaluations and efficient decision making

Impacts

Sources and their Contributions

PM

Chemical composition gives an indication of the sources

Results, using...

Monitoring data
Chemistry of the pollutants
Geographical knowledge
Meteorology
Modeling

Consolidated decisions

% Emissions ≠ % Ambient Pollution

A simulation of sulfur dioxide emissions from power plant stacks

Source Apportionment

- Top-down approach
- Bottom-up approach

Reference:

Johnson TM, Guttikunda SK, Wells G, Artaxo P, Bond T, Russell T, Watson J, and West J (2011)

"Tools for Improving Air Quality Management – A Review of Top-Down Source Apportionment Techniques and their Applications in the Developing World"

ESMAP publications, The World Bank, Washington DC, USA http://www.esmap.org/esmap/node/1159

Top-down results are limited to sampling locations

% PM_{2.5} ground emissions in the box

Bottom-up results for all areas

% PM_{2.5} ground emissions in the box

Bottom-up results for all areas

% PM_{2.5} ground emissions in the box

Bottom-up results for all areas

% PM_{2.5} ground emissions in the box

Bottom-up results for all areas

Evaluating Benefits & Co-Benefits

Beijing's Olympic Effort, 2008

August 13th 2010, API = 83

50% drop in the NOx concentrations, during the 2 months of Olympic interventions.

Co-benefits approach

Increased motorization
Increased fuel use
Generator sets

Natural gas buses (leaks)

+ PM

Using biomass

Public transport
Non-motorized transport
Energy efficiency
Renewables

Cornie Huizenga, CAI-Asia

Chennai, India, 2010

2010 - CO2 ~25 mil tons/yr

Health Impacts in 6 Cities

Table 5.2: Estimated Mortality and Morbidity due to air pollution for 2010 (numbers rounded to nearest zero)

Mortality & Morbidity	Pune	Chennai	Indore	Ahmedabad	Surat	Rajkot
Domain size (km x km)	32 x 32	44 x 44	32 x 32	44 x 44	44 x 44	24 x 24
Study Domain Population (million)	6.5	8.5	3.3	7.8	5.0	1.4
Land-Sea Breeze	NO	YES	NO	NO	YES	NO
2010 PM_{10} emissions (tons/yr)	36,600	56,400	18,100	35,100	19,900	14,000
						~
Premature Deaths	3,600	3,950	1,800	4,950	1,250	300
Mortality per ton of PM10	0.1	0.07	0.1	0.14	0.06	0.02
					Y	
Adult Chronic Bronchitis	10,800	11,800	5,400	14,800	3,750	950
Child Acute Bronchitis	79,250	86,600	39,300	108,300	27,400	6,800
Respiratory Hospital Admission	5,000	5,460	2,500	6,800	1,700	450
Cardiac Hospital Admission	1,350	1,480	670	1,850	470	120
Emergency Room Visit	97,800	106,900	48,500	133,700	33,800	8,400
Asthma Attacks (million)	1.2	1.3	0.6	1.7	0.4	0.1
Restricted Activity Days (million)	10.4	11.3	5.1	14.2	3.6	0.9
Respiratory Symptom Days (million)	49.7	54.1	24.5	67.6	17.1	4.2

Questions to ask?

- What is the role of domestic and construction sectors?
- What is the role of sustainable transport interventions?
- How can we improve monitoring?
- Where are the co-benefits?
 - Urban vs. Rural
 - Outdoor vs. Indoor
 - Sector by Sector
- How to raise public awareness?

Co-Benefits in 6 Cities

Table 6.14: Estimated combined benefits for emissions and health from the six interventions in 2020

Mortality & Morbidity	Pune	Chennai	Indore	Ahmedabad	Surat	Rajkot
Domain size (km x km)	32 x 32	44 x 44	32 x 32	44 x 44	44 x 44	24 x 24
Study Domain Population (million)	7.6	10.5	4.3	10.3	6.2	1.9
Land-Sea Breeze	NO	YES	NO	NO	YES	NO
2020 PM_{10} emissions (tons/yr)	38,000	55,100	21,000	31,800	23,200	18,500
Estimated PM10 emissions reduced	13,900	17,400	6,200	8,800	8,200	7,900
(tons/yr)						\mathcal{O}'
% compared to 2020	37%	31%	30%	27%	35%	× 42%
Premature deaths saved	1,700	1,270	630	1,390	590	290
% compared to 2020	39%	21%	25%	18%	29%	42%
Estimated CO2 emissions reduced	3.0	5.7	1.8	2.5	2.4	1.4
(million tons/yr)						

Reconciling Approaches

- Validating emission factors with measurements during source profiling
- Identifying missing sources using top-down results
- Identifying hot-spots for monitoring via dispersion modeling
- Using monitoring data for validating dispersion modeling results
- Establishing an pollution control strategy

Delhi, India, 2010

Mobile lidar monitoring provided spatial and temporal evolution of pollution during the games.

Thank you Questions?

Dr. Sarath Guttikunda

@ www.urbanemissions.info
New Delhi, India

September, 2011

