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INTRODUCTION
Emissions from motor vehicles and their fuels contribute 
to ambient levels of ozone, fine particulate matter, 
nitrogen dioxide (NO2), sulfur dioxide, and carbon 
monoxide (CO), which are all pollutants for which the 
United States Environmental Protection Agency (EPA) 
has established health-based National Ambient Air 
Quality Standards (NAAQS). These pollutants are linked 
with adverse health impacts and premature mortality. 
Today, 127 million people live in areas designated 
nonattainment for one or more of the current NAAQS.1

Cars and light- and heavy-trucks are a particular 
problem for the more than 50 million people who live, 
work, or go to school in close proximity to high-traffic 
roadways.2 Vehicles are a significant contributor to air 
pollution near roads, with gasoline light-duty vehicles 
alone accounting for more than 50% of near-road 
concentrations of some toxic and criteria pollutants.3 
Diesel trucks further contribute to pollution hotspots in 
urban areas.4 

The United States has a long history of managing and 
reducing emissions from vehicles.  California first 
started regulating vehicles in the 1960s, and the U.S. 
Clean Air Act, passed in 1970 mandates reductions 
in vehicle emissions. Over the years, these standards 
have progressively been made more stringent. New 
cars, sport utility vehicles (SUVs) and pickup trucks 
emit roughly 99% less hydrocarbons, carbon monoxide, 
nitrogen oxides, and particle emissions than their 1970 
counterparts. New heavy-duty trucks and buses are also 
roughly 99% cleaner than 1970 models.5 In addition, 
fuels are much cleaner—lead has been eliminated and 

1 U.S. Environmental Protection Agency, “Summary Nonattainment Area 
Population Exposure Report,” (April 30, 2020), https://www3.epa.gov/
airquality/greenbook/popexp.html.

2 U.S. Census Bureau, “American Housing Survey for the United States: 2009,” 
H150/09 (U.S. Government Printing Office, March 2011), https://www.
census.gov/prod/2011pubs/h150-09.pdf.

3 Eric M. Fujita, David E. Campbell, Barbara Zielinska, William P. Arnott, and 
Judith C. Chow, “Concentrations of Air Toxics in Motor Vehicle-Dominated 
Environments,” Research Report (Health Effects Institute), no. 156 (February 
2011): 3–77,  https://www.healtheffects.org/publication/concentrations-air-
toxics-motor-vehicle-dominated-environments.

4 Joshua S. Apte, Kyle P. Messier, Shahzad Gani, Michael Brauer, Thomas W. 
Kirchstetter, Melissa M. Lunden, Julian D. Marshall, Christopher J. Portier, 
Roel C.H. Vermeulen, and Steven P. Hamburg, High-Resolution Air Pollution 
Mapping with Google Street View Cars: Exploiting Big Data, Environmental 
Science & Technology 51, no. 12 (June 20, 2017): 6999–7008, https://doi.
org/10.1021/acs.est.7b00891.

5 U.S. Environmental Protection Agency, “History of Reducing Air Pollution 
from Transportation in the United States,” (September 10, 2015), 
https://www.epa.gov/transportation-air-pollution-and-climate-change/
accomplishments-and-success-air-pollution-transportation.

sulfur levels are more than 90% lower than they were 
prior to regulation.

However, these emission reductions values are 
only achieved by new, properly operating vehicles 
over a defined test cycle. There are many ways that 
real-world emissions can increase, and due to the 
effectiveness of the emission control systems used 
in modern vehicles, any defect or deterioration in the 
system can result in a large increase in emissions. This 
was demonstrated by the Volkswagen diesel emissions 
scandal, where the use of illegal defeat devices led 
to real-world emissions of nitrogen oxides (NOx) 
that were 5-35 times higher than those allowed on 
laboratory certification emissions tests.6

A relatively small number of defective or deteriorated 
systems can have a large impact on overall emissions 
and addressing all the causes of higher emissions 
is difficult. Despite improvements made to vehicle 
regulatory programs in the United States, there remains 
uncertainty about many aspects of real-world emissions 
from the vehicle fleet in the country, including:

• The real-world durability of all vehicles, not just 
those properly used and maintained.

• The emissions as vehicles deteriorate beyond the 
official emission useful life.

• How often malfunctions occur, how frequently 
repairs are made, and the emissions impact of the 
malfunctions.

• How much tampering occurs and the emissions 
impact of the tampering.

• Whether there are emission defects that are not 
being reported.

• Whether there are defeat devices that have not 
been identified. 

• The impact of different speeds and accelerations 
on emissions.

• The impact of ambient conditions on emissions.

More real-world emissions data are needed to 
understand the impact of motor vehicles on local 
air quality and help policymakers develop effective 
policy solutions. Information on real-world emissions 
performance can also help consumers make informed 

6 Gregory Thompson, Daniel Carder, Arvind Thiruvengadam, and Hemanth 
Kappanna, “In-Use Testing of Light-Duty Diesel Vehicles in the United 
States” (Morgantown, WV: West Virginia University, May 2014), https://
theicct.org/publications/use-emissions-testing-light-duty-diesel-vehicles-us. 

https://www3.epa.gov/airquality/greenbook/popexp.html
https://www3.epa.gov/airquality/greenbook/popexp.html
https://www.census.gov/prod/2011pubs/h150-09.pdf
https://www.census.gov/prod/2011pubs/h150-09.pdf
https://www.healtheffects.org/publication/concentrations-air-toxics-motor-vehicle-dominated-environments
https://www.healtheffects.org/publication/concentrations-air-toxics-motor-vehicle-dominated-environments
https://doi.org/10.1021/acs.est.7b00891
https://doi.org/10.1021/acs.est.7b00891
https://www.epa.gov/transportation-air-pollution-and-climate-change/accomplishments-and-success-air-pollution-transportation
https://www.epa.gov/transportation-air-pollution-and-climate-change/accomplishments-and-success-air-pollution-transportation
https://theicct.org/publications/use-emissions-testing-light-duty-diesel-vehicles-us
https://theicct.org/publications/use-emissions-testing-light-duty-diesel-vehicles-us
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purchasing decisions. The Real Urban Emissions (TRUE) 
Initiative was established in 2017 to supply cities with 
data regarding the real-world emissions of their vehicle 
fleets and equip them with technical information that 
can be used for strategic decision-making. 

To date, TRUE initiative work has focused on the 
analysis of real-world vehicle emissions data collected 
in European cities using remote sensing instruments. 
Remote sensing is a well-established technology for 
non-intrusively measuring the emissions of in-use 
vehicles.7 Initial work by the TRUE initiative presented 
methods for analyzing remote sensing data and applied 
these methods to investigate real-world NOx emissions 
from European vehicles.8 This work was followed by 
city-specific TRUE remote sensing studies in London 
and Paris.9 The emissions of more than 100,000 
vehicles were measured in each city, and data were 
analyzed to provide city officials, residents, and other 
stakeholders with a detailed picture of the emissions 
of the cities’ fleets. These studies demonstrated how 
real-world emissions data can be used to support city-
level clean air and vehicle emissions control policies 
and actions.

With this paper, the TRUE project turns its attention 
to gathering and analyzing remote sensing data in the 
United States using the methods and analyses learned 
from the previous studies in Europe. The goal of this 
project is to apply existing U.S. remote sensing data 
to further investigate how cities can use real-world 
data to support vehicle emissions control policies and 
actions. This first paper describes the data sources, data 
processing steps, metadata, select high-level results, 
and recommendations for future improvements. More 

7 Tim Dallmann, Use of Remote-Sensing Technology for Vehicle Emissions 
Monitoring and Control, (ICCT: Washington, D.C., 2018), https://theicct.org/
publications/remote-sensing-briefing-dec2018.

8 Yoann Bernard, Uwe Tietge, John German, and Rachel Muncrief, 
Determination of Real-World Emissions from Passenger Vehicles Using Remote 
Sensing Data, (Washington, D.C.: TRUE Initiative, 2018), https://theicct.org/
publications/real-world-emissions-using-remote-sensing-data.

9 Tim Dallmann, Yoann Bernard, Uwe Tietge, and Rachel Muncrief, Remote 
Sensing of Motor Vehicle Emissions in Paris, (ICCT: Washington, D.C.,  2019), 
https://theicct.org/publications/on-road-emissions-paris-201909; Tim 
Dallmann et al., Remote Sensing of Motor Vehicle Emissions in London, 
(ICCT: Washington, D.C., 2018), https://theicct.org/publications/true-
london-dec2018.

detailed analyses of the database are published as 
separate case studies.10  

Throughout this paper and in companion publications 
we will refer to the collection of remote sensing data 
compiled in this work as the TRUE U.S. database to 
distinguish it from other, similar, collections of vehicle 
remote sensing data.   

The following sections give an overview of the 
construction of the TRUE U.S. database and how the 
data were processed; present important aspects of the 
consolidated single database; describe data analysis, 
high-level results, and four examples of how the data can 
be used; and present conclusions and recommendations 
for future data collection and analyses.

CONSTRUCTION OF THE 
TRUE U.S. DATABASE
The development and use of remote vehicle emissions 
sensing in the United States has grown in recent years. 
Early systems were pioneered by the University of 
Denver (DU) in the late 1980s, funded initially by the 
Colorado Office of Energy Conservation and later by 
the California Air Resources Board (CARB). Remote 
sensing campaigns have been conducted in 19 states 
and Washington, DC, as illustrated in Figure 1.11 The 
figure shows which U.S. states use remote sensing, 
differentiated by program objectives. Currently, 
Colorado and Virginia are among the states most 
actively using remote sensing. Each state is using 
the technology to support vehicle inspection and 
maintenance (I/M) programs and is gathering several 
million remote sensing measurements per year. 

10 Yoann Bernard, Tim Dallmann, Uwe Tietge, Huzeifa Badshah, John German, 
Emissions deterioration of United States light-duty gasoline vehicles and trucks, 
(ICCT: Washington, DC, 2020), https://theicct.org/publications/true-us-
database-emissions-deterioration-oct2020; Yoann Bernard, Tim Dallmann, 
Uwe Tietge, Huzeifa Badshah, John German, Emissions distributions by vehicle 
age and policy implications, (ICCT: Washington, DC, 2020), https://theicct.
org/publications/true-us-database-emissions-distribution-oct2020; Yoann 
Bernard, Tim Dallmann, Uwe Tietge, Huzeifa Badshah, John German, Remote 
sensing of heavy-duty vehicle emissions in the United States, (ICCT: Washington, 
DC, 2020) https://theicct.org/publications/true-us-database-hdv-
emissions-oct2020.

11 Yoann Bernard, John German, and Rachel Muncrief, Worldwide Use of Remote 
Sensing to Measure Motor Vehicle Emissions, (ICCT: Washington, D.C. 2019), 
https://theicct.org/publications/worldwide-use-remote-sensing-measure-
motor-vehicle-emissions.

https://theicct.org/publications/remote-sensing-briefing-dec2018
https://theicct.org/publications/remote-sensing-briefing-dec2018
https://theicct.org/publications/real-world-emissions-using-remote-sensing-data
https://theicct.org/publications/real-world-emissions-using-remote-sensing-data
https://theicct.org/publications/on-road-emissions-paris-201909
https://theicct.org/publications/true-london-dec2018
https://theicct.org/publications/true-london-dec2018
https://theicct.org/publications/true-us-database-emissions-deterioration-oct2020
https://theicct.org/publications/true-us-database-emissions-deterioration-oct2020
https://theicct.org/publications/true-us-database-emissions-distribution-oct2020
https://theicct.org/publications/true-us-database-emissions-distribution-oct2020
https://theicct.org/publications/true-us-database-hdv-emissions-oct2020
https://theicct.org/publications/true-us-database-hdv-emissions-oct2020
https://theicct.org/publications/worldwide-use-remote-sensing-measure-motor-vehicle-emissions
https://theicct.org/publications/worldwide-use-remote-sensing-measure-motor-vehicle-emissions
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DATA SOURCES
Data collected by Colorado, Virginia, and the University 
of Denver and shared with the ICCT were used to 
construct the TRUE U.S. database. These data sources 
include approximately 60 million records and cover an 
impressive range of geography, ambient conditions, and 
driving conditions. The counties and cities for which 
measurements were obtained from each of the three 
sources are illustrated in Figure 2. 

The Colorado Department of Public Health & 
Environment (CDPHE) uses remote sensing for their 
clean screen program, which was launched in October 
2003 and is part of I/M programs targeting vehicles 
registered in the Denver Metropolitan area and North 
Front Range.12 Under the clean screen program, vehicles 
that pass roadside remote sensing emission tests are 
exempt from garage-based inspection requirements. The 
program now collects several million records each year.

CDPHE shared data from their remote sensing program 
with the ICCT collected from 2010 through the first 

12 Colorado Department of Public Health & Environment, “Automobile 
Emissions Inspection,” (May 14, 2014), https://www.colorado.gov/pacific/
cdphe/automobile-emissions-inspection.

half of 2018, consisting of over 53 million emission test 
records. From July 2008 through 2015, CDPHE used 
Opus 4000 series instruments (RSD 4600) to measure 
emissions and transitioned to Opus 5000-series 
instruments from 2015 onward. The data shared with 
ICCT cover the pollutants nitrogen monoxide (NO), CO, 
carbon dioxide (CO2), hydrocarbons (HC), and opacity. 

The Virginia Department of Environmental Quality 
(DEQ) also uses remote sensing for their clean 
screen program in Northern Virginia, which they call 
RAPIDPASS. In 2012, the Virginia legislature approved 
an expansion of the on-road emission (remote sensing) 
program to allow up to 30% of vehicles to complete 
their test requirement via RAPIDPASS.13 The DEQ also 
runs a high-emitter identification program using remote 
sensing data.14 DEQ shared data for years 2015 through 
2018 with the ICCT, consisting of approximately 5 
million records collected through the use of Opus 5000 
series instruments. 

13 Virginia Department of Environmental Quality, “RAPIDPASS Virginia,” 
(accessed May 20, 2020), https://www.deq.virginia.gov/Programs/
AirCheckVirginia/ForMotoristsVehicleOwners/RAPIDPASSVirginia.aspx.

14 Virginia Department of Environmental Quality, “On-Road Emissions 
Program FAQ,” (accessed May 20, 2020), https://www.deq.virginia.
gov/Programs/AirCheckVirginia/ForMotoristsVehicleOwners/
OnRoadEmissionsProgramFAQ.aspx.

Monitoring Research

High emitter Low emitter

Figure 1. Map of U.S. states using remote sensing, by program use.

https://www.colorado.gov/pacific/cdphe/automobile-emissions-inspection
https://www.colorado.gov/pacific/cdphe/automobile-emissions-inspection
https://www.deq.virginia.gov/Programs/AirCheckVirginia/ForMotoristsVehicleOwners/RAPIDPASSVirginia.aspx
https://www.deq.virginia.gov/Programs/AirCheckVirginia/ForMotoristsVehicleOwners/RAPIDPASSVirginia.aspx
https://www.deq.virginia.gov/Programs/AirCheckVirginia/ForMotoristsVehicleOwners/OnRoadEmissionsProgramFAQ.aspx
https://www.deq.virginia.gov/Programs/AirCheckVirginia/ForMotoristsVehicleOwners/OnRoadEmissionsProgramFAQ.aspx
https://www.deq.virginia.gov/Programs/AirCheckVirginia/ForMotoristsVehicleOwners/OnRoadEmissionsProgramFAQ.aspx


4

While the OPUS 5000-series instrument used 
by Virginia and Colorado after 2015 is capable of 
measuring NO2 emissions, none of the data reported to 
us included NO2 measurements. For vehicles equipped 
with gasoline engines, NO2 is expected to account for 
under 10% of total NOx emissions. The NO2 fraction 
can be higher in diesel exhaust, particularly for modern 
engines employing catalytic control technologies.15 
In this report, we focus on reporting NO emission 
results, as this is the NOx species directly measured 
in the Colorado and Virginia programs. In companion 
publications we explore methods for estimating total 

15 Chelsea V. Preble, Robert A. Harley, and Thomas W. Kirchstetter, Control 
Technology-Driven Changes to In-Use Heavy-Duty Diesel Truck Emissions 
of Nitrogeneous Species and Related Environmental Impacts, Environ. Sci. 
Technol. 53 (November 5, 2019): 14568–14576, https://doi.org/10.1021/acs.
est.9b04763.

NOx emissions when NO2 is not available, building on 
prior work in this area.16

The University of Denver was an early pioneer in 
remote sensing activities. The first open path cross-
road arc lamp systems were pioneered by Gary Bishop 
and Donald Stedman, and they have conducted testing 
throughout the United States since the late 1980s. The 
remote sensing system developed by DU and used 
for LDV measurements is called the Fuel Efficiency 
Automotive Test (FEAT). An alternative instrument 
set-up is used for targeted testing of HDVs, with a light 
source and detector elevated to the level of HDV raised 
stack exhaust pipes. Remote sensing data generated 
by DU is shared publicly by the University of Denver 

16 Bernard et al., Determination of Real-World Emissions from Passenger Vehicles 
Using Remote Sensing Data. 

Washington, D.C.
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Port of Houston, TX
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Chicago, IL
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Figure 2. Measurement locations for data compiled in TRUE U.S. database.

https://doi.org/10.1021/acs.est.9b04763
https://doi.org/10.1021/acs.est.9b04763
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Fuel Efficiency Automobile Test Data Center.17 For 
LDVs, this report considers data collected from 2010 
and onwards, consisting of approximately 300,000 
measurements. For HDVs, data collected from 2008 
and onward is considered, comprised of roughly 
23,000 measurements. 

DATA PROCESSING
Remote emissions measurements need to be combined 
with other data sources in order to support in-depth 
analyses. Figure 3 illustrates the process of combining 
different data sources in the TRUE U.S. database.

Remote sensing instruments record the concentration 
measurements of each emissions species relative to 
CO2 above the concentration in the ambient air, the 
vehicle’s speed and acceleration, weather conditions 
such as ambient temperature, and a photo of the 
vehicle license plate (see part A of Figure 3). Data on 
the measurement site, such as geographic coordinates 

17 University of Denver, Fuel Efficiency Automobile Test Data Center, “Welcome 
to the Fuel Efficiency Automobile Test Data Center,” (December 3, 2019), 
http://www.feat.biochem.du.edu/.

and road slope, are recorded by instrument operators 
(see part C of Figure 3). 

After remote sensing operators transcribe the license 
plate numbers from photos, the license plate numbers 
are transferred to the government department in charge 
of maintaining vehicle registration information in the 
state of the measurement campaign. The department 
determines the individual vehicle attributes, including 
the vehicle identification number (VIN) from the vehicle 
registry (see part B of Figure 3). The VIN consists of 
17 characters and encodes the manufacturer, vehicle 
description, model year, assembly plant, and a serial 
number uniquely identifying individual vehicles. The VIN 
also includes a check digit, against which the checksum 
of the VIN can be compared. 

Data for parts A, B, and C of Figure 3 were provided 
by the CDPHE, Virginia DEQ, and the University of 
Denver and were stored in the TRUE U.S. database. 
Because the quality of vehicle attributes available from 
registration information varies by state, we retrieved 
vehicle attributes for all measurement campaigns from 
the National Highway Traffic Safety Administration’s 
Product Information Catalog and Vehicle Listing 

ⓔDatabase

ⓒMeasurement site data ⓓNHTSA vPIC

ⓑDepartments of motor vehicles

VIN:
serialmanufacturer model

check digit

plant code
model year

ⓐ Remote sensing instrument

lbs

Figure 3. Schematic diagram of data sources and data processing related to the database.

http://www.feat.biochem.du.edu/
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(vPIC).18 Truncated VINs—the first 11 characters less the 
check digit—were transmitted to the vPIC application 
programming interface, which returned a wide array of 
vehicle attributes including vehicle brand and model, 
model year, fuel type, vehicle type, and gross vehicle 
weight rating (GVWR). Select vehicle attributes from 
the vPIC data were stored in the TRUE U.S. database 
(see part D of Figure 3).

VINs play a central role in the database because all 
vehicle attributes are retrieved from vPIC via the 
VIN. Figure 4 plots the number and share of records 
with valid or invalid VINs, as well as the number and 
share of records that were successfully decoded 
using vPIC. The figure shows that more than 75% of 
measurements were associated with a valid VIN, of 
which the vast majority were successfully decoded 
using vPIC. A substantial portion of invalid VINs were 
also successfully decoded. Because these VINs contain 
errors, the vehicle attributes retrieved from vPIC may 
not match the vehicle measured using remote sensing, 
so these records were excluded from analyses.

Vehicle types listed in the vPIC dataset do not match 
the EPA vehicle classes used in vehicle emissions 
standards. For example, an SUV is typically categorized 

18 National Highway Traffic Safety Administration, “NHTSA Product 
Information Catalog and Vehicle Listing,” (2020), https://vpic.nhtsa.dot.gov/.

as a multipurpose vehicle in the vPIC data but may 
be classified as a passenger car or light-duty truck in 
emissions standards. In order to match vehicles to 
emissions standards, we determined the vehicle class 
using the vPIC vehicle attributes. The most common 
vehicle classes are light-duty vehicles (passenger cars 
with a GVWR lower than or equal to 8,500 lb and two-
wheel drive SUVs with a GVWR lower than or equal to 
6,000 lb), light-duty trucks (generally pickup trucks 
with a GVWR less than or equal to 8,500 lb, sport utility 
vehicles with a GVWR less than or equal to 10,000 and 
with four-wheel drive or a GVWR higher than 6,000 lb, 
and passenger vans with a GVWR less than or equal 
to 10,000), and heavy-duty truck classes 2b–8 (most 
pickups and other trucks with a GVWR higher than 
8,500 lb).19

Before storing remote emissions measurements in the 
database, measurements were examined for plausibility. 
Neither University of Denver nor Virginia DEQ datasets 
included any extreme outliers, but the Colorado data 
included some values that were implausible and were 
extreme enough to skew the means of some vehicle 
groups.  In response, we developed physically plausible 
limits, while only removing a minute portion of the data 

19 Transport Policy, “US: Vehicle Definitions,” (accessed April 20, 2020), 
https://www.transportpolicy.net/standard/us-vehicle-definitions/.
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below the 0.0001th and above the 99.9999th percentile. 
The ranges of data retained are:

• CO: -40 to 4,000 g/kg CO2

• HC: -20 to 2,000 g/kg CO2

• NO: -6 to 600 g/kg CO2

While the Virginia data and most of the DU data 
included road slope, the CDPHE data included road 
slope data for only about 7 million of the 54 million 
measurements, coinciding with the change to OPUS 
5000-series instruments around 2015. In addition, 
we were able to infer the road grade for roughly an 
additional 14 million older records where the Opus 
4000 was used at the same site as an Opus 5000.

DATABASE OVERVIEW
Remote sensing campaigns can estimate emissions 
under a wide range of conditions and driving, allowing 
an assessment of emissions by engine load, ambient 
temperature, and other variables. This wide coverage 
is a key benefit of remote sensing, and it is important 
to choose a variety of measurement sites to capture 
the whole range of driving and ambient conditions 
relevant to urban emissions. Table 1 summarizes the 
measurements, driving conditions, and sampling 
characteristics for the four datasets gathered from 
Colorado, Virginia, and the University of Denver.  

The first five rows in Table 1 show the number and 
locations of the approximately 60 million total 
measurements gathered. Most of the data is from 

Table 1. Summary of datasets compiled in the TRUE U.S. database.
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Colorado, where remote sensing programs have been 
in place for close to two decades. Virginia’s program 
was implemented more recently, but Virginia is 
now producing over 1 million records per year.  The 
University of Denver datasets are much smaller, as DU 
conducts short-term campaigns, but add diversity in 
terms of geographic coverage and vehicle types such 
as HDVs. The total number of measurement sites 
is very large with almost 200 each in Virginia and 
Colorado, which expands the range of sampled driving 
conditions. While the number of measurements per 
year in Colorado has been slowly declining since 2010, 
the downward trend is exaggerated because only data 
for the first 6 months of 2018 was available when we 
collected the data.

Row 6 in Table 1 shows that the majority of records are 
for LDVs (cars) and LDTs, as these are the target of the 
Colorado and Virginia programs, and almost all LDVs 
and LDTs use gasoline. There are some HDV data from 
targeted studies conducted by DU and small amounts 
from Colorado and Virginia.  Invalid VINs and VINs that 
were not able to be fully decoded or are missing some 
information are included in the table and account for a 
large portion of the N/A columns in row six.  Note that 
the fuel type was not able to be determined for some 
of the records and the “other” fuel type for HDVs is 
predominantly diesel. 

Rows 7 and 8 show that a wide range of driving 
conditions was captured in the remote sensing 
measurements. The ambient temperature distributions 
in row 7 show that Colorado and Virginia gather 
measurements throughout most of the year and reflect 
a broad spread in ambient temperatures from about 
30°F to above 100°F, allowing investigation of the 
effect of ambient temperature on emissions. For each 
of these programs remote sensing instruments are not 
deployed if ambient temperatures are below roughly 
30°F. Ambient temperature for the DU targeted studies 
aren’t very normally distributed, especially for the HDV 
campaigns, due to being conducted during the warmer 
months and the comparatively small sample sizes.

Row 8 summarizes the distribution of vehicle speed 
and acceleration. Both the Colorado and Virginia 
datasets include a wide range of speed and acceleration, 
consistent with the large number of sampling sites in 
each area.  The distribution of speed and acceleration 
is similar in Colorado and Virginia, with the largest 
distribution of speed being about 30 mph–50 mph in 

Colorado and 25 mph–45 mph in Virginia.  At those 
speeds the largest distribution of acceleration is about 
1 mph/sec–2 mph/sec acceleration in both areas, 
although Virginia has a wider distribution of both low 
and high acceleration. The speed distribution is more 
tightly distributed for the DU campaigns, especially for 
HDVs which were generally measured at low speeds 
at, for example, weighing stations. For LDVs, speeds 
measured by DU were typically 20 mph–30 mph and 
speeds for HDVs were less than 20 mph.

DATA ANALYSIS
As outlined in the Introduction, there are a multitude 
of analyses that can be done with remote sensing data. 
This introductory report is not intended to cover all 
the possible analyses. Instead, the goal is to showcase 
the unique capabilities of such a large collection of 
data using a few examples. We present four analyses, 
progressing from general fleet-level assessment to 
analysis of individual vehicles.

LONG-TERM LDV EMISSION TRENDS
Figure 5 summarizes CO, HC, and NO emission trends 
by model year for gasoline LDVs and LDTs.  Note that 
the vehicles were sampled from 2010 to 2018 for the 
Colorado and DU studies and from 2015 to 2018 for 
the Virginia studies, so the average for each model year 
includes vehicles of different ages. The 2019 model year 
(MY) vehicles were removed due to their small sample 
size (<100). Mean fuel-specific (gram emissions per kg 
fuel consumed) emission factors and 95% confidence 
intervals are presented for each data source. The large 
Virginia and Colorado sample sizes means that the 95% 
confidence intervals are very small for these trend lines. 
The respective phase-ins of the EPA emission standards 
are also indicated on the graphs.

The three different data sets show general agreement 
on the dramatic downward trend in fleet-average 
emissions for each pollutant with model year.  Emissions 
are particularly low after the phase-in of the Tier 2 
standards, showcasing the improvements caused by the 
implementation of more stringent emission standards 
for light-duty vehicles and trucks in the United States. 
This example shows how large collections of remote 
sensing data, collected over many years, can be used 
to track the real-world effectiveness of policy and 
technology developments in reducing vehicle emissions. 
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INFLUENCE OF VEHICLE AGE ON 
EMISSIONS
Our second example illustrates the ability to use 
remote sensing to analyze the impact of vehicle age 
on emissions. Remote sensing is ideally suited for 
this analysis due to its ability to collect data on large 
amounts of vehicles and track the vehicle emissions 
performance of each model year over time. In theory, 
the TRUE U.S. database is ideal for measuring 
deterioration trends because of its vast size and 
geographical and temporal coverage. Here, we use 
Colorado NO data to present a high-level example of 
how remote sensing data can be used to investigate 
deterioration trends. 

Figure 6 shows the average fuel-specific (g/kg fuel) NO 
emissions for gasoline cars and light trucks by model 
year and age in Colorado. NO emissions of all model 
years and both vehicle classes increase with vehicle age. 
The trend is more pronounced for older model years, 
for which the deterioration rate can exceed 0.2 g NO/
kg fuel per year. Vehicles meeting the Tier 2 emission 
standards, roughly model years 2007–2015, exhibit 
rates ranging from 0.06 g to 0.12 g NO/kg fuel per year. 
Provided these deterioration rates can be extrapolated 
in a linear fashion, these rates indicate an increase in 
emissions of 0.6 g/kg–1.2 g/kg over a ten-year period, 
the full useful life defined in the EPA Tier 2 emissions 
standards. Across these model years, this represents 
an approximate median increase in emissions of 200% 
during the EPA defined useful life period. A more 
detailed treatment of emissions deterioration, including 
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comparisons with manufacturer-reported deterioration 
rates, can be found in an accompanying case study.20  

Of course, the remote sensing data do not identify 
the cause of the emission increase, which could be a 
combination of emission control system deterioration, 
emission component defects, an increasing number 
of unrepaired malfunctions, or tampering. As 
manufacturers are responsible for emission control 
system deterioration, but not for malfunctions or 
tampering, it is important to distinguish between them. 
Malfunctions and tampering can only be identified by 
tracking individual vehicles over time, as illustrated by 
our fourth example, below. 

IDENTIFICATION OF HIGH-EMITTING 
VEHICLE GROUPS
The third analysis explores ways in which remote 
sensing data can be used to identify high-emitting 
vehicle groups and anomalous real-world emissions 
behavior. For this example, we switch from gasoline 
to diesel engines and focus on three popular pickup 
truck models. These include models from Dodge/Ram 

20 Emissions deterioration of U.S. gasoline light-duty vehicles and trucks,  
https://theicct.org/publications/true-us-database-emissions-deterioration-
oct2020.

(2500 and 3500), Ford (F250 and F350), and Chevrolet 
(Silverado 2500 and 3500), all with similar size diesel 
engines between 6.4 and 6.7 liters and certified as class 
2b and class 3 heavy-duty vehicles. 

Figure 7 shows the average monthly fuel-specific (g/kg 
fuel) NO emissions for each of the three manufacturers 
over each of the 2010 to 2015 model years, with class 
2b and class 3 emissions presented separately. Only 
monthly averages with at least 30 measurements are 
included in the figure and the number of measurements 
for each point are indicated by the size of the marker. 
Note that Ford used a 6.4L engine in 2010 and switched 
to a 6.7L engine in MY 2011.

For MY 2010, NO emissions from Chevrolet trucks are 
significantly higher than those from trucks produced 
by the other manufacturers, though data are relatively 
scarce for this group (note the absence of class 3 
results). NO emissions are reduced in later model 
years, with MY 2011-2015 Chevrolet trucks exhibiting 
the lowest emissions for each model year, on average, 
among the three manufacturers. 

The Ram 2500 and 3500 trucks included in this sample 
have been subject to a number of emissions-related 
recalls. These include recalls for MY 2010 and MY 
2012 vehicles related to software errors and engine 
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Figure 6. Average fuel-specific NO emissions of gasoline light-duty vehicles and light-duty trucks per model year and vehicle age.

https://theicct.org/publications/true-us-database-emissions-deterioration-oct2020
https://theicct.org/publications/true-us-database-emissions-deterioration-oct2020


11
DEVELOPMENT AND APPLICATION OF A UNITED STATES REAL-WORLD VEHICLE EMISSIONS DATABASE  |  OCTOBER 2020

calibrations, respectively, that can lead to high in-use 
NOx emissions.21 Approximately 85% of MY 2010 and 
36% of MY 2012 trucks in our sample were impacted 
by these recalls.22 Furthermore, MY 2013–2015 Ram 
trucks use a Cummins 6.7L diesel engine that has been 
recalled due to a defective emission control system. 
Selective catalytic reduction (SCR) systems were found 
to degrade within a few years instead of controlling 
emissions throughout the engine’s full useful life, leading 

21 Chrysler, “Emissions recall K34,” accessed June 15, 2020,  
https://www.chrysler.com/universal/webselfservice/pdf/K34.pdf.  

Fiat Chrysler Automobiles, “Emissions recall T05,” accessed June 15, 2020, 
https://www.chrysler.com/universal/webselfservice/pdf/T05.pdf. 

22 Mopar, “Recall information,” accessed June 15, 2020,  
https://www.mopar.com/en-us/my-vehicle/recalls/search.html

to excessive NOx emissions.23 In our sample, 85% of MY 
2013-2015 Ram trucks were subject to recalls related to 
degradation of the SCR system. 

For MY 2011 and MY 2012, the Ram emissions are 
both higher and have a higher deterioration rate with 
age than the other makes. Emissions of MY 2013-2015 
vehicles are improved relative to MY 2010-2012 trucks, 
though deterioration rates are of similar magnitude and 
may be an indication of accelerated SCR degradation. 
Durability issues become more apparent as vehicles 
age, as poor-quality components that deteriorate more 
rapidly than expected may still be reasonably effective 
for a few years.  

23 TruckStop, “Truck & Bus Regulation,” accessed May 20, 2020,  
https://ww3.arb.ca.gov/msprog/truckstop/tb/truckbus.html.
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Figure 7. Average monthly fuel-specific NO emissions of three manufacturers and six model years of class 2b and class 3 diesel trucks.

https://www.chrysler.com/universal/webselfservice/pdf/K34.pdf
https://www.chrysler.com/universal/webselfservice/pdf/T05.pdf
https://www.mopar.com/en-us/my-vehicle/recalls/search.htm
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Perhaps the most interesting feature of Figure 7 is the 
clear seasonal variation in the level of NO emissions 
from Ford F250 and F350 trucks. This trend of the 
highest emissions observed in colder winter months and 
comparatively lower emissions during warmer summer 
months is apparent in the data for each model year and 
vehicle class considered in the analysis. Notably, similar 
seasonal trends are not observed in the data for similar 
vehicles from the other two manufacturers.    

Because Figure 7 reveals seasonal fluctuations in 
NO emissions from Ford trucks, Figure 8 explores 
the relationship between NO emissions and ambient 
temperature.24 The ambient temperature range is 
truncated, from the 2nd to 98th percentile per group, to 
avoid plotting the relationship for ranges with scarce data.

24 Generalized additive models, as implemented in the mgcv and ggplot 
packages for the R software environment, were used to plot the relationship 
between NO and ambient temperature. See: Simon N. Wood, Fast Stable 
Restricted Maximum Likelihood and Marginal Likelihood Estimation of 
Semiparametric Generalized Linear Models: Estimation of Semiparametric 
Generalized Linear Models, Journal of the Royal Statistical Society: Series 
B (Statistical Methodology) 73, no. 1 (January 2011): 3–36, https://doi.
org/10.1111/j.1467-9868.2010.00749.x; Hadley Wickham, Ggplot2: Elegant 
Graphics for Data Analysis - Rev 2016, Use R! (Cham: Springer International 
Publishing, 2016), https://doi.org/10.1007/978-3-319-24277-4; R Core Team, 
“R: A Language and Environment for Statistical Computing” (Vienna, Austria: 
R Foundation for Statistical Computing, 2020), http://www.R-project.org/.

The results indicate that all model years of Ford vehicles 
exhibit a dependency between NO emissions and 
ambient temperature. Emissions from Ford vehicles 
increase by approximately 5 g NO/kg when comparing 
the high end of the temperature range (approximately 
100 °F) to the low end (approximately 30 °F). Neither 
Chevrolet nor Dodge/Ram class 2b and 3 diesel trucks 
exhibit a consistent effect of ambient temperature on 
NO emissions. The near doubling of NO emissions from 
the Ford vehicles in cold weather conditions indicates 
an emission control system calibration change and 
warrants further investigation. 

IDENTIFICATION OF INDIVIDUAL HIGH-
EMITTING VEHICLES
The final showcase focuses in on the data even 
further and plots trends in individual vehicles from the 
preceding figure to demonstrate the value of large-scale, 
long-term collection of remote sensing data. As for the 
preceding examples, the data was filtered for valid VIN 
and valid NO measurements. 

There are a large number of individual vehicles in the 
remote sensing data. To maximize the usefulness of the 
data, vehicles and data were filtered to include:
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Figure 8. Top graphs: Fuel-specific NO emissions of class 2b and class 3 diesel trucks by model year and make as a function of ambient temperature. 
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https://doi.org/10.1111/j.1467-9868.2010.00749.x
https://doi.org/10.1111/j.1467-9868.2010.00749.x
https://doi.org/10.1007/978-3-319-24277-4
http://www.R-project.org


13
DEVELOPMENT AND APPLICATION OF A UNITED STATES REAL-WORLD VEHICLE EMISSIONS DATABASE  |  OCTOBER 2020

• only RAM 3500 class 3 HDVs from the 2010 to 
2012 model years.

• at least 50 total measurements for each individual 
vehicle.

• at least one measurement for each year since the 
model year. For example, a MY 2010 vehicle must 
have at least one measurement for each year from 
2010 to 2018.

• velocity times acceleration (VxA) between 0 and 
150 mph^2/s in order to exclude idling and extreme 
high engine load events. 

Figure 9 plots the NO emissions by vehicle age for all ten 
individual vehicles that met the filtering criteria. Locally 
estimated scatterplot smoothing (LOESS) was used 
to highlight the central tendency in the data for each 
vehicle. Interestingly, seven of the ten vehicles do not 
show large increases in NO emissions with vehicle age. 
However, vehicles 4 (MY 2011) and 6 (MY 2012) have 
drastic increases, with vehicle 4 increasing from near 
zero to almost 40 g/kg and vehicle 6 increasing from 
about 10 g/kg to about 30 g/kg. Vehicle 7 has elevated 

emissions from the first measurements when the truck 
was almost new, which is difficult to understand unless 
the vehicle was defective to begin with.

CONCLUSIONS AND 
RECOMMENDATIONS
Remote sensing has a number of important 
characteristics that make it a particularly good tool for 
market surveillance. These include the ability to measure 
a large number of vehicles in a relatively short period 
of time, the ability to measure the emissions of in-use 
vehicles, its non-intrusiveness to traffic flow and vehicle 
operation, and the ability to monitor older as well as 
newer vehicles at relatively low cost. 

The primary purpose of this project is to investigate 
ways in which remote sensing data collected in the 
United States can be used to further understanding 
of real-world vehicle emissions and support the 
development of evidence-based emissions control 
policies and actions.  In addition to presenting summary 
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Figure 9. Fuel-specific NO emissions of individual Dodge/Ram 3500 vehicles with more than 50 measurements and at least one measurement per year.
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statistics of the different datasets from the states of 
Colorado and Virginia and the University of Denver, 
this report presented brief examples of how the data 
could be analyzed, including evaluation of long-term 
emission trends, tracking emission changes as vehicles 
age, investigation of high-emitting vehicle groups, and 
evaluation of individual vehicle emissions performance. 

To help local areas achieve their air quality goals, it is 
essential to better understand the causes of the high 
real-world emissions. Remote sensing campaigns 
continue to find that real-world emissions can be 
much higher than emission standards. The problem 
is compounded as manufacturers are responsible for 
normal deterioration and emission defects but not for 
malfunctions and tampering. Policy recommendations 
to maximize the potential of remote sensing include: 

• Increased government investment in remote 
sensing to identify the causes of high real-world 
emissions. This includes greater geographic 
coverage and a wider variety of operating 
conditions.

• Expanded use of remote sensing data in decision 
making and policy development.

• Expanded use of remote sensing programs to 
support manufacturer surveillance activities.

• Exploring ways remote sensing could be used to 
increase repairs of malfunctions and to improve 
tampering enforcement.

This report is just the first step in an ongoing process to 
gather and analyze remote sensing data, as part of the 
TRUE initiative.  Specific recommendations for future 
database development are:

• Update the dataset with most recent data from 
Virginia and Colorado (through 2019).

• Add additional data sources.  

• Add emission standard classification data. The 
current datasets do not include definition of the 
emission standard Tier or bin to which the vehicle has 
been certified. Adding such information is not a trivial 
task, as the remote sensing database would need to 
be merged with emission data files from the EPA.

Three case studies accompany the publication of this 
report.  The topics of these studies are:

• Emissions deterioration of U.S. gasoline light-duty 
vehicles and trucks. This expands upon the analysis 
above of vehicle emissions by age, adding the Virginia 
data and analyzing all emissions, not just NO.

• Remote sensing of heavy-duty vehicle emissions 
in the United States. This case study focuses on 
analyzing data for Class 5-8 HD trucks included 
in the database, including an assessment of NOx 
emission trends by model year and the impacts of 
driving conditions on emissions.  

• Emissions distributions by vehicle age and policy 
implications. This case study quantifies emissions 
distributions to investigate the contributions of 
the oldest LDV and HDV vehicles in fleets to 
total emissions and what this may mean for the 
effectiveness of city-level emission control policies.   

Other opportunities for analyses include whether the 
distribution of remote sensing measurements by model 
year and age matches estimates of vehicle scrappage 
rates and miles driven by vehicle age, emissions from 
taxis and other high-usage fleets, how emissions from 
gasoline direct engines compare to port fuel injection 
engines, and whether malfunctions and tampering of 
individual vehicles can be reliably identified. In addition, 
the TRUE U.S. database can be analyzed together with 
similar European databases to shed light on regional 
differences in real-world emissions performance. 
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Related case studies:

“Emissions deterioration of U.S. gasoline light-duty vehicles and trucks”
https://theicct.org/publications/true-us-databaseemissions-deterioration-oct2020

“Remote sensing of heavy-duty vehicle emissions in the United States”
https://theicct.org/publications/true-us-database-hdvemissions-oct2020

“Emissions distributions by vehicle age and policy implications”
https://theicct.org/publications/true-us-database-emissions-distribution-oct2020
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