Assessment of Light-Duty Vehicle Mass-Reduction Costs

Nic Lutsey
Postdoctoral Researcher, Univ. of California, Davis
ICCT GHG technology workshop
Brussels, Belgium
February 1, 2012
Outline

• Mass-reduction assessment in regulatory development
 – Mass-reduction assessment in US 2017-2025 GHG standards
 – Existing technical literature
• Ongoing state-of-the-art mass reduction studies
 – Major projects underway
• Policy implications
Mass-Reduction in US/CARB Regulation

- Mass-reduction assessment in US regulations involves technical contractor work, confidential business information from OEMs, and fleet safety analysis.
- Technical basis, assumptions available in documents at agency websites.
- US Environmental Protection Agency (USEPA) and National Highway Traffic Safety Administration (NHTSA):
 - Notice of Proposed Rulemaking (NPRM): Pages 74947 - 74962
 - Joint Technical Support Document (TSD): Pages 3-204 - 3-212
 - Documents at http://www.epa.gov/otaq/climate/regulations.htm
- California Air Resources Board
 - Technical Appendix Q: pages 6-20
Mass-Reduction: Automaker Plans

- Mass reduction is expected from every automaker
- Below are public statements, anecdotes, quotes...

<table>
<thead>
<tr>
<th>Company</th>
<th>Quote, statement, or commitment</th>
</tr>
</thead>
</table>
| Ford | • From 2011 to 2020: “Full implementation of known technology… weight reduction of 250-750 lbs”
 • “The use of advanced materials such as magnesium, aluminum and ultra high-strength boron steel offers automakers structural strength at a reduced weight to help improve fuel economy and meet safety and durability requirements” |
| Toyota | • 10-30% weight reduction for small to mid-size vehicles |
| Volkswagen | • “Automotive light weight solutions are necessary more than ever to reduce CO₂ emissions”
 • “Multi-Material Concepts promise cost effective light weight solutions” |
| GM | • “We… are likely to use more lightweight materials in the future”
 • “One trend is clear - vehicles will consist of a more balanced use of many materials in the future, incorporating more lightweight materials such as nanocomposites and aluminum and magnesium.” |
| Mazda | • Reduce each model by 220 lb by 2015; another 220 lb by 2020 |
| Nissan | • Average 15% weight reduction by 2015
 • “We are… expanding the use of aluminum and other lightweight materials, and reducing vehicle weight by rationalizing vehicle body structure” |
| BMW | • “Lightweight construction is a core aspect for sustainable mobility improving both fuel consumption and CO₂ emissions” |
| Renault | • “To meet commitments on CO₂ emission levels, it is important that we stabilize vehicle weight as from now, and then start bringing it down.” |
Technical Literature on Vehicle Mass-Reduction

• Technical assessments on mass-reduction involve major studies by national US energy laboratories, OEM steel suppliers, OEMs with universities, etc.
• Studies demonstrate diverse options for mass-reduction
 – Part-specific design or material change (e.g., hood, B-pillar)
 – Material specific alternatives (e.g., aluminum-only, HSS-only focused)
 – System level changes (e.g., entire body-in-white)
 – Full vehicle redesign and material substitution (e.g., body plus secondary effects)
• Studies differing value for regulatory assessment in terms of technical rigor, data/method transparency, comprehensiveness, crashworthiness validation
Vehicle Mass-Reduction Cost

- Technical assessments on mass-reduction involve major studies by national US laboratories, OEM steel suppliers, OEMs with universities, etc
 - Mass-cost data plotted as cost versus percent of vehicle mass reduced
 - Each data point represents a different material/design approach to mass reduction
Vehicle Mass-Reduction Cost

- US agencies collaborated to assess available studies and model costs associated with vehicle mass-reduction
 - Agencies assessed and weighted the available mass-reduction studies for redesign of vehicle models in the 2017-2025 timeframe
 - Regulation analyses apply cost-per-pound-reduced vs percent vehicle mass reduction
 - Ultimately, agencies projected average vehicle mass would decrease by 8-12% by 2025
Major New Mass-Reduction Studies

• Lotus Engineering (contracted by CARB)
 – Continuation of earlier 2010 Lotus work (20% and 33% mass-reduced Toyota Venza crossover)
 • See: http://www.theicct.org/lotus-lightweighting-study
 – On-going work includes crashworthiness/NHTSA/NCAP validation of 33%-mass-reduced vehicle

• FEV / EDAG (contracted by US EPA, ICCT)
 – Involves development, validation, cost assessment of 20%-mass-reduced Venza

• EDAG / Electricore (contracted by NHTSA)
 – Mass-reduced mid-size vehicle (Honda Accord) ≤10% vehicle cost premium

• WorldAutoSteel “Future Steel Vehicle” (with AISI, EDAG)
 – High-Strength Steel (HSS): 12-18% mass reduction at no additional system cost
Lotus Mass-Reduction Project

- Contracted by CARB
 - Continuation of 2010 study (http://www.theicct.org/lotus-lightweighting-study)
- Crashworthiness, validation:
 - Front (FMVSS 208; IIHS 3/6 mph); Side (FMVSS 214); Rear (FMVSS 301, IIHS 3/5 mph); Roof (FMVSS 216); Seat belt/restraint (FMVSS 210/213)
 - Additional 35mph car-to-car crash with NHTSA (vs. Ford Taurus; Ford Explorer)
 - Torsional stiffness: ~33,000 Nm/deg
- Engineering design:
 - Mass reduction: 242 kg body-in-white (-37% from base Venza)
 - Material: 75% alum., 12% magn., 8% steel, 5% composite (base: 100% steel)
 - Parts count ~170 (base: >400 parts)
 - Cost increase: TBD
- Peer review process: On-going
The three Agency-contracted vehicle mass-reduction studies….
- Advance the state-of-the-art in modeling technical potential with finite element analysis, CAD/CAE design, crashworthiness, compatibility, and cost assessment
- Will be peer-reviewed and inform the final US GHG regulations (planned July 2012)
- Could reveal similar average mass-cost relationship for holistically redesigned vehicles in the 2017-2025 timeframe
Mass-Reduction Policy Implication

- Some standards incentivize mass reduction more than others
 - Of course, any CO$_2$ regulation incentivizes improved-efficiency powertrains
 - With *same application* of mass reduction technology, there is far lower value in mass-indexed regulatory systems
Conclusion

• US agencies found strong technical basis for including mass-reduction as a prominent technology toward 2017-2025 compliance
 – All automakers intend to utilize mass-reduction toward regulatory compliance
 – Technical assessments: vehicle to reduce mass by 8-12% by 2025

• Mass reduction includes a critically important set of diverse technical approaches that can be utilized toward CO₂-reduction goals
 – Many different advanced materials, designs are being pursued across OEMs
 – The regulatory incentive to deploy the technology is weaker when regulatory standards are mass-indexed