“十四五”及中长期中国交通部门低碳化的机遇与路径

金伶芝、邵臻颖、冒晓立、JOSHUA MILLER、何卉和AARON ISENSTADT
致谢

感谢以下专家对本研究给予的指导和建设性意见，专家排名不分先后：来自生态环境部机动车排污监控中心的尹航、王军方、马冬、付明亮、黄志辉，国际能源署（IEA）的Jacob Teter 和 Jeremy Moorhouse，国际独立咨询专家Michael Walsh，来自德国国际合作机构（GIZ）的Sebastian Ibold、夏云和Yingchen Xu，以及ICCT内部的同事Ray Minjares 和 Felipe Rodriguez。关于本报告中可能出现的任何错误，皆由作者承担。

此项目是国家自主贡献亚洲交通倡议（NDC-TIA）的组成部分。NDC-TIA是国际气候倡议行动（IKI）的一部分，由德国联邦环境、自然保护及核能安全部（BMU）根据德国联邦议院通过的一项决议提供资金支持。更多详情请见https://www.ndctransportinitiativeforasia.org/。

For more visit: https://www.ndctransportinitiativeforasia.org/.

Supported by:

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

based on a decision of the German Bundestag

国际清洁交通委员会
地址：1500 K Street NW, Suite 650
Washington, DC 20005
communications@theicct.org | www.theicct.org | @TheICCT
© 2021国际清洁交通委员会
目录
缩写词 .. iv
摘要 ... v
介绍 ... 1
政策情景及低碳化发展路径 ... 2
研究方法 ... 7
 道路车辆和铁路 ... 7
 船舶 ... 8
 非道路移动机械 ... 9
 车用空调制冷剂 ... 10
对分析结果的讨论 .. 11
 未来交通活动水平增长 ... 11
 较温和目标情景下的减排潜力 ... 11
 较激进目标情景下的减排潜力 ... 12
 中国对减缓全球气候变化的潜在贡献 ... 14
 “十四五”期间交通部门减排潜力的分解 ... 15
 空气质量的协同收益 .. 17
结论和建议 .. 19
参考文献 ... 21
附录A: 每个策略的详细政策假设 ... 24
附录B: 附加图 ... 37
图目录

图 1 在已出台政策、较温和目标和较激进目标情景下的从油井到车轮的气候污染物（CO₂e, GWP20）排放量以及建议的减排目标（2020-2050年）

图 2 中国排放模型计算过程示例

图 3 船舶排放模型计算过程示例

图 4 非道路移动机械排放模型计算过程示例

图 5 中国交通部门活动水平增幅（与2020年水平相比）

图 6 已出台政策情景下的WTW气候污染物（CO₂e, GWP20）排放量及较温和目标情景下各项政策措施的减排潜力（2020-2050年）

图 7 已出台政策情景下的WTW二氧化碳排放量及较激进目标情景下政策的减排潜力（2020-2050年）

图 8 与已出台政策情景相比，2025年较激进目标情景下按策略部门划分的交通行业减排潜力（GWP20）

图 9 道路（汽车和铁路）、船舶和非道路细分部门的黑碳排放量（千吨，2020-2050年）

图 10 在已出台政策、较温和目标和较激进目标情景下的WTW气候污染物（CO₂e, GWP20）排放量及建议的减排目标（2020-2050年）
表目录

表1 已出台政策情景下的关键政策和假设条件 .. 3
表2 较温和目标情景下关键政策和假设条件 ... 4
表3 较激进目标情景下关键政策和假设条件 ... 5
表4 新能源汽车政策在模型中设定的市场占比（按车辆类别划分） .. 8
表5 中国交通部门排放量在全球碳排放预算的占比（2021-2050年） .. 15
表6 与2020年基线水平相比，较激进目标情景下按交通细分部门划分的氮氧化物年减排量（千吨） ... 17
表7 与2020年基线水平相比，较激进目标情景下按交通细分部门划分的颗粒物年减排量（千吨） ... 18
缩写词

<table>
<thead>
<tr>
<th>缩写</th>
<th>释义</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC</td>
<td>黑碳</td>
</tr>
<tr>
<td>BEV</td>
<td>纯电动汽车</td>
</tr>
<tr>
<td>CNG</td>
<td>压缩天然气</td>
</tr>
<tr>
<td>CO₂e</td>
<td>二氧化碳当量</td>
</tr>
<tr>
<td>DECA</td>
<td>国内排放控制区</td>
</tr>
<tr>
<td>DPF</td>
<td>柴油颗粒物捕集器</td>
</tr>
<tr>
<td>ECA</td>
<td>排放控制区</td>
</tr>
<tr>
<td>EEDI</td>
<td>能效设计指数</td>
</tr>
<tr>
<td>EU</td>
<td>欧盟</td>
</tr>
<tr>
<td>FCV</td>
<td>燃料电池汽车</td>
</tr>
<tr>
<td>GHG</td>
<td>温室气体</td>
</tr>
<tr>
<td>GWP</td>
<td>全球变暖潜能值</td>
</tr>
<tr>
<td>HDV</td>
<td>重型汽车</td>
</tr>
<tr>
<td>HHDT</td>
<td>大型重型货车</td>
</tr>
<tr>
<td>ICE</td>
<td>内燃机</td>
</tr>
<tr>
<td>IMO</td>
<td>国际海事组织</td>
</tr>
<tr>
<td>LCV</td>
<td>轻型商用车</td>
</tr>
<tr>
<td>LDV</td>
<td>轻型汽车</td>
</tr>
<tr>
<td>MHDT</td>
<td>中重型货车</td>
</tr>
<tr>
<td>NEV</td>
<td>新能源汽车</td>
</tr>
<tr>
<td>OGV</td>
<td>远洋船舶</td>
</tr>
<tr>
<td>PC</td>
<td>乘用车</td>
</tr>
<tr>
<td>PHEV</td>
<td>插电式混合动力汽车</td>
</tr>
<tr>
<td>PM</td>
<td>颗粒物</td>
</tr>
<tr>
<td>VECC</td>
<td>生态环境部机动车排污监控中心</td>
</tr>
<tr>
<td>WTW</td>
<td>从油井到车轮</td>
</tr>
</tbody>
</table>
摘要
目前，中国已确立了到2030年二氧化碳排放量达峰并在2060年达到碳中和的目标。通过与中国交通部门现有政策相比较，本研究采用领先的排放模型工具对一揽子先进政策方案带来的包括二氧化碳（CO₂）在内的气候污染物减排潜力进行了评估，旨在为中国生态环境保护第十五个五年规划（2021-2025年）及中、长期的交通部门碳减排目标提供量化的技术依据。

研究发现，如不采取进一步的减排行动，中国交通部门的气候污染物排放量将迅速增长。当前已实施政策情景和较温和目标情景下的政策措施预计只能在短期内（未来五年）产生一些气候效益，但从长期来看气候污染物排放仍会反弹。中国需要一套全球领先的政策措施，以实现长期、持续的气候污染物减排效益。我们在较激进目标情景下设定的政策措施可以在未来20年左右为中国带来持续、快速的减排。如果这些全球先进的政策措施能延续到2035年以后，则有望在2050年中国交通部门带来70-80%的气候污染物减排潜力（相对于2020年基准水平）。在近、中期，这套全球先进的政策组合有望在“十四五”末期实现10%以上、到2035年实现36%的气候污染物（按CO₂当量计算）减排（图ES 1）。此外，这些政策还将带来可观的空气质量协同减排效益。

基于这些研究成果，我们建议中国:

1. 统筹应对气候变化，并出台减少CO₂和非CO₂气候污染物排放的战略和政策。
2. 以终为始，从长期碳中和目标倒推近中期目标，做到近、中、长期目标的有效衔接。具体来说，我们建议中国首先依据国家整体的2060碳中和目标、国际最佳实践和具体国情制定长期交通部门气候污染物减排目标，例如基于我们分析得出的2050年与2020年水平相比减排70%-80%的目标。然后再确定与此长期减排路径相吻合的中期（如2035年）和短期（如十三五）目标。作为参考，《欧洲绿色协议》的非约束性目标是到2050年将交通部门的排放量较1990年水平减少90%。
3. 制定全面的政策工具组合，以实现交通部门的污染物减排，包括但不限于在《大气污染防治法》授权下研究制定严格的道路、船舶和非道路移动源的大气污染物和温室气体协同控制标准，并健全相关法律法规，赋予生态环境部权限明确罚则保障实施，明确各交通细分市场和车队（如公共交通、市政服务、出租租赁、城市物流、港区短驳等）的零排放车辆要求，建立超低排放区和零排放区，出台针对高全球变暖潜能值（GWP）车用空调制冷剂的使用禁令或排放标准，以及优化交通运输结构和促进低碳多式联运发展等。
介绍

2020年9月，中国国家主席习近平承诺到2030年二氧化碳排放达到峰值，到2060年实现碳中和。交通部门（包括客运和货运车辆、船舶、铁路、航空和移动机械）占到中国整体碳足迹的比重不小。因此，交通部门低碳化的技术和政策路径是实现国家中长期减排承诺总体战略的重要因素。本研究分析了“十四五”期间及未来几十年中国交通部门低碳化的政策机遇和减排潜力。我们的研究范围包括:

- 燃料和能源使用过程中从油井到车轮阶段排放的二氧化碳（CO₂）、甲烷（CH₄）、氧化亚氮（N₂O）、黑碳（BC）等气候污染物，包括各种交通工具所产生的尾气排放、燃料上游生产与处理环节所产生的直接排放，以及机动车空调系统泄漏的氢氟碳化合物（HFC）排放。本研究涉及的污染物与国际气候变化专门委员会（IPCC）和《京都议定书》中定义的常规温室气体（GHG）略有不同，后者主要侧重于会导致全球变暖的气态污染物。本研究不包括在各种交通工具生产制造阶段产生的污染物排放，因为不同交通工具之间可能存在很大差异，并且这可能是一个需要进一步研究的部门。考虑到“十四五”期间氢燃料的应用有限且基于中国国情开展的相关研究也十分有限，此次研究也未考虑氢燃料的不同生产方式（电解除外）及其温室气体强度；但是，不同的氢气生产方式及其温室气体强度（Baldino等人，2020年；Bieker，2021年；氢能委员会，2021年）应该被纳入到未来的燃料电池汽车发展政策当中，以充分实现其效益。本研究采用20年时间框架下的全球变暖潜能值（GWP20）来计算CO₂当量排放量（CO₂e）（Myhre等人，2013年），以便更好地反映了除了CO₂外的短寿命气候污染物的减排潜力；附录B中则给出了使用GWP100的分析图表。
- 主要交通方式和细分部门：乘用车、公交和长途客车、货车、内河和远洋船舶、货运铁路和非道路移动机械。本研究不包括客运铁路的排放评估，因为2020年已有超过70%的客运高铁实现了电气化（中华人民共和国交通运输部，2021年），其中使用频率较高的客运铁路线路的电气化比例还要更高，可改善的政策空间已经非常有限。本研究也未涵盖商用航空细分部门的排放。根据2019年的估算，商用航空的CO₂排放量占比略低于5%（中国民用航空局，2020年；Graver等人，2020年；中华人民共和国国务院，2021年）。这是一个需要进一步研究的部门。
- 适合中国国情的五大减排策略：燃料和能效法规（间接减少CO₂排放）或未来出台的温室气体排放标准、尾气排放标准、使用低GWP制冷剂的管理要求、发展电动化（新能源汽车和非道路源以及更清洁的电网）和通过运输模式转型实现更高效的货运体系。本研究不包括增加使用低碳交通出行方面的措施，如客运高铁、城市地铁系统或低速交通出行方式（非机动车化出行方式）。本研究也不包括生物燃料的应用目标，因为中国并未大量使用生物燃料且供应量有限。

在下一章中，我们将介绍中国交通部门的政策情景及低碳化发展路径。第三章将概述我们的建模方法。在接下来的第四章中我们将综合探讨模型模拟结果。在本文的最后，我们将通过分析得出结论并提出政策建议。
政策情景及低碳化发展路径

我们分析了三种情景：

» 已出台政策情景是指截至2020年9月，按照先前定义的政策覆盖范围，已通过或实施的政策措施及相关清洁技术，也被称为基准现状（BAU）情景。此外，我们针对未来的低碳化发展路径设定了两个新政策情景，具体设定如下：

» 较温和目标情景是指截至2020年9月已知即将出台的政策，以及正在制定或研究过程中的政策或者基于以往政策预计到2035年可能发布的政策及其所需的清洁技术。

» 较激进目标情景是指在2035年前，基于全球各地区最佳政策实践及其所需的清洁技术，中国可采纳的一整套世界顶级政策措施。

表1至表3分别概述了三种情景下不同交通模式和细分部门的关键政策、假设条件以及减排策略。需要提及的一点是，虽然大多数目标有望通过各自部门的政策来实现，但有些也可能会受到政策组合的影响。例如，电动汽车销量方面的直接管理要求、严格的CO₂/能效标准以及尾气排放标准都能够推动电动汽车市场占有率的提升。附录A中列出了详细的情景假设条件。我们评估了这些措施在未来30年对CO₂和非CO₂气候污染物的减排潜力。在本文中，我们重点关注与中国现阶段政策制定关系最密切的几个主要目标年份的分析结果：即2025年（“十四五”收官之年）、2035年（实现美丽中国的目标年）和2050年（ICCT长期政策建议目标年）。我们通过建模模拟了CO₂、CH₄、N₂O、HFC和黑碳的从油井到车轮的排放量及其气候影响。为简单起见，我们在下文中会将这些CO₂和非CO₂气候污染物统称为气候污染物。

1 2018年5月，中国国家主席习近平在第十九次全国代表大会讲话中提出了“到2035年建设美丽中国”的若干宏观环境发展方向目标，如中国环境质量达到世界一流水平。资料来源：http://www.gov.cn/zhuanti/2017-10/18/content_5232657.htm。访问日期：2021年1月12日。
表1 已出台政策情景下的关键政策和假设条件

<table>
<thead>
<tr>
<th>能效/CO₂标准</th>
<th>乘用车</th>
<th>客车</th>
<th>轻型商用车</th>
<th>重型货车</th>
<th>船舶</th>
<th>铁路</th>
<th>非道路机械</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 在不考虑新能源汽车的影响因素下，到2025年新生产内燃机车辆的油耗达到4.85 L/100km（新车车队整体平均油耗4L/100km）；</td>
<td>• 2020年新车辆队平均油耗为18.4 L/100km（汽油当量）</td>
<td>• 2020年新车辆队平均油耗为6.8 L/100km（汽油当量）</td>
<td>• 2020年中重型货车的新车队平均油耗为18.6 L/100km；</td>
<td>• 2020年中重型货车的新车队平均油耗为18.6 L/100km；</td>
<td>• 新生产远洋船舶：2020年后燃油效率每五年提升约10%（与2020年水平相比）</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>• 实际道路油耗比试验工况油耗高25%。</td>
<td></td>
<td></td>
<td>• 2020年新车辆队平均油耗为18.4 L/100km（汽油当量）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 2020年中重型货车的新车队平均油耗为36.9 L/100km。</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 2020年中重型货车的新车队平均油耗为36.9 L/100km。</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

排放标准/政策

- 国VI-a阶段标准于2021年7月在全国实施，国VI-b阶段将于2023年7月在全国实施；
- 到2020年，100万辆国四之前的中重型货车和大型重型货车替换为国六车辆。

低GWP车用空调制冷剂

- /

新能源汽车和非道路源

- 2020年新生产车辆中新能源汽车占比5%；
- 2025年新生产车辆中新能源汽车占比18%；
- 2025年纯电动车辆的能效达到14.3kWh/100km。
- 2025年新生产城市客车中新能源汽车占比100%；
- 2025年新生产长途客车中新能源汽车占比4%。
- 2025年新生产物流车中新能源汽车占比10%；
- 2025年新生产整体式卡车中新能源汽车占比2%。
- 2025年新生产环卫及邮政车中新能源汽车占比1%。
- 2025年新生产自卸卡车中新能源汽车占比1%。
- 远洋船舶：除游轮（100%要求）和化学品运输船（自愿）外，有岸电接入条件的船舶停靠期间全部使用岸电；
- 沿海和内河船舶：岸电使用量1500万千瓦时（年增长率0.2%）。
- 2025年货运铁路电气化率达到80%。
- 2020年新能源叉车40%电动化。

清洁电网

- 2020年电网全生命周期碳排放因子达到635 gCO₂e/kWh

货运体系

- /

*由于轻型商用车使用汽油和柴油的均有，故此处转换为汽油当量显示油耗
表2 较温和目标情景下关键政策和假设条件

<table>
<thead>
<tr>
<th>能效/CO₂标准</th>
<th>乘用车</th>
<th>客车</th>
<th>轻型商用车</th>
<th>重型货车</th>
<th>船舶</th>
<th>铁路</th>
<th>非道路机械</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 到2030年，新生产内燃机车辆的油耗达到4.4 L/100km；</td>
<td>• 2020-2025年期间，新生产内燃机车辆油耗降低15%</td>
<td>• 新生产内燃机车辆油耗: 2020年达到6.8 L/100km，2020-2030年期间每年降低3%。</td>
<td>• 2020-2025年期间，新生产内燃机车辆油耗降低15%</td>
<td>• 与已出台政策情景相同</td>
<td>/</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>• 实际道路油耗差距从25%降低到10%。</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>排放标准/政策</th>
<th>乘用车</th>
<th>客车</th>
<th>轻型商用车</th>
<th>重型货车</th>
<th>船舶</th>
<th>铁路</th>
<th>非道路机械</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 到2021年，在京津冀、珠三角和长三角三大重点区域提前实施国VI-b排放标准</td>
<td>• 2020-2025年期间，新生产内燃机车辆油耗降低15%</td>
<td>• 新生产内燃机车辆油耗: 2020年达到6.8 L/100km，2020-2030年期间每年降低3%。</td>
<td>• 2020-2025年期间，新生产内燃机车辆油耗降低15%</td>
<td>• 与已出台政策情景相同</td>
<td>/</td>
<td>/</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>低GWP车用空调制冷剂</th>
<th>乘用车</th>
<th>客车</th>
<th>轻型商用车</th>
<th>重型货车</th>
<th>船舶</th>
<th>铁路</th>
<th>非道路机械</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 到2024年禁止新车使用高GWP制冷剂(HFCs)</td>
<td>• 2020年实施第IV阶段排放标准</td>
<td>• 2025年实施第V阶段排放标准</td>
<td>• 2033年实施第VI阶段排放标准</td>
<td>• 与已出台政策情景相同</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>新能源汽车和非道路源</th>
<th>乘用车</th>
<th>客车</th>
<th>轻型商用车</th>
<th>重型货车</th>
<th>船舶</th>
<th>铁路</th>
<th>非道路机械</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 2025年新生产车辆中新能源汽车占比25%；</td>
<td>• 2025年新生产车辆中新能源汽车占比25%；</td>
<td>• 2025年新生产车辆中新能源汽车占比25%；</td>
<td>• 2025年新生产车辆中新能源汽车占比25%；</td>
<td>• 与已出台政策情景相同</td>
<td>• 与已出台政策情景相同</td>
<td>• 与已出台政策情景相同</td>
<td>• 与已出台政策情景相同</td>
</tr>
<tr>
<td>• 2035年新生产车辆中新能源汽车占比50%；</td>
<td>• 2025年新生产车辆中新能源汽车占比50%；</td>
<td>• 2025年新生产车辆中新能源汽车占比50%；</td>
<td>• 2025年新生产车辆中新能源汽车占比50%；</td>
<td>• 与已出台政策情景相同</td>
<td>• 与已出台政策情景相同</td>
<td>• 与已出台政策情景相同</td>
<td>• 与已出台政策情景相同</td>
</tr>
<tr>
<td>• 2025年纯电动车辆的能效达到12.1kWh/100km。</td>
<td>• 2025年纯电动车辆的能效达到12.1kWh/100km。</td>
<td>• 2025年纯电动车辆的能效达到12.1kWh/100km。</td>
<td>• 2025年纯电动车辆的能效达到12.1kWh/100km。</td>
<td>• 与已出台政策情景相同</td>
<td>• 与已出台政策情景相同</td>
<td>• 与已出台政策情景相同</td>
<td>• 与已出台政策情景相同</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>清洁电网</th>
<th>乘用车</th>
<th>客车</th>
<th>轻型商用车</th>
<th>重型货车</th>
<th>船舶</th>
<th>铁路</th>
<th>非道路机械</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 2030年电网全生命周期碳排放因子达到515 gCO₂e/kWh</td>
<td>• 2025年新生产车辆中新能源汽车占比25%；</td>
<td>• 2025年新生产车辆中新能源汽车占比25%；</td>
<td>• 2025年新生产车辆中新能源汽车占比25%；</td>
<td>• 与已出台政策情景相同</td>
<td>• 与已出台政策情景相同</td>
<td>• 与已出台政策情景相同</td>
<td>• 与已出台政策情景相同</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>货运体系</th>
<th>乘用车</th>
<th>客车</th>
<th>轻型商用车</th>
<th>重型货车</th>
<th>船舶</th>
<th>铁路</th>
<th>非道路机械</th>
</tr>
</thead>
<tbody>
<tr>
<td>/</td>
<td>• 2025年开始，2%的在用货车参与到绿色货运计划当中，参与车辆的能效提升10%。</td>
<td>• 2025年开始，2%的在用货车参与到绿色货运计划当中，参与车辆的能效提升10%。</td>
<td>• 2025年开始，2%的在用货车参与到绿色货运计划当中，参与车辆的能效提升10%。</td>
<td>• 与已出台政策情景相同</td>
<td>• 与已出台政策情景相同</td>
<td>• 与已出台政策情景相同</td>
<td>• 与已出台政策情景相同</td>
</tr>
</tbody>
</table>

- GWP: Global Warming Potential
- HFCs: Hydrofluorocarbons
表3 相较激进目标情景下关键政策和假设条件

<table>
<thead>
<tr>
<th>能/效/CO₂标准</th>
<th>乘用车</th>
<th>客车</th>
<th>轻型商用车</th>
<th>重型货车</th>
<th>船舶</th>
<th>铁路</th>
<th>非道路机械</th>
</tr>
</thead>
<tbody>
<tr>
<td>能效/CO₂标准</td>
<td>到2025年,国Ⅴ前的的所有车辆替换为国Ⅵ或新能源汽车。</td>
<td>到2025年,国Ⅴ前的的所有车辆替换为国Ⅵ或新能源汽车。</td>
<td>到2025年,国Ⅴ前的的所有车辆替换为国Ⅵ或新能源汽车。</td>
<td>到2025年,国Ⅴ前的的所有车辆替换为国Ⅵ或新能源汽车。</td>
<td>到2025年,国Ⅴ前的的所有车辆替换为国Ⅵ或新能源汽车。</td>
<td>到2025年,国Ⅴ前的的所有车辆替换为国Ⅵ或新能源汽车。</td>
<td>到2025年,国Ⅴ前的的所有车辆替换为国Ⅵ或新能源汽车。</td>
</tr>
<tr>
<td>能效/CO₂标准</td>
<td>等效于油耗标准的新车CO₂排放标准。</td>
<td>等效于油耗标准的新车CO₂排放标准。</td>
<td>等效于油耗标准的新车CO₂排放标准。</td>
<td>等效于油耗标准的新车CO₂排放标准。</td>
<td>等效于油耗标准的新车CO₂排放标准。</td>
<td>等效于油耗标准的新车CO₂排放标准。</td>
<td>等效于油耗标准的新车CO₂排放标准。</td>
</tr>
</tbody>
</table>

低GWP车用空调制冷剂

- 到2022年禁止新车使用高GWP制冷剂(HFCs)
- 到2025年新生产车辆中新能源汽车占比70%
- 到2035年新生产车辆中新能源汽车占比100%
- 到2025年,国Ⅴ前的的所有车辆替换为国Ⅵ或新能源汽车。
- 到2025年,国Ⅴ前的的所有车辆替换为国Ⅵ或新能源汽车。
- 到2025年,国Ⅴ前的的所有车辆替换为国Ⅵ或新能源汽车。
- 到2027年,国Ⅴ前的的所有车辆替换为国Ⅵ或新能源汽车。
- 到2030年,国Ⅴ前的的所有车辆替换为国Ⅵ或新能源汽车。
- 到2035年,国Ⅴ前的的所有车辆替换为国Ⅵ或新能源汽车。
- 2021年对柴油铁路机车实施等效于欧盟第V阶段的排放标准。
- 2020年实施第IV阶段排放标准; 2027年实施第VI阶段排放标准。
- 2025年新生产车辆中新能源汽车占比100%
- 2025年纯电动车的能效达到11.1kWh/100km。
- 2025年新生产物流车中新能源汽车占比55%。
- 2025年新生产整体式卡车中新能源汽车占比40%。
- 2025年货运铁路电气化率达到90%。
- 2030年新生产叉车100%电动化。
- 新生产建筑机械电动化率从2030年开始逐渐增加,至2040年达到70%电动化。

清洁电网

- 2030年电网全生命周期碳排放比2017年基线减少60%, 即307 gCO₂e/kWh
- 通过模式转变,到2020年铁路货运活动量在2017年基础上增长30%。到2025年增长50%。
- 从2025年开始,3%的在用车参与绿色货运计划,参与车辆的能耗提升15%。

货运体系

- 2030年电网全生命周期碳排放比2017年基线减少60%。
同样重要的是，我们在较激进目标情景的提出的政策需要确保其能够切实实施。例如，我们不仅评估汽车燃油能效标准（或温室气体排放标准）的持续加严，也考量这些政策实际道路的减排效果。中国汽车燃油能效标准的监管机构在执行标准和惩罚不合规制造方面尚没有完整的法律授权（Cui, 2018年）。在合规监管与执法方面的权力缺失可能会降低这些标准带来的潜在减排收益。在过去五年间中国轻型汽车的燃油能效标准加严了近30%，车队平均油耗限值从三阶段的6.9 L/100km 加严至四阶段的5 L/100km。ICCT的相关分析（Wu et al, 2021年）表明，轻型汽车的实际油耗比实验室测试值高出近37%。这意味着燃油能效标准中提出的30% 的改进目标并没有完全转化为等效的实际燃油节省和减排收益。因此，未来此类法规需要有充分的法律授权、严格的车辆温室气体排放标准且监管到位。
研究方法
本研究利用ICCT开发的交通排放清单模型和工具，分别评估了道路车辆和铁路、船舶、以及低GWP制冷剂的减排潜力。这些模型工具在ICCT已发表的研究报告中有完整详尽的介绍，在后文中会有所提及。本研究中非道路机械排放模型由生态环境部机动车排污监控中心（VECC-MEE）建立，非道路机械相关的减排分析也由VECC-MEE完成。各政策情景下的减排总量是四个模块的结果之和。本章将从整体上介绍这四个模块，包括其结构、功能以及分析方法概要。有关此分析的详细假设条件，请参见上一节和附录 A。

道路车辆和铁路
我们利用ICCT中国“路线图”排放模型（邵臻颖 & Wagner, 2015）对道路车辆和铁路的排放量进行了估算。图1显示了模型中的关键数据和步骤。该模型融合了社会经济指标、汽车销量、不同技术类型发动机的活动水平占比、能效、燃料质量、排放控制技术和排放因子等参数，能够计算出汽车销量、保有量、活动水平、燃料消耗量以及其他一些中间过程结果。该模型的主要输出结果包括按车型、燃料类型和重点区域划分的燃料消耗量、车辆活动水平、保有量和销量，以及不同污染物（包括CO₂、CH₄、N₂O、NOₓ、CO、HC、PM₂.₅、BC 和 SO₂）的排放量。该模型可评估从油井到油箱（WTT）、从油箱到车轮（TTW）以及从油井到车轮（WTW）阶段的排放量。
模型中的主要政策和技术手段包括车辆燃油能效标准或未来可能出台的温室气体排放标准、低碳燃料、电动汽车、电网低碳化、货运模式转变、车辆活动水平降低、排放标准、低硫燃料、车辆报废计划、I/M管理方案以及合规监管方案。我们分别对铁路、乘用车、轻型商用车（或轻型货车）、中重型货车、大型重型货车和客车进行了建模。在本分析中，轻型车由乘用车和轻型商用车组成，而重型车则由中重型货车、大型重型货车和客车组成。针对某项政策，该模型可接受不同的输入参数，例如针对中国不同地区（包括北京、天津-河北、上海、江苏-浙江、广州、深圳、珠三角其他地区、广东其他地区和中国其他地区）输入不同的排放标准实施时间表。

在对新能源汽车政策进行模拟时，由于预计推广目标是基于车辆类别（见表4）设定的，并且这一分类方法不同于我们模型中的其他政策和车型划分，所以我们主要基于2019年的产量来为不同车型中的具体类别进行了假设。

表4新能源汽车政策在模型中设定的市场占比 (按车辆类别划分)

<table>
<thead>
<tr>
<th>车型</th>
<th>车辆类别</th>
<th>市场占比</th>
</tr>
</thead>
<tbody>
<tr>
<td>轻型商用车</td>
<td>物流/快递车辆 < 4.5吨</td>
<td>30%</td>
</tr>
<tr>
<td></td>
<td>整体式货车< 4.5吨</td>
<td>50%</td>
</tr>
<tr>
<td>客车</td>
<td>城市客车</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>其他</td>
<td>20%</td>
</tr>
<tr>
<td>中重型货车</td>
<td>环卫车和邮运车</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>长途客车</td>
<td>50%</td>
</tr>
<tr>
<td>大型重型货车</td>
<td>自卸卡车及其他中重型货车</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>牵引车及其他大型重型货车</td>
<td>100%</td>
</tr>
</tbody>
</table>

注: 牵引车和其他大型重型货车之间以及自卸卡车和其他中重型货车之间的类别划分无关紧要，因为它们在所有情景下的应用情况假设都是相同的。

船舶

在船舶细分部门，我们采用了ICCT的船舶排放系统评估（SAVE）模型（图2）来估算船舶基准排放量，该模型将2019年船舶每小时活动数据或船舶自动识别系统（AIS）数据与2019年船舶特征数据相结合，从而获得高精准度的时间空间排放数据。关于SAVE和基础方法论，具体可参见Olmer等人于2017年发布的相关研究报告。

本分析中船舶排放的地理边界是从中国海岸基线，即按照《联合国海洋法公约》（UNCLOS，1994）规定的国家领海基线，延伸200海里到太平洋以及内河航道。因此，在计算船舶排放量时，既包括了悬挂中华人民共和国国旗的船舶也包括了悬挂外
国国旗的船舶。在我们建模分析的政策中，有些政策适用于所有船舶，无论其悬挂哪国国旗（例如排放控制区政策），而其他一些政策仅适用于悬挂中国国旗的船舶（例如船用发动机标准）。

为了预测未来的船舶排放情况，我们使用了冒晓立等人在2019年相关研究报告中定义的一组通用油耗增长系数。该系数是由反映各种船舶贸易量增长影响的贸易增幅因子和反映船舶通过自然船队更新换代而提高能效的能效调整因子共同构成的。

根据ICCT之前开展的相关研究（冒晓立和Rutherford, 2018年），2015年至2030年期间，在考虑了活动量增长和能效改善潜力后，中国国内商用船舶的排放量将增长约22%，相当于每年排放量增长率接近1.3%。不过，该研究并没有考虑到船舶行业燃料碳排放强度的潜在降低空间。鉴于中国的碳减排承诺以及低碳燃料进入船舶行业的速度比其他交通部门相对更慢的假设，我们简化地假设燃料碳强度每年下降1.3%，这在绝对数上抵消了排放增量预期。这意味着到2060年碳强度将累积降低40%，这也符合国际海事组织（IMO）提出的2050年国际船队碳强度降低目标。

然后，在各种模拟情景下，我们会对每一项政策进行单独评估，从而得到具体每一项政策的燃料消耗量及排放量影响系数。为了评估各项政策对于排放的综合影响，我们会将这些系数相乘。非道路移动机械

非道路移动机械

生态环境部机动车排污监控中心采用了基于发动机台架试验结果开发的内部非道路排放模型来对非道路移动机械的排放量进行了评估。图3展示了建模过程。基准排放因子是基于发动机台架试验生成的。然后，使用车载排放测试系统（PEMS）在各种工况循环下的实际测试结果来调整这些排放因子。负载因子主要来自实际测量结果。年使用小时数则是根据国内主要公司的监测数据和现有的国内外数据估算出来的。

![非道路移动机械排放模型计算过程示例](资料来源: VECC)
车用空调制冷剂

我们采用ICCT“路线图”模型中的制冷剂模块对空调制冷剂及其气候污染物排放量进行建模分析，采用的方法论与此前我们对中国轻型汽车行业逐步淘汰HFC-134a进行分析时所采用的方法是一致的（杜立等人，2016年）。该模型采用了ICCT“路线图”模型中的车辆活动水平数据（如年活动水平、存量、销量），同时还输入了空调系统数据（如制冷剂类型、标准条件下的能源需求量、制冷剂泄漏率和使用寿命周期）和气象条件数据（采用了中国的平均值，但其实各地区之间会存在很大差异）。

关于低GWP制冷剂的假设条件，我们遵循了《蒙特利尔议定书——基加利修正案》中的内容，即GWP到2029年降低10%，到2035年降低30%，到2040年降低50%，到2045年降低80%（UNEP，2016年）。随着电动汽车销量的增长，为了最大限度地增加纯电动续驶里程，并且根据中国在《基加利修正案》中逐步淘汰HFC的承诺，我们假设这些汽车将配备最节能且防泄漏的空调系统。此外，我们假设这些系统都采用了本文中所述的可采取的能效改进措施（Blumberg & Isenstadt, 2019年）。

最后，该模型目前仅适用于轻型车，因此我们对重型车和冷链车辆（即冷藏车）的空调系统作出进一步假设。我们假设重型车的空调排放总量为轻型车的70%，假设冷链车辆的空调排放总量为轻型车的15%。
对分析结果的讨论

未来交通活动水平增长

首先，我们对各交通细分部门的活动水平未来增长情况进行了预测。中国已连续10年稳居全球第一大汽车销量国，其未来巨大的经济发展空间和国内不断加快的城镇化步伐将进一步拉动货运和客运需求。

图4显示了到2030年和2050年道路客运（乘客-公里）和货运活动水平（吨-公里）以及铁路货运活动水平的增长情况预测（与2020年水平相比）。目前没有一种单一衡量指标可以全面表述船舶和非道路细分部门的活动水平，因此我们在下图中将燃料消耗量增幅作为一个指标。预计未来30年，这些交通细分部门的活动水平都将有相当大幅的增长。2020年至2030年期间，不同交通细分部门的活动水平增长幅度从约5%（船舶燃料消耗量）到高达50%（道路客运活动水平）不等；到2050年，增长幅度将在2020年水平基础上提高约20%至150%。预期增长幅度最大的将是道路客运和铁路货运细分部门。

图4 中国交通部门活动水平增幅 (与2020年水平相比)

较温和目标情景下的减排潜力

图5展示了在较温和目标政策情景下从油井到车轮（WTW）阶段的整体气候污染物（CO₂e）减排潜力。图中楔形顶部的实线表示仅实施当前已出台政策（基准政策情景）的排放轨迹。楔形底部的绿色虚线表示在较温和目标政策情景下的排放轨迹。楔形图中的不同颜色展示了不同策略的气候污染物减排潜力。

如果仅依靠目前已出台的政策，交通部门的气候污染物排放量预计到2050年将增加45%，如果按照这一趋势发展下去，到2060年将增加60%。如图所示，较温和目标情景下的政策组合只能在2030年以前降低交通部门的气候污染物排放，这些措施不足以实现中长期目标，例如到2030年实现交通部门碳达峰。2030年以后，随着近期排放控制措施逐步到期，它们的减排效果将难以抵消整体排放增长的趋势。在较温和目标情景下，如果按照这一趋势发展下去，2050年交通部门的气候污染物排放将比
2020年上升6%，到2060年则上升约16%（未显示）。总而言之，较温和目标情景下的政策措施可以带来短期气候收益，但不足以实现中长期减排目标。

图5 已出台政策情景下的WTW气候污染物（CO₂e, GWP20）排放量及较温和目标情景下各项政策措施的减排潜力（2020-2050年）

注：货运体系仅包括运输模式转变和绿色货运措施，不包括所涉及的各交通模式单体的能效提升或减排。

较激进目标情景下的减排潜力

图6显示了较激进目标情景下从油井到车轮（WTW）阶段的整体气候污染物（CO₂e）减排潜力。图中楔形顶部的实线表示仅实施当前已出台政策（基准政策情景）的排放轨迹。楔形底部的绿色虚线表示在较激进目标政策情景下的排放轨迹。楔图中的不同颜色展示了按策略部门划分的气候污染物减排潜力。灰色点状区域表示目前尚未确定，需要未来进一步制定的政策措施所能带来的减排收益。我们在附录B中展示了采用GWP100的图。

与较温和目标情景相比，基于全球最佳实践经验的较激进目标政策情景将实现交通部门气候污染物的大幅减排。具体而言，从近期效果看，到“十四五”末期（2025年），较激进目标情景下的政策预计将在2020年基线水平上减少12%的气候污染物排放量，与2025年基准政策情景相比减排幅度也约12%，与较温和目标情景下的政策相比，可进一步减排6%；从中期效果看，到2035年，较激进目标情景下的政策预计将在2020年基线水平上减少36%的气候污染物排放量，与2035年基准政策情景相比减排40%，与较温和目标情景下的政策相比，可进一步减排27%；从长期效果看，到2050年，较激进目标情景下的政策预计将在2020年基线水平上减少40%的气候污染物排放量，与2050年基准政策情景相比减排59%，与较温和目标情景下的政策相比，可进一步减排44%。
图6 已出台政策情景下的WTW气候污染物(CO2e, GWP20)排放量及较激进目标情景下各项政策措施的减排潜力(2020-2050年)
注: 货运体系仅包括运输模式转变和绿色货运措施, 不包括所涉及的各交通模式单体的能效提升或减排。

在较激进目标情景下, 由于我们重点关注的是2035年以前将会实施的政策, 交通部门气候污染物排放量预计将在2035年后趋于平稳, 此后因为车队更新迭代所带来的减排收益将被持续增长的车辆活动水平所抵消, 即图中绿色虚线代表的较激进目标情景所示。但这并不意味着2035年后中国交通部门不再有减排空间。虽然在本分析中未进行评估, 但我们预计更为严格的中短期政策与2035年后新出台政策的结合能够继续降低2035年之后的排放量, 即图中最下方的灰色虚线所示。如果这些政策能按照2020-2035年间我们所建议的政策措施的减排速率向2035年以后延伸, 预期2050年中国交通部门的气候污染物排放可实现相比2020年基准线水平减排74%, 比2050年基准情景减排82%。

图6展示了不同策略的减排潜力趋势, CO2/能效排放标准和电动化政策（电动化需配合清洁低碳化电网措施）是最重要的减排途径。紧随其后, 空气污染物排放标准和政策带来的黑碳协同减排效益也十分可观。就各个交通细分部门而言, 非道路机械和重型货车细分部门为减排量的主要贡献者。运输结构调整本身（即不与CO2/能效排放改善和电动化相结合的情况下）带来的短期减排收益比较明显, 但长期效果有限。此外, 使用低GWP的空调制冷剂也会有显著的减排收益, 这一减排收益随车队更替将贯穿整个中长期政策窗口。
为了实现碳中和的目标，交通领域剩余的排放量需要通过其他领域的负排放来抵消。因此，我们建议继续制定交通部门的减排政策，旨在到本世纪中叶可以使交通部门的排放尽可能接近净零。总而言之，只有实施全球领先的措施才能加速中国交通部门的低碳化发展进程。

中国对减缓全球气候变化的潜在贡献

虽然上述讨论中更关注于特定年份的减排目标，但持续累积减排是实现《巴黎协定》目标的关键，这是由全球气候系统的物理约束决定的。图5展示了我们对于2021年至2050年各种情景下中国交通部门二氧化碳累积排放量的估算，并与政府间气候变化专门委员会（IPCC）估算的1.5°C全球碳预算进行了比较。我们采用了类似Buysse和Miller在2021年发表的相关研究报告中所描述的方法来估算碳预算。IPCC在其全球升温1.5°C特别报告（IPCC, 2018年）中指出，从2018年开始，只有将排放量限制在4200-5800亿吨CO₂e，才会有50%-67%的机会将升温限制在1.5°C，这还未考虑预计会导致进一步升温的地球系统反馈。采用估算范围内概率最高的碳预算值减去2018年至2020年间的全球排放后，从2021年开始我们仅剩下2960亿吨的排放预算。

在已出台政策、较温和目标和较激进目标情景下，中国交通部门的累积二氧化碳排放量分别约为1110、960和720亿吨。如实施较激进目标情景下的政策，预计中国对世界的排放贡献占比将从已出台政策情景下的36.7%大幅降低至23.3%。综上所述，在较激进目标情景下，中国将对减缓气候变化做出更大的贡献。
表5 中国交通部门排放量在全球碳排放预算的占比（2021-2050年）

<table>
<thead>
<tr>
<th></th>
<th>已出台政策</th>
<th>较温和目标</th>
<th>较激进目标</th>
</tr>
</thead>
<tbody>
<tr>
<td>中国交通部门累积二氧化碳排放量（十亿吨CO₂）</td>
<td>111.3</td>
<td>96.1</td>
<td>71.6</td>
</tr>
<tr>
<td>1.5°C IPCC 全球碳排放预算（十亿吨CO₂）</td>
<td>296</td>
<td></td>
<td></td>
</tr>
<tr>
<td>中国交通部门碳排放量在1.5°C全球碳排放预算中的占比</td>
<td>36.7%</td>
<td>31.6%</td>
<td>23.3%</td>
</tr>
</tbody>
</table>

“十四五”期间交通部门减排潜力的分解

我们通过前文中的分析，展示了到2050年各种策略的长期减排潜力。对于“十四五”这一近期政策窗口而言，图7更详细地显示了2025年的减排潜力; 下方的瀑布状图是左上角插图中2025年的切片，展示了与已出台政策情景相比到2025年各交通细分部门在不同减排策略下的气候污染物减排潜力。可以看出，重型车细分部门在2025年这一时间节点上显示出了最大的减排潜力，占减排总量的27%，其中能效/CO₂标准发挥的减排潜力最为显著。其次是非道路机械，其贡献了2025年总减排潜力的1/4。随着更加严格的排放标准的实施，“十四五”期间黑碳排放将显著减少，因此排放标准是减少非道路细分部门气候影响的最重要措施。但从长远来看，推广电动化方面的减排贡献将逐渐上升。交通结构调整和轻型车细分部门的减排政策措施分别占2025年减排潜力的17%和15%。与重型车细分部门类似，能效/CO₂标准为轻型车细分部门带来的减排潜力最大。船舶和铁路合计占2025年减排潜力的16%，其中铁路细分部门的电气化是最重要的贡献因素。至于制冷剂，由于我们预期的空调制冷剂替换措施导入时间距离2025年节点比较近，因此短期收益会比较小。值得注意的是，不同策略减排潜力分解在短期和长期是不同的。如上所述（图6），从长远来看，提高能效和电动化推广策略预计将带来最大的减排潜力。
图8展示了温室气体和短寿命气候污染物的综合减排潜力。除制冷剂控制措施外，短寿命气候污染物中黑碳的减排效果最为显著。如果不考虑主要由排放标准和政策驱动带来的黑碳减排潜力，那么“十四五”期间的减排潜力将减少近一半。

图9展示了2020年至2050年间道路、船舶和非道路细分部门黑碳排放量的基本估算，我们用灰竖线强调2025年。由于道路与非道路细分部门的黑碳排放量在基准年远高于船舶细分部门，因此这两个细分部门表现出更大的减排潜力。对于道路部门，鉴于已出台的国6/VI排放标准强制要求使用颗粒物捕集器，因此这部分减排潜力被包含在了已出台政策情景的减排量预测中。相比之下，对于非道路细分部门，强制使用颗粒物捕集器的标准尚未出台，如无后续新政策，预计2025年后黑碳排放量将增加。对于船舶细分部门，我们目前仅在较激进目标情景下考虑了出台强制使用颗粒物捕集器的标准，并且假设仅适用于2030年之后的新生产船舶，这也会进一步限制中短期内的减排潜力。
综上所述，短期内（未来五年），重型汽车细分部门的减排潜力最大。最具影响力的政策措施是各细分部门的排放标准和能效提升，这也体现了黑碳巨大的减排潜力。然而，这些结果不应作为制定长期减排战略目标的依据，而是在前述较激进长期政策影响下的短期收益。

空气质量的协同收益

虽然本研究侧重于气候影响，但我们考虑的许多政策也预计将显著减少空气污染物的排放，从而为空气质量和公共健康带来巨大收益（Anenberg等人，2017年，2019；Cui等人，2017年，2018年）。如表6和表7所示，与2020年的排放水平相比，在较激进目标情景下考虑的政策预计到2025年、2030年和2050年将分别减少约760万吨、1300万吨和1500万吨氮氧化物排放量。预计这三个时间点可分别减少32.8万吨、50.6万吨和61.5万吨颗粒物排放量。

表6与2020年基线水平相比，较激进目标情景下按交通细分部门划分的氮氧化物年减排量（千吨）。合计行表示总减排百分比。

<table>
<thead>
<tr>
<th>交通部门</th>
<th>2025</th>
<th>2035</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>轻型汽车</td>
<td>947</td>
<td>1,554</td>
<td>1,795</td>
</tr>
<tr>
<td>重型汽车</td>
<td>4,611</td>
<td>6,614</td>
<td>6,643</td>
</tr>
<tr>
<td>铁路</td>
<td>453</td>
<td>642</td>
<td>737</td>
</tr>
<tr>
<td>非道路</td>
<td>1,173</td>
<td>2,507</td>
<td>2,574</td>
</tr>
<tr>
<td>船舶</td>
<td>372</td>
<td>1,635</td>
<td>3,362</td>
</tr>
<tr>
<td>合计</td>
<td>45%</td>
<td>77%</td>
<td>87%</td>
</tr>
</tbody>
</table>
表7 与2020年基线水平相比，较激进目标情景下按交通细分部门划分的颗粒物年减排量（千吨）。合计行表示总减排百分比。

<table>
<thead>
<tr>
<th>交通部门</th>
<th>2025</th>
<th>2035</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>轻型汽车</td>
<td>21</td>
<td>37</td>
<td>57</td>
</tr>
<tr>
<td>重型汽车</td>
<td>117</td>
<td>175</td>
<td>178</td>
</tr>
<tr>
<td>铁路</td>
<td>9</td>
<td>17</td>
<td>21</td>
</tr>
<tr>
<td>非道路</td>
<td>62</td>
<td>114</td>
<td>117</td>
</tr>
<tr>
<td>船舶</td>
<td>119</td>
<td>163</td>
<td>242</td>
</tr>
<tr>
<td>合计</td>
<td>47%</td>
<td>72%</td>
<td>81%</td>
</tr>
</tbody>
</table>

推动上述减排潜力的主要政策包括：

- 在三大重点区域（京津冀、长三角和珠三角）尽早实施国VI-b排放标准；
- 提前淘汰国四和国四之前的所有大型重型货车和轻型商用车；
- 通过运输模式转变和绿色货运行动打造更高效的货运体系；
- 采用等效于欧V标准的铁路柴油机车排放标准；
- 提高船舶岸电的使用要求，加严船舶燃油能效标准，加严船舶发动机排放标准，并扩大船舶排放控制区的政策范围。
结论和建议
通过对各交通细分部门和策略措施的综合排放建模分析，我们发现：

» 作为一个快速发展的发展中国家，中国巨大的经济发展潜力和不断加快的城镇化步伐将进一步拉动客货运输需求。与2020年水平相比，预计到2030年，本文分析的各交通细分部门的活动水平增长率为5%-50%，到2050年的活动水平增长率约为20%-150%。

» 在较温和目标情景下提出和考虑的政策预计只会在短期（未来五年）内产生一些气候收益，但不足以在长期减少，甚至稳定气候污染物排放量。具体而言，如果这一趋势发展下去，预计到2050年中国交通部门气候污染物排放量将比2020年水平高出6%，到2060年将高出16%（图5）。

» 中国需要一套全球领先的政策措施，以实现长期、持续的气候污染物减排收益。基于我们在较激进目标情景下所考虑的2035年之前的政策组合，预计到2050年可实现中国交通部门气候污染物排放量比2020年水平减少40%（图6）。如果这些政策能在2035年之后实现类似的减排速度，到2050年中国交通部门的气候污染物排放量将比2020年水平减少74%，或比2050年已出台政策情景减少82%。这样的政策目标将真正体现中国的在减缓气候变化方面发挥的领导作用。

» 这些代表世界先进水平的政策措施预计将在“十四五”期间产生巨大的减排潜力，其中主要减排贡献来自于重型车和非道路机械细分部门，其中包括通过实施更严格的车辆能效或温室气体标准来直接减少二氧化碳排放，更重要的是，通过实施更严格的排放标准可以大幅减少黑碳排放。

» 这些代表世界先进水平的政策措施同时还将带来巨大的空气质量协同减排收益。

![图10](image)

我们在出台政策、较温和目标和较激进目标情景下的WTW气候污染物（CO₂e、GWP20）排放量及建议的减排目标（2020-2050年）。

注：图中数据标签表示2050年不同情景下相较于2020年水平的减排幅度。

我们建议通过以下措施在“十四五”及更长远的未来实现中国交通部门的低碳化发展目标。
我们建议中国统筹应对气候变化问题，并出台减少\(CO_2 \)和非\(CO_2 \)气候污染物排放的策略和政策，其中非\(CO_2 \)气候污染物包括甲烷、氧化亚氮、气态氟化物和黑碳。统筹应对方法还将为当地的空气质量和公众健康带来显著的协同减排收益。

我们建议中国基于2060年整体经济体系实现碳排放量净零这一长期目标，确定短期和中期的交通温室气体或气候污染物减排目标。我们特别建议中国考虑制定有雄心的2050年交通部门气候污染物减排目标，例如基于我们分析得出的与2020年水平相比减排70%-80%的目标。相比之下，《欧洲绿色协议》的非约束性目标是到2050年将交通部门的排放量较1990年水平减少90%。然后，从中期角度，中国可针对各交通细分部门制定\(CO_2 \)或温室气体直接排放法规，以实现这一长期减排目标；目前欧盟已计划修订乘用车、箱式货车和重型车的\(CO_2 \)排放标准，以期实现调整后（强化的）的2030年整体经济体系温室气体减排目标，即在1990年基础上减少55%。

我们建议中国也制定全面的政策工具组合，以实现这些交通部门的污染物减排，包括但不限于以下内容：

- 研究制定严格的机动车、船舶和非道路机械大气污染物和温室气体协同控制标准，并健全相关法律法规，赋予生态环境部门对不达标企业的行政和经济处罚权限，力争与国际最佳实践接轨；
- 研究制定各交通细分部门（如轻型汽车、重型汽车等）和细分应用部门（如公共交通、市政服务、出租租赁、城市物流、港区短驳等）的零排放车比例要求，并通过机动车大气污染物及温室气体排放标准和财税政策鼓励零排放车的生产，通过在城市、港口和物流园区等设置低排放区和零排放区进一步拉动各个细分部门零排放车辆、机械和发动机的应用；
- 尽快研究制定下一阶段机动车、船舶、非道路发动机的污染物排放标准，并确保标准严格实施，力争将黑碳排放降到近零水平；
- 在机动车排放标准中提出车用空调制冷剂最高温室气体潜能值（GWP）要求，或制定明确的淘汰高GWP氢氟碳化物的时间表，力争在2022年新生产的机动车全部使用低GWP的空调制冷剂（如GWP<100）；
- 优化交通运输结构，研究制定客运和货运运输结构的碳排放强度目标（如每吨-公里货物运输碳排放强度下降比例）和相关政策。
参考文献

Buysses, C., & Miller, J. (2021, April 9). Transport could burn up the EU’s entire carbon budget. iCCT Staff Blog. https://theicct.org/blog/staff/eu-budget-carbon-apr2021

附录A: 每个策略的详细政策假设

本附录分别列出了三种建模情景下的详细假设和政策考虑，通常按策略部门、交通细分部门和政策工具进行分类。

<table>
<thead>
<tr>
<th>策略</th>
<th>章节</th>
<th>政策工具</th>
</tr>
</thead>
<tbody>
<tr>
<td>新能源汽车和非道路源</td>
<td>1.1</td>
<td>乘用车电动化</td>
</tr>
<tr>
<td></td>
<td>1.1.1</td>
<td>纯电动乘用车能效</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>轻型商用车电动化</td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>客车电动化</td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td>中重型货车和大型重型货车电动化</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>船用发动机电动化</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>铁路电气化</td>
</tr>
<tr>
<td></td>
<td>1.7</td>
<td>非道路机械电动化</td>
</tr>
<tr>
<td>能效/CO₂</td>
<td>2.1</td>
<td>乘用车燃料能效/CO₂标准</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>轻型商用车燃料能效/CO₂标准</td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>重型车燃料能效/CO₂标准</td>
</tr>
<tr>
<td></td>
<td>2.4</td>
<td>船用发动机能效/CO₂标准</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>非道路机械发动机能效/CO₂标准</td>
</tr>
<tr>
<td>排放标准/政策</td>
<td>3.1</td>
<td>国VI合规监管与实施及排放标准</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>大型重型货车报废计划</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>轻型商用车报废计划</td>
</tr>
<tr>
<td></td>
<td>3.4</td>
<td>中国船舶排放控制区</td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td>非道路国V排放标准</td>
</tr>
<tr>
<td></td>
<td>3.6</td>
<td>船舶发动机排放标准</td>
</tr>
<tr>
<td></td>
<td>3.7</td>
<td>火车机车排放标准</td>
</tr>
<tr>
<td>制冷剂替代</td>
<td>4.1</td>
<td>轻型车空调制冷剂标准</td>
</tr>
<tr>
<td></td>
<td>4.2</td>
<td>重型车空调制冷剂标准</td>
</tr>
<tr>
<td>货运体系</td>
<td>5.1</td>
<td>货运模式转变</td>
</tr>
<tr>
<td></td>
<td>5.2</td>
<td>以SmartWay为模型的绿色货运行动计划</td>
</tr>
<tr>
<td>清洁电网</td>
<td>6.1</td>
<td>电力行业改进</td>
</tr>
</tbody>
</table>

1.1 乘用车电动化

乘用车指车辆质量小于3.5吨的载客汽车。

已出台政策：2020年9月出台了多项推广政策，其中包括延长国家新能源汽车购置补贴、税收减免，以及新出台的2021-2023年新能源乘用车双积分政策，该政策要求到2023年新能源汽车积分达到18%。乐观情况下，这意味着2023年新生产乘用车中电动汽车的市场渗透率将达到18%。如果没有进一步的政策，我们将假设到2025年及以后新能源汽车的市场份额将保持在这一水平。

表1.1a. 已出台政策情景下新生产乘用车（内燃机汽车、插电式混合动力电动汽车和纯电动汽车）的销量占比

<table>
<thead>
<tr>
<th>车型类型</th>
<th>2020</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>内燃机汽车</td>
<td>95%</td>
<td>82%</td>
</tr>
<tr>
<td>纯电动汽车</td>
<td>4%</td>
<td>16%</td>
</tr>
<tr>
<td>插电式混合动力汽车</td>
<td>1%</td>
<td>2%</td>
</tr>
</tbody>
</table>
较温和目标情景：中国在《新能源汽车产业发展规划（2021-2035年）》中提出了到2025年新能源汽车市场渗透率达到25%的目标（提案中规定25%，后来在最终方案中改为20%）。2020年底，中国汽车工程学会发布的《节能与新能源汽车技术路线图2.0》(中国汽车工程学会, 2020年)中提出，到2035年新能源汽车的市场份额将达到50%。我们假设新能源汽车渗透率与这些目标相同。

表1.1b.较温和目标情景下新生产乘用车（内燃机汽车、插电式混合动力电动汽车和纯电动汽车）的销售占比

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2025</th>
<th>2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>内燃机汽车</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>纯电动汽车</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>插电式混合动力汽车</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

较激进目标情景：我们假设中国将与英国（在国内生产总值与中国处于同一层级的国家中处于世界一流水平）保持同步，并且制定2035年新生产乘用车全面（100%）电动化的目标。为实现该目标，我们假设中国到2030年新生产乘用车中新能源汽车占比达到70%。

表1.1c.较激进目标情景下新生产乘用车（内燃机汽车、插电式混合动力电动汽车和纯电动汽车）的销售占比

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>内燃机汽车</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>纯电动汽车</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>插电式混合动力汽车</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.1.1 纯电动乘用车能效

已出台政策：中国最新出台的国家补贴计划（现已延长至2022年）和新能源汽车强制政策（双积分政策）都将电动汽车的补贴规模与能效挂钩。在这些政策的推动下，预计纯电动乘用车和插电式混合动力电动汽车的能效将按照2%的年增速从2017年的16.8 kWh/100km提升至2025年的14.3 kWh/100km。但由于缺乏数据支撑，我们不考虑插电式混合动力汽车的能效提升。

较温和目标情景：中国提出的《新能源汽车产业发展规划（2021-2035年）》中要求，到2025年新生产纯电动乘用车的车队平均电能效率达到12.1 kWh/100km。这相当于从2017年到2025年每年提高约4%。

较激进目标情景：我们预测纯电动乘用车最大年能效提升率可达5%。据此提升率，我们假设到2025年新生产纯电动乘用车的车队平均能效将达到11.1 kWh/100km。

1.2 轻型商用车电动化

针对本次建模研究，在电动化政策背景下，轻型商用车包括4.5吨以下的物流/快递运输车及轻型整体式货车。

已出台政策：在2020年9月之前出台的延长中央新能源汽车购置补贴、税收减免、交通运输部道路通行奖励等多项推广政策以及《柴油货车污染治理攻坚战行动计划》中要求推广新能源物流车和重型货车的推动下（中华人民共和国生态环境部，2019年），预计到2025年，中国新生产物流箱式货车中新能源汽车占比将达到10%左右，轻型整体式货车中占比将达到2%左右。
表1.2a.已出台政策情景下新生产轻型商用车（内燃机汽车、插电式混合动力电动汽车和纯电动汽车）的销量占比

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>物流车辆</td>
<td></td>
<td></td>
</tr>
<tr>
<td>纯电动汽车</td>
<td>4.7%</td>
<td></td>
</tr>
<tr>
<td>内燃机汽车</td>
<td>90%</td>
<td>10%</td>
</tr>
<tr>
<td>整体式货车</td>
<td></td>
<td></td>
</tr>
<tr>
<td>纯电动汽车</td>
<td>0.2%</td>
<td></td>
</tr>
<tr>
<td>内燃机汽车</td>
<td>98%</td>
<td>2%</td>
</tr>
</tbody>
</table>

较温和目标情景: 中国一直在研究新能源商用车的政策。相关机构也一直在研究这一课题。我们假设这项政策要求到2025年生产物流车辆中新能源汽车占比达到40%，新生产轻型整体式货车中占比达到8%。

表1.2b.较温和目标情景下新生产轻型商用车（内燃机汽车、插电式混合动力电动汽车和纯电动汽车）的销量占比

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>物流车辆</td>
<td></td>
<td></td>
</tr>
<tr>
<td>与已出台政策相同</td>
<td></td>
<td></td>
</tr>
<tr>
<td>内燃机汽车</td>
<td>60%</td>
<td>40%</td>
</tr>
<tr>
<td>纯电动汽车</td>
<td>40%</td>
<td></td>
</tr>
<tr>
<td>整体式货车</td>
<td></td>
<td></td>
</tr>
<tr>
<td>与已出台政策相同</td>
<td></td>
<td></td>
</tr>
<tr>
<td>内燃机汽车</td>
<td>92%</td>
<td>8%</td>
</tr>
<tr>
<td>纯电动汽车</td>
<td>8%</td>
<td></td>
</tr>
</tbody>
</table>

较激进目标情景: 我们假设中国要求到2025年生产物流车辆中新能源汽车占比达到100%，新生产整体式货车达到15%；并且实施进一步措施，管理要求将与加州的《先进清洁卡车法规》（CARB, 2020年）保持一致，即要求到2030年和2035年新生产的整体式货车中新能源汽车占比分别达到30%和55%。

表1.2c.较激进目标情景下新生产轻型商用车（内燃机汽车、插电式混合动力电动汽车和纯电动汽车）的销量占比

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>物流车辆</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>与已出台政策相同</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>纯电动汽车</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>整体式货车</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>与已出台政策相同</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>内燃机汽车</td>
<td>85%</td>
<td>70%</td>
<td>45%</td>
<td></td>
</tr>
<tr>
<td>纯电动汽车</td>
<td>15%</td>
<td>30%</td>
<td>55%</td>
<td></td>
</tr>
</tbody>
</table>

1.3 客车电动化

在本研究背景下，客车包括城市客车和长途客车。

已出台政策: 中国在2020年9月之前出台了一系列推广政策，其中包括延长中央新能源汽车购置补贴、税收减免；交通运输部在2020年发布的《绿色出行创建行动方案》（中华人民共和国交通运输部, 2020年）中要求重点污染城市的新能源城市客车占比达到60%，其他城市占比达到50%；中国《柴油货车污染治理攻坚战行动计划》中要求重点污染城市的新增城市客车车队中新能源城市客车占比达到80%；在上述政策推动下，预计到2020年新能源汽车将在新增城市客车车队中占绝大多数。我们假设到2020年新增城市客车车队中新能源汽车占比达到100%，但到2025年新增长途客车车队中新能源汽车的占比保持与2020年基线相同。

表1.3a.已出台政策情景下新生产城市客车和长途客车（内燃机汽车、插电式混合动力电动汽车和纯电动汽车）的销量占比

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>城市客车</td>
<td>新车队中80%纯电动汽车和20%插电式混合动力汽车</td>
<td>新车队中80%纯电动汽车和20%插电式混合动力汽车</td>
</tr>
<tr>
<td>长途客车</td>
<td>14%压缩天然气汽车、4%插电式混合动力电动汽车和82%内燃机汽车</td>
<td>与2020年相同</td>
</tr>
</tbody>
</table>

26 ICCT REPORT | “十四五”及中长期中国交通部门低碳化的机遇与路径
较温和目标情景: 中国一直在研究针对新能源商用车的政策，相关研究部门也一直在
研究这一课题。我们假设这项政策要求到2025年新增长途客车中新能源汽车占比达到30%。根据拟议的《推动公共部门车辆电动化行动计划》（中华人民共和国工业
和信息化部, 2020; 新华社, 2020年），预计到2025年所有存量城市客车都将使用
新能源汽车。

表1.3b. 较温和目标情景下新生产城市客车和长途客车（内燃机汽车、插电式混合动力电动汽车和纯电动汽车）的
销量和存量占比

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2025</th>
</tr>
</thead>
</table>
| 城市客车 | 新车队中80%纯电动汽车和20%
插电式混合动力汽车 | 存量车队中80%纯电动汽车和20%
插电式混合动力汽车 |
| 长途客车 | 与已出台政策相同 | 新车队中70%内燃机汽车、4%
插电式混合动力汽车和26%
纯电动汽车 |

较激进目标情景: 《新能源汽车产业发展规划（2021-2035年）》中要求公共交通部
门实现100%电动化。我们假设，除了较温和目标情景下考虑的政策外，中国将要
求到2025年新增长途客车和到2035年所有存量长途客车实现全面（100%）电动化
（目前海南在其《海南省清洁能源汽车规划》（海南省人民政府, 2019年）中要
求到2025年新增长途客车车队和到2030年存量长长途客车车队全部采用100%清洁能源
（电力和天然气））。

表1.3c. 较激进目标情景下新生产城市客车和长途客车（内燃机汽车、插电式混合动力电动汽车和纯电动汽车）的
销量占比和存量车队占比

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2025</th>
<th>2025</th>
<th>2035</th>
</tr>
</thead>
</table>
| 城市客车 | 新车队中80%纯电动汽车和20%
插电式混合动力汽车 | 存量车队中80%纯电动汽车和20%
插电式混合动力汽车 | 存量车队中80%纯电动汽车和20%
插电式混合动力汽车 | 存量车队中80%纯电动汽车和20%
插电式混合动力汽车 |
| 长途客车 | 与已出台政策相同 | 新车队中40%纯电动汽车
40%插电式混合动力汽车
20%燃料电池汽车 | 存量车队中30%纯电动汽车
40%插电式混合动力汽车
10%燃料电池汽车
20%内燃机汽车 | 存量车队中40%纯电动汽车
45%插电式混合动力汽车
15%燃料电池汽车 |

1.4 中重型货车和大型重型货车电动化
重型货车包括中重型货车和大型重型货车。为了更好地与潜在的新能源商用车政策
保持一致，我们仍将使用环卫车、自卸车和牵引车的分类。

已出台政策: 尽管在2020年9月之前出台了延长中央新能源汽车购置补贴、税收减免
等多项推广政策，但中重型货车部门的电动化进程仍然很缓慢，应用范围主要局限
于小规模示范。因此，我们预计除城市环卫车和邮政车等专用汽车之外的新能源重型汽
车市场份额与基准水平相比不会有任何变化。对于这些货车，考虑到中国《柴油货车
污染治理攻坚战行动计划》中要求重点污染城市的新能源环卫车比例达到80%，我
们假设其2025年新能源汽车的市场份额为50%。
表1.4a.已出台政策情景下新生产中重型货车（内燃机汽车、插电式混合动力电动汽车和纯电动汽车）的销量占比

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>环卫车和邮政车</td>
<td>2.5%纯电动汽车、5%压缩天然气汽车、92.5%柴油车</td>
<td></td>
</tr>
<tr>
<td>自卸车及其他中重型货车</td>
<td>1%纯电动汽车、6%压缩天然气汽车、93%内燃机汽车</td>
<td></td>
</tr>
<tr>
<td>牵引车及其他大型重型货车</td>
<td>100%内燃机汽车</td>
<td></td>
</tr>
</tbody>
</table>

较温和目标情景: 中国一直在研究新能源商用车部门的政策，相关研究机构也一直在研究这一课题。我们预计该政策可能不会涵盖自卸车和牵引车。并且，没有迹象表明其他政策驱动因素可推动新能源汽车在所有货车行业内获得更大的市场份额。因此，我们在较温和目标情景下的假设与已出台政策情景是相同的。

较激进目标情景: 我们假设中国将与加州的《先进清洁卡车法规》保持一致，具体要求如下表所示。此外，我们假设下一阶段的“蓝天保卫战”行动计划将要求到2025年和2030年新增环卫车和邮政车车队中的新能源汽车占比分别达到50%和100%（中华人民共和国国务院, 2018年）。

表1.4b.较激进目标情景下新生产中重型货车（内燃机汽车、插电式混合动力电动汽车和纯电动汽车）的销量占比

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>环卫车和邮政车</td>
<td>2.5%纯电动汽车、5%压缩天然气汽车、92.5%柴油车</td>
<td>50%纯电动汽车</td>
<td>100%纯电动汽车</td>
<td>100%纯电动汽车</td>
</tr>
<tr>
<td>自卸车及其他中重型货车</td>
<td>与已出台政策相同</td>
<td>11%纯电动汽车</td>
<td>50%纯电动汽车</td>
<td>75%纯电动汽车</td>
</tr>
<tr>
<td>牵引车及其他大型重型货车</td>
<td>与已出台政策相同</td>
<td>7%纯电动汽车</td>
<td>30%纯电动汽车</td>
<td>40%纯电动汽车</td>
</tr>
</tbody>
</table>

1.5 船用发动机电动化
我们将船舶停泊时使用岸电视为船用辅助发动机和/或锅炉的电动化。尽管中国一直在推广包括动力电池在内的零排放船舶发动机技术，但我们并未考虑这些影响，因为在未来十年内不太可能对纯电动船舶有任何强制性要求。

已出台政策: 在国内排放控制区（DECA）框架内（Mao, 2019年; 中华人民共和国交通运输部, 2018年），要求船舶分阶段逐步使用和安装岸电。该框架是在2018年出台的，根据船舶类型在2020年或2021年实施。在国内排放控制区之外，建议使用岸电，但是自愿性的。2019年，一些国内船舶已经接入岸电，虽然有些是自愿的，但已被纳入已出台政策情景当中。预计已出台的政策措施将对已安装岸电船舶的泊位排放产生重大影响，对悬挂中国国旗但尚未安装岸电船舶的泊位排放产生一定程度的影响。这些政策不会影响船舶航行时的排放，而这也是近岸船舶排放中的最大贡献源。然而，泊位减排将以一种有意义的方式使沿海社区受益。下表显示了我们对沿海和内河船舶以及远洋船舶的停泊岸电用量的假设。
表1.5a. 已实施政策情景下的停泊岸电用量

<table>
<thead>
<tr>
<th></th>
<th>停泊岸电用量(MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2025</td>
</tr>
<tr>
<td>沿海及内河船舶</td>
<td>15,100</td>
</tr>
<tr>
<td>远洋船舶</td>
<td>114,000</td>
</tr>
</tbody>
</table>

注:
1. 目前约有2%悬挂中国国旗的远洋船舶和3%-15%(取决于船型)悬挂外国国旗的远洋船舶配备了岸电设备。我们假设从2025年开始这些船舶都在停泊时使用岸电, 以遵守国内排放控制区域内的岸电使用要求。
2. 我们假设所有游轮(无论悬挂哪国国旗)都将配备岸电并从2025年开始在停泊时使用。
3. 电网使用产生的气候污染物排放取决于对电网碳强度的假设。

较温和目标情景: 我们假设与已出台政策情景相比没有变化。

较激进目标情景: 我们假设会针对悬挂中国国旗的远洋船舶提出安装和使用岸电的渐进性目标。

表1.5b. 关于较激进目标情景下悬挂中国国旗的远洋船舶安装与使用岸电的假设

<table>
<thead>
<tr>
<th></th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040</th>
<th>2045</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>配备岸电设备的船舶在船队中的占比</td>
<td>5%</td>
<td>8%</td>
<td>11%</td>
<td>14%</td>
<td>17%</td>
<td>20%</td>
</tr>
<tr>
<td>停泊岸电用量(MWh)</td>
<td>12,500</td>
<td>17,800</td>
<td>25,400</td>
<td>40,200</td>
<td>52,300</td>
<td>73,300</td>
</tr>
</tbody>
</table>

1.6 货运铁路电气化

本分析仅考虑中国货运铁路系统的电气化率。

已出台政策: 2015年的货运铁路电气化率为60.8%, 2020年为70%（国家铁路局，2016年; 中华人民共和国国家发展和改革委员会, 2017年）。根据与生态环境部机动车排污监控中心的内部沟通, 我们预计, 如果中国继续努力实现货运铁路系统的电气化, 到2025年这一比率将达到80%。

较温和目标情景: 我们假设与已出台政策情景相比没有变化。

较激进目标情景: 我们假设到2025年货运铁路电气化率达到90%。

1.7 非道路机械电动化

非道路机械涵盖了应用范围广泛的一系列机械设备, 且每种机械的发动机尺寸、工作负载和工作环境各不相同。我们此次分析的政策措施包括叉车、机场和港口地面支持设备、建筑机械和农用拖拉机的电动化。建筑机械和农用拖拉机属于“其他机械”。目前, 叉车被公认为是电动化的首选对象之一。港口和机场使用的设备包括地面支持设备 (行李拖车、皮带装载机、货物牵引车、叉车、空调拖车、乘客站台等) 和货物装卸设备 (堆场牵引车、叉车、轮胎式龙门起重机)。

已出台政策: 据VECC估算, 2020年新生产叉车的电动化率约为40%, 而其他新生产非道路机械的电动化率仍然接近0%。

较温和目标情景: 据生态环境部机动车排污监控中心估算, 到2035年新生产叉车的电动化率可能会保持在40%左右。
较激进目标情景: 我们假设, 到2030年新生产叉车的电动化率达到100%, 到2040年新生产建筑机械的电动化率达到70%。该假设是基于加州2025年后时间框架中提出的所有货物装卸设备将过渡到零排放管理要求而提出的（California Air Resources Board, 2018年）。同时, 欧洲的许多城市都提出了建立工地零排放方面的要求, 包括奥斯陆和哥本哈根 (Instagrid, n.d.)。伦敦等城市已经制定了到2040年零排放施工的目标（City of London, 2020年）。

2.1 乘用车燃料能效/CO₂标准
已出台政策: 中国4阶段乘用车标准要求2020年新生产乘用车的车队平均油耗达到5L/100km。新实施的5阶段标准（中华人民共和国工业与信息化部, 2019年）将进一步降低新生产乘用车的车队平均油耗。到2025年达到4 L/100km, 或者在不考虑电动汽车的影响下, 新生产内燃机汽车的平均油耗达到4.85 L/100km。我们假设2025年后新车油耗不会进一步降低, 另外假设实际（道路）油耗比试验工况油耗高25%。

较温和目标情景: 基于《节能与新能源汽车技术路线图2.0》中提出的目标, 我们假设新标准将要求到2030年新生产乘用车的车队平均油耗达到3.2 L/100km, 或者在排除电动汽车影响后, 新生产燃油车达到4.4 L/100km。我们假设从2025年开始, 实际油耗与试验工况油耗之间的差距从25%降低到10%（这与美国环保局规定的的在用CO₂排放合规容差是一致的）。

较激进目标情景: 我们假设中国将要求到2030年新生产内燃机车辆的平均油耗达到4 L/100km, 这相当于从2020年到2030年新生产内燃机车辆的能源强度降低30%。这恰好相当于2025年新增车队的平均油耗目标。

2.2 轻型商用车燃料能效/CO₂标准
已实施政策: 现行的3阶段轻型商用车标准旨在实现2015-2020年间新生产轻型商用车平均油耗降低20%（国家标准委, 2016年）。在3阶段燃油消耗量标准下, 预计2020年所有燃料类型和类别车辆的汽油当量油耗为6.8 L/100km。

较温和目标情景: 基于已出台政策, 2012-2020年间年油耗的年降低幅度为2.8%。根据内部沟通, 我们假设新标准将要求2020-2030年间所有燃料类型和子类别（N₁和M₂）内燃机车辆的年油耗降低率也达到2.8%。

较激进目标情景: 如果中国要在2030年将车队平均油耗从2020年的6.8L/100km（汽油当量）降低到欧盟要求的4.4L/100km, 每年降低幅度需达到4.3%。新标准将要求在2030年之前所有燃料类型和类别内燃机车辆的年油耗降低率达到4.3%。

2.3 重型汽车燃料能效/CO₂标准
已出台政策: 现行的3阶段重型车标准旨在实现2015-2020年间新生产重型车的平均油耗降低15%（Delgado, 2016年）。我们假设后续没有进一步改善。

较温和目标情景: 根据与相关政策研究机构的内部沟通, 我们假设新标准将要求到2025年所有类别的重型车比2020年油耗水平降低15%, 这与2015-2020年间的要求是一致的。
较激进目标情景: 我们假设新标准将要求到2025年比2020年水平降低15%，到2030年比2020年水平降低30%。这大致反映了欧盟重型车\(\text{CO}_2\)排放标准在同一时间跨度内所要求的能效改善幅度。

2.4 船用发动机能效/\(\text{CO}_2\)标准
本研究考虑了两套船舶监管体系。悬挂中国国旗和外国国旗的远洋船舶均受国际海事组织监管，沿海和内河船舶是中国的国内船队，受中国政府监管。

已出台政策: 目前国内没有制定船用能效标准。远洋船用须遵守国际海事组织制定的国际能效设计指数（EEDI）标准，这些标准也适用于悬挂中国国旗的远洋船舶（Hon & Wang，2011年）。EEDI针对2015-2030年间新生产远洋船舶（按船型区分）设定了碳强度目标（\(\text{gCO}_2/\text{吨-海里}\)）。基于之前ICCT开展的一项分析研究（Hon & Wang，2011年），我们在下表中展示了EEDI对远洋船舶的复合影响效应。

表2.4a.已出台政策情景下能效设计指数对远洋船舶燃料消耗量的影响（与2020年水平相比）

<table>
<thead>
<tr>
<th></th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040</th>
<th>2045</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>耗油降低率</td>
<td>8.7%</td>
<td>17%</td>
<td>26%</td>
<td>35%</td>
<td>43%</td>
<td>52%</td>
</tr>
</tbody>
</table>

注: 该政策效果直接转化为二氧化碳减排。其他气候污染物不是该政策的直接目标，因为EEDI的作用主要体现在燃油经济性方面，但我们假设它们会以相同的速率减排。不过，包括慢速航行在内的一些合规管理要求不一定会导致其他气候污染物（\(\text{CH}_4, \text{N}_2\text{O} \text{和BC}\)）实现与二氧化碳相同的减排水平，因此我们的假设会略微高估\(\text{CO}_2\)气候污染物的减排量。

较温和目标情景: 我们假设与已出台政策情景相比没有变化。

较激进目标情景: 我们假设中国将针对沿海和内河船舶采用一套类似于EEDI的燃油能效标准。

表2.4b. 关于较激进目标情景下中国国内燃料能效标准对沿海及内河船舶燃料消耗量的影响估算（与2020年水平相比）

<table>
<thead>
<tr>
<th></th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040</th>
<th>2045</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>耗油降低率</td>
<td>0%</td>
<td>8.7%</td>
<td>17%</td>
<td>26%</td>
<td>35%</td>
<td>43%</td>
</tr>
</tbody>
</table>

注: 燃油能效标准仅适用于新生产船舶。随着新生产船舶加入船队和现有船舶退役，燃油能效标准的影响将逐渐显现。表中显示的影响率考虑了船队周转模型，以便它们反映这些标准对整个船队的影响。

2.5 非道路机械发动机能效/\(\text{CO}_2\)标准
已出台政策: 中国在2020年实施了一项针对非道路发动机的推荐性燃料能效标准。但是，根据与VECC的内部沟通，该标准要求过于宽松，无法对非道路发动机的能效产生任何实质性影响。

较温和目标情景: 我们假设与已出台政策情景相比没有变化。

较激进目标情景: 我们假设与较温和目标情景相比没有变化。

3.1 国VI合规监管与实施
已出台政策: 国VI-a标准已于2021年7月在全国实施，国VI-b标准将于2023年7月在全国实施。此前，国V标准已在京津冀、珠三角和长三角地区提前实施。只有加强合规监管、完善实施方案以及确保标准如期实施才能发挥这些标准的最大效益。据生态环境部机动车排污监控中心估计，40%的国IV和国V货车存在排放控制故障。
致黑碳排放量过高。这些故障货车的排放水平预计与国III车辆类似。考虑到2023年开始才会实施更加强效的合规监管措施（如远程OBD），我们假设新增货车车队将达到国VI-a标准排放水平（不强制安装颗粒物捕集器，排放性能大致与国V水平类似）。

3.2 大型重型货车报废计划

已出台政策： 在《柴油货车污染治理攻坚战行动计划》的推动下，中国的目标是到2020年淘汰100万辆国IV之前的货车，并替换为国VI或新能源汽车。我们假设2020年之后不再实施进一步行动。

较温和目标情景： 我们假设与已出台政策情景相比没有变化。

较激进目标情景： 我们假设，随着新政策的出台，到2025年中国将改造和淘汰国IV之前的所有货车，并替换为国VI或新能源汽车；到2030年，在用的国IV货车将全部采用国VI或新能源汽车。

3.3 轻型商用车报废计划

已出台政策： 国家层面没有政策。

较温和目标情景： 我们假设与已出台政策情景相比没有变化。

较激进目标情景： 我们假设中国将要求淘汰所有国V之前的轻型货车并替换为国VI或新能源汽车。具体来说，到2025年国IV之前的轻型货车全部淘汰，到2030年国IV轻型货车全部淘汰。

3.4 中国船舶排放控制区

已出台政策： 国内船舶排放控制区（DECA）（2018年出台，2019年实施，到2025年进行内部审议）。

- **覆盖范围：** 整个中国海岸线向海上延伸12海里，以及长江、珠江和海南岛周围12海里。
- **法规：**
 - 燃料含硫量限值：5000ppm（沿海；从2022年开始海南限额为1000ppm）或10ppm（内河）。
 - 发动机氮氧化物排放性能：
1类和2类：IMO Tier II或中国船用发动机标准（以较严格者为准）（Mao, 2017年）；对于2022年以后新生产的发动机，实施IMO Tier III标准；

3类：IMO Tier II标准。

电动化强制要求（在电动化章节讨论）

对黑碳排放的间接影响：虽然DECA没有明确规定黑碳的排放限值，但也会导致黑碳排放减少，因为我们假设主要的限硫合规措施是燃料转换。与重质燃油相比，蒸馏燃油的黑碳排放量要低得多（Comer et al., 2017年）。

表3.4a. 国际海事组织的氮氧化物管理法规

<table>
<thead>
<tr>
<th>Tier</th>
<th>发布年份</th>
<th>氮氧化物排放限值(g/kWh)</th>
<th>发动机的额定转速(rpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>n < 130</td>
<td>n = 130 - 1999</td>
</tr>
<tr>
<td>I</td>
<td>2000年1月1日</td>
<td>17.0</td>
<td>45 n^{0.22}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>如720 rpm - 12.1</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>2011年1月1日</td>
<td>14.4</td>
<td>44 n^{0.22}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>如720 rpm - 9.7</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2016年1月1日</td>
<td>3.4</td>
<td>9 n^{0.22}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>如720 rpm - 2.4</td>
<td></td>
</tr>
</tbody>
</table>

较温和目标情景：在2025年之前对DECA政策进行审议，并确定后续行动。由中国交通运输部规划研究院牵头的相关团队完成了对DECA潜在升级的可行性研究，其中包括一个IMO指定的排放控制区（ECA）（Energy Foundation, 2019年）。考虑到中国的地理位置，我们认为最有可能是100海里的排放控制区。如果被采纳，以下政策将适用：

- 覆盖范围：整个中国海岸线向海上延伸100海里；

- 法规：
 - 燃料含硫量限值：1000ppm；
 - 发动机氮氧化物排放性能：对于2025年以后新生产的所有3类发动机，实施Tier III标准。

对黑碳排放的间接影响：虽然ECA/DECA没有明确规定黑碳的排放限值，但也会导致黑碳排放减少，因为我们假设主要的限硫合规措施是燃料转换。与重质燃油相比，蒸馏燃油的黑碳排放量要低得多。

较激进目标情景：我们假设标准的严格度没有区别，但ECA覆盖的地理范围可以扩大。

- 覆盖范围：在可能的情况下，整个中国海岸线向海上延伸200海里（这相当于中国的专属经济区）；
- 实施日期：对于硫氧化物和氮氧化物，2025年；
- 法规：
 - 燃料含硫量限值：1000ppm；
 - 发动机氮氧化物排放性能：对于2025年以后新生产的所有3类发动机，实施Tier III标准。
3.5 非道路国V排放标准

已出台政策：截止2017年，国III排放标准已应用于所有新生产的非道路机械（中华人民共和国生态环境部，2016年）。

较温和目标情景：根据2018年发布的征求意见稿（中华人民共和国生态环境部，2018年），我们假设到2020年国IV标准将应用于所有新生产的非道路机械（国IV标准于2020年12月发布，将实施时间修改为2022年12月1日）；根据与生态环境部机动车排污监控中心的内部沟通，我们假设到2028年国V标准（相当于欧V标准）将应用于新生产的建筑机械，到2033年实施国VI标准（假设在国V标准基础上减少50%的氮氧化物排放）。

较激进目标情景：到2020年，国IV标准将应用于所有新生产的非道路机械，并且我们假设中国将在2027年跨越到国VI标准。

3.6 船舶发动机排放标准

已出台政策：中国已于2016年发布第一和第二阶段船舶发动机标准。该标准由中华人民共和国生态环境部于2016年发布（中华人民共和国生态环境部，2016b）。第一阶段于2018年7月实施，第二阶段于2021年实施。现行法规等同于欧盟第III阶段标准。

适用范围：安装在沿海和内河船舶上的1类和2类船舶发动机。

排放限值(g/kWh):

<table>
<thead>
<tr>
<th>阶段</th>
<th>CO</th>
<th>HC+NOx</th>
<th>CH4</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>5</td>
<td>7.5-11</td>
<td>1.5-2</td>
<td>0.2-0.5</td>
</tr>
<tr>
<td>II</td>
<td>5</td>
<td>5.8-11</td>
<td>1-2</td>
<td>0.12-0.5</td>
</tr>
</tbody>
</table>

这些政策仅适用于生效年份之后新生产的船舶。根据当前的船龄分布，我们开发了一个船队更迭换代模型，用于估算符合上述标准的船舶在国内船队中未来的占比，具体结果如下表所示。

表3.6a.已出台政策情况下符合船舶发动机标准的船舶在未来船队中所占的比例估算

<table>
<thead>
<tr>
<th>阶段</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040</th>
<th>2045</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>16%</td>
<td>16%</td>
<td>11%</td>
<td>5%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>II</td>
<td>14%</td>
<td>45%</td>
<td>69%</td>
<td>94%</td>
<td>99%</td>
<td>100%</td>
</tr>
</tbody>
</table>

较温和目标情景：我们假设与已出台政策情景相比没有变化。

较激进目标情景：由于美国已实施Tier 3&4标准，欧盟也已对船舶发动机实施了第V阶段标准，中国的目标应是对内陆航道船舶实施相当于欧V阶段标准的限值，并将这些限值（如下表所示）应用于沿海和内河船舶：

适用范围：安装在沿海和内河船舶上的1类和2类船舶发动机。

排放限值(g/kWh):
这些政策（我们将其称为中国第三阶段标准）仅适用于生效年份之后新生产的船舶。基于我们的船队更新迭代模型，我们估算符合上述各项标准的船舶在船队中的占比，具体结果如下表所示。

第三阶段颗粒物排放标准意味着需使用柴油颗粒物捕集器来满足限值要求，这对黑碳排放量也有间接影响。我们假设黑碳的减排率为90%。

3.7 货运铁路排放标准

已出台政策：目前铁路机车发动机排放不受管制。

较温和目标情景：根据与生态环境部机动车排污监控中心的内部沟通，我们假设到2025年将对新生产柴油铁路机车发动机实施等效于欧盟V阶段标准的排放标准。

较激进目标情景：我们假设到2021年将对新生产柴油铁路机车发动机实施等效于欧盟V阶段标准的排放标准。

4.1 轻型汽车空调制冷剂标准

已出台政策：无要求。

较温和目标情景：我们假设在2024年禁止新乘用车使用高GWP制冷剂（正如中国在《基加利修正案》中的承诺）。　

较激进目标情景：我们假设在2022年禁止新乘用车使用高GWP制冷剂。

4.2 重型汽车空调制冷剂标准

已出台政策：无要求。

较温和目标情景：我们假设在2024年禁止新车使用高GWP制冷剂（基于《基加利修正案》中的承诺）。

较激进目标情景：我们假设在2022年禁止新车使用高GWP制冷剂。
5.1 货运模式转变
已出台政策: 为期三年的《柴油货车污染治理攻坚战行动计划》的目标是在2017-2020年间货运铁路活动水平增长30%，这是通过柴油货车等其他货运模式转变实现的。

较温和目标情景: 根据与生态环境部机动车排污监控中心的内部沟通，我们假设铁路货运活动水平在2017-2025年间由于货运模式转变而增长了40%。

较激进目标情景: 我们假设铁路货运活动水平在2017-2025年间由于货运模式转变而增长了50%。

5.2 以 SmartWay为模型的绿色货运计划
已出台政策: 2015年，1500辆货车参与了广东省绿色货运计划。从国家层面来看，这种参与度可以忽略不计。

较温和目标情景: 基于美国的实践经验，我们假设适度参与中国的绿色货运计划，从2025年开始2%的在用轻型商用车、中重型货车和大型重型货车参与其中，参与计划车辆的节油率为10%。

较激进目标情景: 我们假设更高比例参与中国的绿色货运计划，从2025年开始3%的在用轻型商用车、中重型货车和大型重型货车参与其中，参与计划车辆的节油率为15%。

6.1 电力行业改进
已出台政策: 我们预计电力行业将按照中国“十三五”规划设定的能源目标变得清洁。2017年基准电网全生命周期碳排放因子为767 gCO₂e/kWh。到2020年预计为635 gCO₂e/kWh (中华人民共和国国家发展和改革委员会, 2016年)。

较温和目标情景: 基于清华大学在较激进行业目标情景下的估算，我们假设到2030年电网全生命周期碳排放因子为515 gCO₂e/kWh。

较激进目标情景: 为了与国际能源署的《世界能源展望2019》可持续发展情景保持一致，我们假设到2030年电网全生命周期碳排放量比2017年基线减少约60%，即307 gCO₂e/kWh。
附录B: 附加图

图1 已出台政策下WTW气候污染物（CO₂e, GWP100）排放量及较激进目标情景下政策的减排潜力（2020-2050年）