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EXECUTIVE SUMMARY
Since the passage of the Clean Air Act in 1970, the U.S. Environmental Protection 
Agency (EPA) has enacted standards to reduce vehicle exhaust emissions. These 
standards set emission limits for pollutants that contribute to poor air quality and 
associated health risks, including nitrous oxide (NOx), hydrocarbons (HC), carbon 
monoxide (CO), and particulate matter (PM). Although the majority of the on-road 
vehicle fleet in the United States is fueled by gasoline, diesel combustion makes up an 
overwhelming share of vehicle air pollution emissions. 

Air pollution emissions can be affected by blending biodiesel, composed of fatty 
acid methyl ester (FAME), into diesel fuel. Biodiesel increases the efficiency of fuel 
combustion due to its high oxygen content and high cetane number. Studies have 
found that biodiesel combustion results in lower emissions of PM, CO, and HC, likely for 
this reason. However, studies have consistently found that biodiesel blending increases 
NOx formation. 

Industry analysts, academic researchers, and government regulators have conducted 
extensive study on the emissions impacts of biodiesel blending over the last thirty 
years. The EPA concluded in a 2002 report that, on the whole, biodiesel combustion 
does not worsen air quality compared to conventional diesel and reaffirmed that 
conclusion in a 2020 proposal and subsequent rulemaking. This determination based 
on literature published in 2007 and earlier, proposed that no additional fuel control 
measures are necessary to mitigate the air quality impacts of biofuels from the 
Renewable Fuel Standard (RFS). 

This study presents a meta-analysis of air pollution changes from vehicles and engines 
running on biodiesel blends in the United States relative to a conventional diesel 
baseline. We draw from a comprehensive literature review of exhaust emissions testing 
and performance studies, dozens of them published after EPA’s studies, and analyze 
changes in NOx, PM, CO, and HC for U.S.-relevant feedstocks. We assess the impacts 
that feedstocks, test cycles, and diesel quality have on the exhaust emissions from 
biodiesel combustion. Unlike previous meta-analyses, we also assess the impacts of fuel 
injection systems, engine horsepower, and emission control technologies on biodiesel 
exhaust emissions.

When analyzing the entirety of the available literature, we find that a 20% biodiesel 
blend (B20) increases NOx emissions by 2% compared to conventional diesel, in 
agreement with EPA’s 2002 finding. However, this estimate includes many literature 
studies that are no longer relevant due to evolving developments in the industry. We 
find that the biodiesel NOx effect has increased in recent years with the introduction 
of ultra-low sulfur diesel (ULSD) and common-rail fuel injection systems. When we 
restrict our meta-analysis to only studies reflecting these conditions, we find that the 
biodiesel NOx effect for B20 increases to 4%. 

Table ES-1 summarizes the percent change in emissions, or biodiesel emissions 
effect, with 20 percent biodiesel blends compared to pure diesel fuel, based on our 
analysis. We also present results from EPA’s 2002 study, follow-up 2010 regulatory 
impact assessment (RIA), and another meta-analysis for comparison. Under modern 
conditions, we also find that a 20% biodiesel blend (B20) increases HC and CO by 7% 
and 10%, respectively, and does not reduce PM compared with conventional diesel. 
This new finding presents a striking contrast with the conclusions in EPA’s 2002 meta-
analysis that biodiesel sharply reduces emissions of all these pollutants.
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Table ES-1. Biodiesel exhaust emissions study comparison. Data reported in percent change in 
emissions between B20 and petroleum diesel fuel.

Pollutant EPA (2002) EPA (2010)
Hoekman & 

Robbins (2012)
This study  
(all data)

This study 
(modern 

conditions)

NOx 2% 2% 1% 2% 4%

PM -10% -16% -6% Insignificant

HC -21% -14% -4% 7%

CO -11% -13% Insignificant 10%

Our findings illustrate that our understanding of the air quality impacts of biodiesel 
should change in response to the large volume of new evidence that has been 
published since EPA’s reports. Our results show that the air quality impacts of biodiesel 
combustion are worse than was previously believed. These updated results should 
inform EPA’s future rulemakings pursuant to the Renewable Fuel Standard.
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INTRODUCTION
The U.S. Census Bureau (2016) estimates that approximately 80 percent of Americans 
live in urban areas where densely populated conditions contribute to increased smog 
and ozone formation. Vehicle emission standards introduced since the 1970s have 
mitigated air quality concerns (Chambliss et al., 2013), but on-road diesel vehicles 
continue to be the primary source of nitrous oxide (NOx) emissions. In the United States, 
40% of anthropogenic NOx release is estimated to come from on-road vehicles; together 
with non-road vehicles, the transportation sector accounts for 60% of NOx release (U.S. 
EPA, 2016). A report by Anenberg et al. (2017) finds that NOx emissions account for 
100,000 deaths from premature mortality worldwide. Particulate matter (PM) is another 
pressing health concern, as PM exposure can lead to premature mortality and respiratory 
and cardiovascular disease. Other tailpipe emissions including CO, a byproduct of 
incomplete combustion, and unburned HCs also have adverse health effects such as 
restricted oxygen flow in the bloodstream and increased cancer risk (U.S. EPA, 2015a).

The U.S. Bureau of Transportation Statistics (2015) estimates that while diesel vehicles 
only account for 4 percent of the on-road fleet in the United States, they are also 
responsible for over half of on-road NOx emissions. Although diesel usage remains 
a small portion of energy consumption across the energy sector, it is expected to 
continue to serve as the primary fuel for trucking and long-haul freight transportation 
in the coming decades (U.S. EIA, 2019). 

Close to 2 billion gallons of biodiesel is used annually in the United States, primarily 
in on-road heavy-duty applications (U.S. EIA, 2020). Biodiesel use is driven by the 
biomass-based diesel (BBD) volume obligation in the Renewable Fuel Standard (RFS), 
intermittent availability of federal tax credits, and state and local policies. In the United 
States, biodiesel is sourced from numerous feedstocks including soybean oil, animal 
fats, used cooking oil (UCO), and canola oil (U.S. EIA, 2020). The U.S. Environmental 
Protection Agency (EPA) estimates that biodiesel is blended into the national fuel mix 
at 5% blend levels (B5), on average, although the regional breakdown varies due to 
state-specific biodiesel subsidies and mandates. For example, Minnesota adopted the 
country’s highest blend mandate in 2018, requiring B20 to be sold at all diesel pumps 
from April through September (Biodiesel Content Mandate, 2019). Future growth of the 
U.S. biodiesel market will be dependent upon state and federal level biofuel policies. 
At the federal level, the national BBD blending obligation set annually by the EPA has 
increased 83 percent from 2010 to 2019 (U.S. EPA, 2015b) and is expected to continue 
to increase through at least 2022.

How biodiesel affects the air quality impacts of diesel fuel combustion is thus 
a question of increasing importance. The EPA is required by the 2007 Energy 
Independence and Security Act (EISA) to conduct a study to determine whether 
renewable fuel required by the RFS will adversely impact air quality. In 2020, EPA 
released this study, known as the “anti-backsliding study” (U.S. EPA, 2020) which 
relied heavily on data from the 2010 Regulatory Impact Assessment (U.S. EPA, 2010) 
and corresponding MOtor Vehicle Emissions Simulator (MOVES) database. Relative to 
EPA’s 2002 assessment (U.S. EPA, 2002), the RIA broadened its scope to include the 
effects of newer model engines and technologies on biodiesel emissions. However, 
older data was supplemented with literature published between 2002 and 2007, 
omitting the effects of biodiesel and ultra-low sulfur diesel blends, advanced emission 
control technologies such as diesel particulate filters (DPFs), and common-rail fuel 
injection systems largely phased in after this period. 
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BACKGROUND
This study assesses the air quality impacts of biodiesel exhaust emissions in the United 
States. It offers an update to two U.S. meta-analyses on biodiesel emissions conducted 
in the last twenty years: the EPA’s seminal 2002 study on biodiesel emissions impacts 
(U.S. EPA, 2002) and a Hoekman and Robbins (2012) study on the biodiesel NOx effect 
in medium- and heavy-duty engines. Both studies identify a small but statistically 
significant increase in biodiesel NOx emissions relative to conventional diesel fuel. The 
EPA study also finds that HC, CO, and PM decrease proportionally to biodiesel blend 
level. These studies attribute these changes in emissions in part to biodiesel’s physical 
properties, including its high oxygen content, bulk modulus, and cetane number (CN). 

While the high oxygen content of biodiesel is expected to improve combustion 
properties, other fuel characteristics result in increased NOx. Biodiesel has low 
compressibility, so it enters the combustion chamber earlier than conventional diesel. 
This extends the period of time between fuel injection and fuel ignition, known as 
the “ignition delay.” Extended ignition delay increases air-fuel mixing (i.e. premixed 
combustion) inside the combustion chamber which can lead to rapid rises in pressure 
and temperature compared to when pure diesel fuel is used (Lee et al., 1998). The 
formation of NOx increases exponentially with temperature increases, so a longer 
ignition delay corresponds with increased NOx. This is known as the biodiesel NOx 
effect. Engine parameters, including fuel injection rate, spray quality, and injection 
pressure, also play a role in air pollutant formation from vehicle tailpipes. For 
example, high pressure injection systems increase NOx by raising temperatures in 
the combustion chamber while improved fuel atomization allows more complete 
combustion, reducing the formation of HC and CO in exhaust gas streams. 

This study investigates the impact of these parameters on the biodiesel NOx effect as 
well as on CO, HC, and PM emissions from biodiesel blends. We also investigate the 
effects of engine test cycles and emission control technologies. Lastly, we consider the 
impact the sulfur content of baseline diesel fuel and type of fuel injection system used 
has on the biodiesel emissions effect. 
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METHODOLOGY
This analysis uses the same methodology and dataset as O’Malley and Searle (2020). 
This dataset is comprised of 131 biodiesel exhaust emissions studies conducted 
between 1983 and 2018, which include analysis of a wide range of feedstocks, engines, 
test cycles, and emission control technologies. A complete summary table of studies 
is provided in Appendix B. Of the dataset, 104 studies assess feedstocks that are 
prominent in the U.S. biodiesel market, including soybean oil, canola (rapeseed) oil, 
and animal fats. We classify these feedstocks based on production data from the 
Energy Information Authority’s (EIA) Monthly Biodiesel Production Report (U.S. EIA, 
2020) and filter results to only include the primary feedstocks in the U.S. fuel market 
when data is sufficient. We also place an emphasis on studies conducted on vehicles 
adherent to modern emission standards. 

Although diesel is only minimally used in light-duty applications across the United 
States, data for light-duty and single cylinder engines are also included in our analysis. 
Light-duty vehicles (LDVs) and heavy-duty vehicles (HDVs) differ by weight class and 
use of emission control technologies. For example, HDVs typically utilize selective 
catalytic reduction (SCR) systems to reduce NOx, and diesel oxidative catalysts 
(DOCs) and diesel particulate filters (DPFs) to reduce PM. Smaller cars, however, utilize 
lean NOx traps (LNTs) to reduce NOx in conjunction with DOCs and DPFs to mitigate 
other conventional pollutants (M. Williams & Minjares, 2016). Grouping data by vehicle 
weight class, we find no significant difference among the emissions effect for LDV 
versus HDV test results.

Throughout this study, we perform simple linear regressions on the concentration of 
NOx, CO, PM, and HC emissions in vehicle exhaust (i.e. dependent variable) against the 
biodiesel blend level (i.e. independent variable) for the entire literature. We adopt this 
methodology in order to utilize a wider range of test results on varying blend levels. 
Including more studies across blend levels increases the sample size and improves 
the accuracy of predictions than assessing each blend level separately. We also 
perform multiple linear regressions to determine the statistical significance of multiple 
interacting explanatory variables. For these regressions, we check for multicollinearity 
with an R2 threshold of 0.65.

We perform additional regressions on select datasets, filtered by feedstock properties, 
engine configurations and test cycles, and baseline fuel sulfur quality. We do not 
remove any outliers from any analyses. In all graphs, we show trendlines only for 
statistically significant trends at p<0.05. The shaded cones encasing trendlines show 
standard error. Our companion study (O’Malley and Searle, 2020) provides more 
information on study methodology. 
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RESULTS AND DISCUSSION
Figure 1 shows the results of our analysis of the average impacts of biodiesel blending 
on conventional air pollutants. Including all studies from our literature review on 
common U.S. feedstocks, we calculate the average biodiesel emissions effects to be 
9% for NOx, -30% for PM, and -19% for HC. There was no statistically significant trend 
for CO emissions regressed on biodiesel blend level. Our analysis included studies with 
blend rates as low as 1% biodiesel in conventional diesel fuel up to 100% blends (pure 
biodiesel). Biodiesel blend level is shown on the x-axis. The y-axis shows the percent 
change in emissions of NOx, PM, and HC when combusting biodiesel blends in vehicles 
and engines compared to the emissions when combusting conventional diesel fuel. For 
example, a datapoint at 50% blend level (x-axis) and 5% emissions effect (y-axis) for 
NOx would mean that study found that a vehicle emits 5% higher NOx when operating 
on a 50% biodiesel blend than when operating on conventional diesel. We expect the 
emissions effect to vary proportionally with blend level. We note that there is very high 
variability in the data, as illustrated in the standard error cones, even for the trends that 
are statistically significant. This is likely due to the additional factors that vary across 
studies which impact the emissions effect. Thus, we analyze the effects of feedstock 
physical properties, engine test cycles, and modern advancements across the diesel 
industry on biodiesel exhaust emissions formation in the following sections.
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Figure 1. Average impacts of biodiesel blending on conventional air pollutants in United States.

BIODIESEL FEEDSTOCK PROPERTIES
Feedstock properties have a significant impact on total emissions formation and the 
biodiesel emissions effect. Physical properties such as density and viscosity alter 
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the level of air-fuel mixing inside the combustion chamber; this in turn influences the 
efficiency of combustion as well as temperature and pressure conditions inside the 
combustion chamber (Heywood, 2001). Feedstock properties also influence the timing 
of combustion. 

While biodiesel in general has different properties than conventional diesel, physical 
properties also differ among biodiesel feedstocks. A list of common biodiesel 
feedstocks and the properties of the biodiesel produced from these feedstocks is 
provided in Table 1. The properties of palm and coconut oil are also included for 
comparison, although their consumption in U.S. biodiesel markets is negligible. The 
average biodiesel properties in Table 1 are compiled from studies presented in the 
Appendix B with the exception of unsaturation and chain length, which are drawn 
from Hoekman et al. (2012), and bulk modulus of compressibility. Bulk modulus or 
“elasticity” measures a material’s resistance to compression. Biodiesel is comprised 
of various long chain fatty acids dependent on the primary feedstock which undergo 
transesterification to form mono-alkyl esters (FAME). Therefore, to calculate the bulk 
modulus of biodiesel, we multiply the bulk modulus of mono-alkyl esters, measured 
at 1000 psi and 100° F, by their composition profiles in each biodiesel feedstock 
(Boehman et al., 2004; Shahabuddin et al., 2013).

Table 1. Biodiesel (FAME) properties overview.

Feedstock Cetane number Density (kg/m3) Viscosity (mm2/s) Unsaturation† Chain length
Bulk modulus at 

1000 psi and 100º F

Diesel 50.37 0.836 3.08 N/A N/A 1477

Soybean 51.29 0.857 3.54 1.50 17.90 1648

Rapeseed 56.45 0.859 4.42 1.31 17.90 1642

UCO 54.64 0.860 4.64 1.06 18.50 1626

Animal fat 56.65 0.876 3.83 0.59 17.30 1608

Palm 57.81 0.851 5.01 0.62 17.20 1607

Coconut 58.68 0.875 4.39 0.12 13.40 1552

Notes: Cetane number, density, and viscosity data is sourced from the literature in Appendix B and averaged by feedstock type. Unsaturation and 
chain length data is adapted from Hoekman et al. (2012). Bulk modulus is calculated from data sourced from Boehman et al. (2004) and Shahabuddin 
et al. (2013).

Cetane number (CN), defined as the inverse of the delay between fuel injection into 
the combustion chamber and ignition, is one of the most frequently studied biodiesel 
properties. Fuels with a high CN ignite sooner than fuels with a low CN, providing 
less time for air-fuel mixing. The shorter ignition delay with high CN fuels reduces 
fuel residence time inside the chamber, limiting rapid increases in fuel pressure 
and temperature due to premixed burn (Hoekman & Robbins, 2012). Because NOx 
increases exponentially with temperature, shorter ignition delay limits NOx formation 
(Hoekman & Robbins, 2012; Lee et al., 1998). Other studies have found that if ignition 
delay is held constant through alternative strategies such as exhaust gas recirculation 
(EGR), CN has little effect on NOx emissions (Ickes et al., 2009). 

Biodiesel generally has a higher CN than conventional diesel. Thus, CN is not the 
main parameter causing the biodiesel NOx effect, but one might expect higher CN 
biodiesels to produce lower NOx than lower CN biodiesels (Lee et al., 1998). However, 
we regress the biodiesel NOx effect on CN using our entire dataset and find that these 
two parameters are positively correlated, in contrast with much of the literature. We 
speculate that other fuel and vehicle parameters may influence this result.  
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Other fuel properties such as bulk modulus, density, and viscosity can affect emissions 
formation. As discussed above, high bulk modulus advances fuel injection and extends 
the ignition delay period, resulting in rapid temperature and pressure increases and 
high NOx formation. Monyem et al. (2001) identify a linear relationship between 
injection timing and NOx formation regardless of the type of fuel used. For the five 
diesel and biodiesel fuels studied in their experiment, advanced injection timing 
resulted in an average 23% increase in NOx emissions relative to standard injection 
timing. Other studies have found that common-rail injection systems better control 
for the effects of advanced injection due to biodiesel’s high bulk modulus (Hoekman & 
Robbins, 2012). 

Viscous fuels can also advance injection timing by building up pressure in the fuel 
pump (Lapuerta et al., 2012). This leads to an increase in NOx emissions. However, 
viscous fuels have large droplet diameters which reduces their ability to atomize, or 
disperse into finer particles (Hoekman & Robbins, 2012), which counteracts this effect. 
Reduced atomization of fuel particles decreases combustion efficiency which leads to 
an increase in HC and PM (Agarwal et al., 2015; Lapuerta et al., 2008a). In our analysis, 
we observe a negative and significant relationship between viscosity and HC and PM 
emissions, while we observe a positive and significant relationship between viscosity 
and the biodiesel NOx effect (Figure 2). Our analysis therefore suggests that the 
increase in air-fuel mixing from advance injection timing due to viscosity has a more 
important effect than droplet size on the completeness of combustion.
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Figure 2. NOx effect by biodiesel viscosity.

Density also has an effect on emissions formation. Agarwal et al. (2015) find that 
density affects fuel injection duration, the total mass of fuel injected, and the degree of 
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fuel atomization. Density also affects volumetric fuel efficiency, or the efficiency of the 
combustion cylinder to compress gas. The relationship between fuel density and NOx 
formation is complex; Lee et al. (1998) suggest that changes in volumetric efficiency, 
flow rate, and spray characteristics from low density fuels contribute to reduced 
NOx. Particulate matter emissions may also decrease at low density while HC and CO 
emissions increase due to changes to the air-fuel mixing process.

We observe a positive relationship between fuel density and NOx formation in our 
analysis, as shown in Figure 3. The relationship between density and HC and PM 
emissions is insignificant while the relationship between density and CO emissions is 
significant and positive. 
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Figure 3. NOx effect by biodiesel density.

Several other studies find that the degree of unsaturation of a fatty acid, measured 
by the number of carbon double bonds, corresponds with the physical properties of 
biodiesel including density, viscosity, and CN (Dharma et al., 2016; Hoekman et al., 2012; 
Wang et al., 2016). Unsaturated fatty acids are associated with low viscosity and high 
density. As detailed above, these properties correspond with a reduced and increased 
NOx effect, respectively. Unsaturated fatty acids also tend to have lower CNs, which 
increases ignition delay and NOx formation. Corroborating this trend, Yanowitz and 
McCormick (2009) find that a biodiesel’s degree of saturation is inversely correlated with 
NOx emissions in a study on biodiesel emissions from HDVs in North America. 

We calculate the NOx effect of common U.S. feedstocks regressed on blend level to 
range between -12.5% and 13.4% for 100% biodiesel (B100) (Figure 4). We find that the 
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biodiesel NOx effect is largest for rapeseed or (canola oil) while it is lowest for studies 
conducted with animal fat feedstocks. 
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Figure 4. NOx effect by biodiesel feedstock.

Relative to other biodiesel feedstocks listed in in Table 1, animal fats have a low bulk 
modulus, average CN, high density, and low viscosity. Low bulk modulus and viscosity 
are expected to reduce NOx, while high density is expected to increase NOx formation. 
Animal fats are also highly saturated, which is expected to diminish the biodiesel NOx 
effect. However, the negative trend that we find between animal fat biodiesel blend 
level and the NOx effect is unexpected. The regression analysis for animal fats may 
be skewed due to a relatively small number of datapoints. Inaccurate product labeling 
may also lead to inconsistency in results. Of all the biodiesel feedstocks, rapeseed and 
soybean demonstrate the highest biodiesel NOx effects, as both biodiesels have a 
high degree of unsaturation and high bulk modulus which are expected to increase the 
ignition delay period and associated NOx. 

We also observe clear differences in PM emissions by feedstock, as shown in Figure 5. 
In general, the higher oxygen content of biodiesel improves soot oxidation, resulting 
in lower PM than conventional diesel (Reijnders et al., 2016; Wang et al., 2016). These 
findings are supported by Gaïl et al. (2007), which observes that the yield of acetylene, 
a precursor for PM formation, is proportional to a compound’s number of double 
bonds. Supporting this theory, we find that biodiesel produced from animal fats is 
associated with the largest PM reduction compared to conventional diesel (-76%) while 
biodiesel from rapeseed feedstocks results in the lowest PM reduction (-19%). 
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Figure 5. PM effect by biodiesel feedstock.

In summary, ignition delay appears to be the dominant mechanism for determining 
the NOx effect. Fuels with high viscosity, low compressibility, and low CN extend 
the ignition delay period leading to premixed combustion and high pressure and 
temperature increases inside the combustion chamber. While low viscosity may 
reduce HC and CO formation due to improved spray atomization, this effect does not 
appear to be dominant. The literature also suggests that low viscosity, low density, and 
increased feedstock saturation reduce PM formation. 

Soybean oil is the most predominant feedstock in the United States, accounting for 
68% of domestic feedstock production in 2019 (U.S. EIA, 2020). Because soy biodiesel 
is fairly unsaturated, NOx and PM emissions are expected to be at the high end of the 
range of biodiesel feedstocks.

EMISSION TEST CYCLES
Emissions formation is also influenced by driving conditions such as speed and load. 
In the United States, test cycles are used for engine certification by running vehicles 
on a chassis dynamometer and measuring the emissions output. The U.S. EPA Federal 
Test Procedure (FTP) simulates urban and freeway driving conditions by altering 
engine load and speed. However, laboratory conditions often significantly underpredict 
on-road emissions release. A study by Bernard et al. (2019) found that actual on-road 
emissions may be up to 20 times of those recorded as a result of defeat devices and 
engine design limitations.

Air pollution from vehicles is especially high in urban areas, and this effect is not 
entirely due to population density. A study by Posada et al. (2020) found that NOx 
emissions increase nearly four-fold during urban driving conditions compared to 
emissions averaged over a variety of driving conditions. Heavy-duty vehicles, which 
consume mostly diesel in the United States, spend roughly an equivalent share of time 
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under urban and freeway driving conditions (Posada et al., 2020), so the high NOx 
emissions from their use in urban environments make up a significant share of total 
NOx nationwide. 

Urban driving is characterized by low speeds and high engine loads because 
of the frequent stops and starts, while freeway driving is characterized by high 
speed and lower loads due to less frequent stops and starts. Engine load, also 
known as torque, is affected by numerous factors including vehicle mass, wind 
resistance, friction between the tire and roadway, roadway grade, and the use of 
accessories such as air conditioning (Kean et al., 2003). Engine load is also affected 
by acceleration. Ng et al. (2012) finds that NOx formation is positively correlated 
with engine speed for both conventional diesel and biodiesel blends in an exhaust 
emissions study. The authors also find that NOx formation is positively correlated 
with engine load for both fuel types. 

We run a regression on the biodiesel NOx effect by biodiesel blend level for different 
groupings of engine loads used in emissions tests, shown in Figure 6. “Low” engine load 
represents 0%, or idling conditions, through 40% capacity; “medium” load represents 
40% to 70% capacity; and “high” engine load represents 70% to full load conditions. 
We find that studies testing the biodiesel NOx effect under high-load conditions record 
a higher biodiesel NOx effect than tests under medium and low loads. Our results thus 
suggest that blending biodiesel in conventional diesel fuel exacerbates the increase in 
NOx that diesel vehicles experience under high-load conditions.

We also run a regression on the biodiesel PM effect under the same load conditions 
(Figure 6). Particulate matter data follows an opposite trend compared to NOx, with 
low loads producing a positive biodiesel PM effect and high loads producing the lowest 
PM effect across biodiesel blends. 
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Figure 6. Panel A (left): Biodiesel NOx effect by engine load. Panel B (right): Biodiesel PM effect 
by engine load.
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Engine horsepower is a parameter that reflects the product of load and speed. 
Although load data is useful to compare across engine types, it is unable to capture 
differences in exhaust emissions across vehicle weight classes and speed profiles. We 
group data by engine horsepower and observe that the biodiesel NOx effect is largest 
at high horsepower and smallest at low horsepower (Figure 7). Since horsepower 
readings are variable across test cycles, we draw from steady-state experiments for 
this regression. Data in the lowest horsepower range (0-50) is insignificant. 
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Figure 7. Biodiesel NOx effect by engine horsepower.

Horsepower is a significant explanatory variable when running a regression for 
the biodiesel NOx effect. This indicates that horsepower, and by extension, driving 
conditions more generally, highly influences biodiesel NOx formation. In the real 
world, we would expect biodiesel to exacerbate NOx emissions to the greatest extent 
when high acceleration is combined with high speed. However, this combination does 
not embody any one type of driving condition. Sze et al. (2007) measure average 
horsepower (hp) across various certification test cycles using a heavy-duty highway 
engine representative of on-road HDVs in the United States between 2002 and 2006. 
The authors find that average hp readings vary significantly by cycle type. The lowest 
readings are for cycles representative of urban-driving conditions while the highest 
readings are for cycles representative of highway driving. For example, the average 
horsepower for the FTP is measured to be 51.8 hp, while the average reading for 
the HWY cycle, a high-speed cruise cycle developed by the Coordinating Research 
Council, is 107.4 hp. Based on these findings, we would expect the biodiesel NOx effect 
to be worse under highway conditions. 
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We also analyze the biodiesel emissions effects of HC and CO and find that the 
reductions in these pollutants with biodiesel blending is greatest at high horsepower. 
Ng et al. (2012) investigate the effects of engine load on biodiesel emissions and, like 
our analysis, find that increases in load is associated with higher NOx for both diesel 
and biodiesel. These authors attribute the NOx increase to a decrease in volumetric 
efficiency and the additional heating of intake air. The study conversely finds that high 
loads mitigate the formation of other pollutants, including CO, HC, and PM, for both 
diesel and biodiesel blends. Low loads generate lean combustion conditions, defined 
as burning fuel in the presence of excess air. Although lean burning is often desirable 
for more complete combustion, the literature points to several drawbacks. Sakai et al. 
(2020) find that during overly lean conditions, a “quenching layer” may form near the 
cylinder wall, inhibiting the ability of unburned HCs to react. Similarly, Ng finds that 
overly lean conditions at low engine loads contributes to increased CO, an intermediate 
combustion compound. 

Wang et al. (2016) found that biodiesel reduces PM more effectively at higher engine 
loads. Under high-load conditions, more fuel is injected into the cylinder creating a 
fuel-rich combustion environment. Fuel-rich environments generate more PM; however, 
the high oxygen content of biodiesel counteracts this effect. Supporting this finding, 
Zhu et al. (2010b) conclude that the high oxygen content of biodiesel mitigates PM 
formation at medium and high loads.

Ng. et al. also map the relationship between diesel and biodiesel emissions formation 
and engine speeds. At high speeds, the “absolute time available for complete 
combustion is reduced,” leading to an increase in CO, HC, and PM formation (Ng et al., 
2012). Engine speed is associated with a rise in in-cylinder temperatures, found to peak 
at intermediate speeds. At high engine speeds, NOx begins to decrease, corresponding 
with the on-road study findings of Posada et al (2020). 

Considering that highway conditions are characterized by high speed and high load, we 
expect to find the greatest benefits of biodiesel blending on HC, CO, and PM emissions 
under highway conditions and the smallest benefits under urban conditions. For NOx, 
we expect the biodiesel emissions effect to be greatest under highway conditions. 

EMISSION CONTROL TECHNOLOGIES
The mid-2000s were a turning point for U.S. diesel fuels and vehicles. In 2006, EPA 
introduced the Onroad (Highway) Diesel Fuel Standards rule which required the phase-
in of ultra-low sulfur diesel (ULSD) fuel. Since 2004, the agency has introduced HDV 
emissions standards that set more stringent limits on NOx, HC, and PM. While earlier 
standards were met by high-pressure combustion techniques, newer standards have 
required the use of emission control technologies (Posada et al., 2016). Throughout 
this period, the vehicle manufacturing industry also underwent a broad shift from 
mechanical unit injectors to high-pressure common-rail fuel injection systems. In the 
following sections, we investigate the impact each of these changes has had on the 
biodiesel NOx effect.

First, we examine the effect that emission control technologies implemented to meet 
the latest HDV standard has had on NOx emissions from biodiesel blends. The latest 
emission standards for HDVs in the United States were fully implemented in 2010 and 
require the use of new technologies to meet emissions limits and deliver public health 
benefits. These include diesel particulate filters (DPFs), diesel oxidization catalysts 
(DOCs), closed-loop SCR systems, and ammonia slip catalysts. 
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Since it is difficult to isolate the effects of aftertreatment technologies when filtering 
data by emissions standard, we group data by use of control technology including 
DPFs, DOCs, and exhaust gas recirculation (EGR). There was not enough data to test 
for the effects of SCR, a primary method to reduce NOx in modern diesel engines. 

We find a significant difference between vehicles equipped with EGR systems and 
without, with the former producing a higher biodiesel NOx effect across various blend 
levels (Figure 8). This may be because EGRs do not provide as much of a benefit for 
NOx reduction with biodiesel due to its high oxygen content (Ye & Boehman, 2010; 
Yoon et al., 2009). The use of EGRs are also associated with extended ignition delay 
(Ladommatos et al., 1998). Thus, the difference between diesel and biodiesel NOx 
emissions is widened in vehicles equipped with EGR. 
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Figure 8. Biodiesel NOx effect with and without EGR.

For DPFs, Cordiner et al. (2016) observe an improvement in the regeneration rate, or 
the process for removing accumulated PM, when biodiesel is used. Authors attribute 
this improvement to biodiesel’s high oxygen content which enhances soot oxidation. 
However, the findings are contradicted by a study by Buono et al. (2012) which records 
a lower DPF regeneration rate with biodiesel. Czerwinski et al. (2013) also report 
that biodiesel may alter the regeneration behavior of DPFs due to changes in the 
nanostructure of PM formation. These changes appear to be associated with a reduction 
in the temperature required to achieve regeneration, although it is not clear why.

Regressing the biodiesel emissions effect on blend level, we do not find a significant 
difference in PM emissions among vehicles equipped with and without DPFs. However, 



14 ICCT WHITE PAPER   |  AIR QUALITY IMPACTS OF BIODIESEL IN THE UNITED STATES

we do find that DPFs increase the biodiesel NOx effect (Figure 9). This may be 
confounded by a correlation between DPF and SCR systems, phased in under the 2007 
and 2010 HDV emission standards, respectively. Unlike DPFs, the performance of SCR 
for NOx mitigation was found to degrade with biodiesel in a study on the effects of 
biodiesel impurities on emission control technologies (A. Williams, 2011). We do not 
have enough datapoints on SCR systems to test for this effect in our dataset. 

●●
●●
●●

●●

●●

●●

●●
●●

●●
●●
●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●
●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●●●
●●
●●●●●●

●●●●

DPF no DPF DPF no DPF DPF no DPF

−50

0

100

50

150

Emission control technology

Aftertreatment

DPF

no DPFN
O

x 
e�

ec
t

20 50 100

Figure 9. Biodiesel NOx effect with and without DPFs.

We also find that the biodiesel NOx effect is higher in vehicles equipped with DOCs 
(Figure 10). This means that although both DPFs and DOCs mitigate emissions 
overall, they also increase the degree to which biodiesel increases NOx compared to 
conventional diesel. 
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Figure 10. Biodiesel NOx effect with and without DOCs.

Diesel oxidization catalysts assist in the oxidation of HC, CO, and the soluble organic 
fraction of PM. In addition, DOCs generate NOx to support the operation of other 
aftertreatment technologies like DPFs (Posada et al., 2016). Cordiner et al. (2016) 
find that biodiesel increases the NO to NO2 conversion process in DOCs, although the 
mechanism for this is not entirely clear. Biodiesel may also contribute to reduced DOC 
catalyst activity due to ash buildup (A. Williams, 2011)

DIESEL SULFUR QUALITY
The United States has been a global leader in establishing fuel quality standards, first 
setting a cap on diesel sulfur content beginning in 1994. The original 500 ppm cap was 
reduced to 15 ppm under EPA’s 2006 highway diesel fuel standards rulemaking which 
remains in effect today. Low-sulfer diesel enables the use of advanced emission control 
technologies, including DPFs and catalytic converters, which have been estimated 
to provide tremendous public health benefits. For biodiesel, however, we find that 
updated sulfur limits mitigate the emissions benefits from biodiesel blending. 

We assess the effect of diesel sulfur level on the biodiesel emissions effect in our 
dataset. We group data by high (>500 ppm), medium (50-500 ppm), and low (<50 
ppm) sulfur concentration. We observe a strong relationship between fuel sulfur 
quality and the biodiesel NOx effect (Figure 11). Here, we only present data for older 
model vehicles before implementation of the 2007 emission standards to isolate the 
effects of fuel quality on biodiesel NOx.
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Figure 11. NOx effect grouped by baseline diesel quality. Data is pre-2007 HDV emission 
standard data.

We find that the biodiesel NOx effect is strongly correlated with fuel quality across the 
older vehicle model data subset. Combustion of pure biodiesel results in a 16% NOx 
decrease relative to high-sulfur diesel but an increase of 20% relative to low-sulfur 
fuel. The relationship between baseline diesel fuel sulfur quality and biodiesel NOx 
emissions is not well documented in the literature; however, several studies identify 
changes in fuel property parameters during the desulfurization process which may 
contribute to the observed effects. 

Alam et al. (2004) find that desulfurization increases the cetane number (CN) and 
lowers the density of diesel fuel. Biodiesel has a higher density than diesel; thus, 
the difference in density widens when biodiesel is blended into low-sulfur diesel 
versus blending into higher-sulfur diesel. High CN in fuels is associated with ignition 
occurring sooner after injection. This reduces time for air-fuel mixing, resulting in a 
more spread out temperature peak from combustion and lower NOx formation (Lee 
et al., 1998). Low-sulfur fuels also have low aromatic content. Although the literature 
has not established a clear relationship between NOx and aromatics, Lee et al. suggest 
that low-aromatic fuels likely produce lower NOx due to their lower adiabatic flame 
temperatures. This reflects the temperature of combustion assuming zero heat loss. 
Across our dataset, combustion of low-sulfur diesel is found to produce lower NOx 
than that of high-sulfur diesel, likely for these reasons. Biodiesel is thus more polluting, 
at least in terms of NOx, when blended with cleaner-burning low-sulfur diesel than 
when blended with high-sulfur diesel. 
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The literature also finds that the combustion of low-sulfur diesel reduces PM emissions 
compared to that of high-sulfur diesel (Zhu et al., 2010b). Low-sulfur fuel produces 
fewer sulfate aerosols, a component of PM, and has lower aromatic content, which 
reduces the hydrocarbon molecule’s tendency for PM formation (Ladommatos 
et al., 1996). We would expect the biodiesel PM effect to be less significant when 
blended with low- versus high-sulfur diesel due to these properties. However, we do 
not observe a significant relationship between biodiesel and PM emissions for both 
high- and low-sulfur diesel. We also do not observe a significant relationship between 
biodiesel blending and CO emissions for high- and low-sulfur diesel. For HC, we 
identify a significant relationship between biodiesel and emissions for medium and 
high-sulfur diesel datapoints, although this is likely confounded by other parameters. 

FUEL INJECTION SYSTEM
We find that an engine’s fuel injection system also has a significant impact on the 
biodiesel NOx effect. Historically, unit injectors were used to deposit fuel into the 
combustion chamber. These systems have a compact engine design and inject fuels at 
medium to high pressure. Unit injectors have been phased out in favor of common-rail 
injection systems because the latter allow more complete combustion and noise control 
(Perkins, n.d.). The relationship between fuel injection systems and the biodiesel NOx 
effect has not been widely studied; however, a study by Yanowitz and McCormick 
(2009) compares the emissions effects of fuel injection systems running on B20 fuel. 
The authors calculate a 3% increase in the biodiesel NOx effect when running biodiesel 
through a common-rail versus electronic unit injector system. Hoekman and Robbins 
(2012) state that although common-rail engines are expected to have better control for 
fluid properties which advance injection timing, the biodiesel NOx effect persists.

In our regression analysis, we find that common-rail injection systems are associated 
with a greater biodiesel NOx effect compared to unit injector systems (Figure 12). We 
assume that unit injectors are electronic rather than mechanically operated since the 
latter systems were phased out beginning in the late 1980s. Panel A in the figure shows 
data for all fuel sulfur levels; here we can see there is a more than three-fold difference 
in the biodiesel NOx effect between unit injection and common-rail systems. 
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Figure 12. Panel A (left): Biodiesel NOx effect by fuel injection system. Panel B (right): Biodiesel 
NOx effect by fuel injection system for low sulfur diesel only.

However, we note that the shift from unit injector systems to common-rail systems 
occurred around the same timeframe as the introduction of ULSD in the United 
States. Fuel sulfur level may thus be influencing our results. To remove this potentially 
confounding effect, we also assess the biodiesel NOx effect in common rail versus unit 
injector systems for studies using only low-sulfur diesel. This result is shown in Figure 
12 panel B. We find that the biodiesel NOx effect is 47% higher in common-rail systems 
compared to unit injector systems. Although the standard error cones in panel B 
overlap, we find a statistically significant difference between the two trendlines. Thus, 
we conclude that the biodiesel NOx effect likely is higher in more modern fuel injection 
systems compared to older ones, independent of the effects of diesel sulfur level. 

We also test the biodiesel NOx effect by running a multiple regression analysis on 
blend level, fuel injection systems, engine horsepower, and diesel sulfur quality. Results 
for each parameter including the regression coefficient, standard error, and p-value 
are presented in Table 2. To distinguish between qualitative variables, dummy variables 
are used for fuel injection systems with common-rail fuel injection systems set equal to 
1. Thus, a positive coefficient, β, signifies that common-rail systems generate a higher 
biodiesel emissions effect relative to unit injectors. This multiple linear regression 
confirms our previous findings of the significance of these parameters, even after 
controlling for confounding factors throughout the dataset. 

Table 2. Biodiesel NOx effect using multiple linear regression.

Parameter Coefficient (β) SE P-value

Blend level (%) 0.138 0.019 <.001

Fuel injection system 5.890 2.340 0.013

Engine power (hp) 0.035 0.011 0.001

Diesel quality (ppm) -0.015 0.003 <.001
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COMPARISON WITH PREVIOUS META-ANALYSES
On average, we find that biodiesel blending increases emissions for all pollutants 
relative to previous meta-analyses. For modern conditions, which we define as engines 
that run on ULSD and common-rail fuel injections systems, we find that biodiesel 
blending increases emissions for NOx, HC, PM, and CO compared to other meta-
analyses (Table 3). 

Table 3. Biodiesel exhaust emissions study comparison. Data reported in percent change in 
emissions between B20 and petroleum diesel fuel.

Pollutant
EPA                      

(2002) EPA (2010)
Hoekman & 

Robbins (2012)
ICCT

(all data)
ICCT (modern 

conditions)

NOx 2% 2% 1% 2% 4%

PM -10% -16% -6% Insignificant

HC -21% -14% -4% 7%

CO -11% -13% Insignificant 10%

As in our study, EPA finds that animal fats produce the lowest biodiesel NOx effect 
while soybean and rapeseed-based biodiesels produce significantly higher NOx 
effects. That study also reports that animal fats produce a lower PM effect than 
soybean and rapeseed-based fuels, corroborating our results. The EPA includes a 
discussion on the significance of emission test cycles in their study, while Hoekman 
and Robbins reference the effects of engine speed and load on biodiesel emissions. In 
our study, we significantly expand significantly on both discussions and investigate the 
impacts of load, speed, and horsepower on biodiesel emissions. 

Both meta-analyses also discuss the effects of baseline diesel sulfur quality. The EPA 
finds that biodiesel produces higher NOx when blended into “clean” or low-sulfur 
diesel fuel while Hoekman and Robbins state they only find weak evidence in support 
of this claim. We find a strong relationship between biodiesel emissions and the 
baseline sulfur content of diesel fuel, corroborating EPA’s original finding. Hoekman 
and Robbins discuss the relationship between biodiesel blending and emission control 
technologies, finding that biodiesel hinders the operation of lean NOx traps and 
DPFs. We find that biodiesel does not increase PM compared to conventional diesel 
in vehicles equipped with DPFs. However, biodiesel does increase NOx in vehicles 
equipped with EGR, DOCs, and DPFs, although the latter effect may be confounded by 
the presence of SCR systems. 

Hoekman and Robbins also posit that modern fuel injection systems should be 
expected to reduce the biodiesel NOx effect. Conversely, we find that NOx emissions 
are higher in modern, common-rail systems after controlling for the effects of other 
possible confounding parameters.
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CONCLUSION
This analysis finds that biodiesel blending of common U.S. feedstocks increases NOx 
emissions while it decreases CO, HC, and PM across the entire dataset. However, much 
of the data included in our literature review may now be considered outdated because 
it reflects fuels, injection systems, and emission controls systems that are no longer 
used in the United States. For modern vehicles and fuels, our findings are considerably 
different. When only examining data collected with low-sulfur fuel and common 
rail injection systems, we find that biodiesel increases NOx emissions compared to 
conventional diesel by 4% for B20 blends. Our analysis finds that the biodiesel PM 
effect in modern engines is insignificant, while B20 increases CO and HC emissions 
by 10% and 7%, respectively (Table 3). These findings offer a sharp contrast to the 
conclusions in earlier studies based on much older test results that biodiesel reduces 
emissions of PM, CO, and HC. Our analysis demonstrates that the effect of biodiesel 
blending on exhaust emissions is substantially worse than previously understood. As 
U.S. regulators work to update annual volume requirements under the Renewable Fuel 
Standard or pursue new legislation such as a federal national low-carbon fuel standard, 
it will be important to take into account this updated information on the air quality 
impacts of increased biodiesel blending. 
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APPENDIX A. EMISSIONS FORMATION SUMMARY TABLE
The tables below summarize the relationship between engine operating conditions 
and fuel property variables and air pollutant formation. Upward arrows represent an 
increase in the operating condition or fuel property variable.

Table A1. Effects of engine operating conditions on air pollutant formation.

Engine operating conditions

Variable Primary effect Mechanism

  Ignition delay
Increase in NOx
Decrease in HC, CO, PM

Ignition delay, or the period between fuel injection and fuel ignition, increases 
air-fuel mixing inside the combustion chamber. Extended delay improves 
combustion efficiency but leads to rapid pressure and temperature increases 
upon combustion

  Injection pressure
Increase in NOx
Decrease in HC, CO

High pressure conditions improve combustion but advance injection timing and 
raise temperatures in the cylinder.

  Injection timing
Decrease in NOx
Increase in HC, CO, PM

Counter to ignition delay, retarded injection timing reduces the air-fuel mixing 
and the associated high temperatures and pressures in the combustion chamber.

Table A2. Effects of fuel properties on air pollutant formation.

Fuel properties

Variable Primary effect Mechanism

  Cetane number Decrease in NOx

High cetane numbers correspond with faster ignitability that, in turn, reduces 
premixed combustion. This limits rapid increases in pressure and temperature. 

  Aromatics Increase in NOx

High aromatics are associated with high density and low CN. High aromatics 
content is also associated with high adiabatic flame temperatures.

  Degree of saturation Decrease in NOx, PM
More saturated (i.e., single bond) fuels like palm and coconut have higher CN so 
they ignite more easily. Saturated fuels are also correlated with high viscosity and 
low density.

  Density Increase in NOx, PM High density fuels are associated with high aromatics and low CN. Dense fuels 
also have high volumetric efficiency, which raises in-cylinder temperatures.

  Viscosity Increase in NOx, HC, CO

High viscosity may lead to pressure build-up and advanced injection. High 
pressure conditions also improve air-fuel mixing. However, high viscosity fuels 
also produce large diameter droplets which hinder vaporization and complete 
combustion.

  Bulk modulus
Increase in NOx                                    
Decrease in HC, CO, PM

Bulk modulus is inverse to compressibility such that fuels with high bulk modulus 
have low compressibility and arrive in the combustion chamber earlier.

  Diesel sulfur content Increase in PM
Combustion of high-sulfur fuel produces sulfate aerosols, a component of PM. 
High-sulfur fuels are also associated with high aromatics and reduced CN.
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APPENDIX B. FULL STUDY LIST
Table B1. Biodiesel emissions studies included in meta-analysis.

Study Location Vehicle type FAME feedstock(s) Test cycle(s)
Emission 
standard

Pollutant(s) 
measured

Acevedo and 
Mantilla (2011) Colombia HDV Engine Palm Steady-state test — NOx, PM 

(omitted), HC, CO

Adi (2012) United States Engine Cold-flow soybean Steady-state test — NOx, PM

Alam et al. 
(2004) United States HDV Soybean AVL 8-Mode Tier 2 NOx, PM, HC, CO

Altun (2011) Turkey LDV Engine UCO, animal fat Steady-state test — NOx, CO

Arapaki (2007) Greece LDV UCO NEDC Euro 3 NOx, PM, HC, CO

Arbab (2013) Malaysia Engine Palm, Palm/jatropha/coconut 
blends Steady-state test — NOx, HC, CO

Armas et al. 
(2013) Spain LDV Animal fat EUDC, NEDC Euro 4 NOx, HC, CO

Bakeas et al. 
(June 2011) Greece, Italy LDV Soybean, palm, UCO

Artemis Urban, 
Road, Motorway, 

NEDC
Euro 4 NOx, PM, HC, CO

Behcet (2011) Turkey Engine Fish oil Steady-state test  — NOx, HC, CO

Behcet (2014) Turkey Engine Fish oil, UCO Steady-state test — NOx, HC, CO

Bielaczyc et al. 
(2009) Poland LDV Rapeseed UDC, EUDC Euro 4 NOx, PM, HC, CO

Canakci and Van 
Gerpen (2003) United Sttes HDV Engine UCO, soybean Steady-state test — NOx, HC, CO

Chang (1996) United States HDV Engine Soybean Steady-state test — NOx, PM, HC, CO

Chase (2000) United States HDV Rapeseed ethyl ester (REE), 
vegetable oil FTP Transient Tier 1 NOx, PM, HC, CO

Chin (2012) United States HDV Soybean Steady-state test Tier 2 NOx, PM, CO

Clark (1999) United States HDV Soybean FTP Tier 1 NOx, PM, HC, CO

Clark and Lyons 
(1999) United States HDV Soybean WVU 5 peak 

truck cycle Tier 1 NOx, PM, HC, CO

Czerwinski 
(2013) Germany HDV Rapeseed Steady-state test — NOx, PM, HC, CO

Di (2009) China HDV Engine UCO Steady-state test — NOx, PM, HC

Durbin (1999) United States HDV FAME FTP Tier 1 NOx, HC, CO

Durbin (2002) United States HDV Soybean, UCO FTP Tier 1 NOx, PM, HC, CO

Eckerle (2008) United States HDV Soybean UDDS (6k), 
HWY55 Tier 2 NOx

Farzenah (2006) United States HDV Soybean, FAME
On-road driving 
cycles (Urban, 

Rural)
Tier 1 NOx

Fattah (2014) Malaysia Engine Palm Steady-state test — NOx, HC, CO

Fontaras et al. 
(2009) Greece LDV Soybean Artemis Urban, 

Road; UDC Euro 2 NOx, PM, HC, CO

Fontaras et al. 
(2010) Greece LDV Palm, rapeseed, sunflower oil, UCO, 

soybean

Artemis Urban, 
Road, Motorway; 

UDC 
Euro 3 NOx, PM, HC

Frank (2004) United States HDV FAME FTP Tier 2 NOx, PM, HC, CO

Ge (2017) Korea LDV Rapeseed Steady-state test — NOx, PM, CO

Geng (2019) United States, 
China HDV Engine UCO Steady-state test — NOx

Graboski (1996) United States HDV Soybean FTP Transient 
(Composite) Tier 1 NOx, PM, HC, CO
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Study Location Vehicle type FAME feedstock(s) Test cycle(s)
Emission 
standard

Pollutant(s) 
measured

Graboski (2003) United States HDV

Methyl-lard, methyl-soy, methyl-
canola, methyl inedible tallow, 

methyl edible-tallow, methyl-low 
free fatty acid grease, methyl-high 

free acid grease, methyl-laurate 
(C12:0), methyl-palmitate (C16:0), 
methyl-stearate (C18:0), methyl-
oleate (C18:1), methyl-linoleate 

C18:2), methyllinolenate (C18:3), 
methyl soy (soyagold), 1:2 M-terate: 

M-linseed, methyl-hydrogenated 
soy, ethyl-stearate (C18:0), ethyl-
linoleate (C18:2), ethyl-linseed, 

ethyl-soy, ethyl-hydrogenated soy

FTP Transient Tier 1 NOx, PM, HC, CO

Guatam (2013) India Engine Jatropha Steady-state test — NOx, HC, CO

Guido (2013) Italy LDV Engine Rapeseed Open/closed loop 
operating modes Euro 5 NOx, PM, HC, CO

Haas (2001) United States HDV Soybean, soapstock FTP Transient Tier 1 NOx, PM, HC, CO

Han et al. (2008) United States LDV Soybean, coconut Ad-hoc operating 
points/Misc. — NOx, PM, HC, CO

Hansen and 
Jensen (1997) Denmark HDV Rapeseed

5-mode test 
(subset of ECE 

R49)
Euro 2 NOx, PM, HC, CO

Hearne (2005) United States HDV FAME

Rowan University 
Composite 

School Bus Cycle 
(RUCSBC)

Tier 1 NOx, PM, HC, CO

Holdren (2006) United States HDV Soybean, UCO

FTP Transient, 
US06, AVL 

8-Mode, In-Use 
Test

Tier 1, 
Tier 2 NOx, PM, HC, CO

Jansen et al. 
(2014) Greece LDV Rapeseed NEDC, UDC, 

EUDC Euro 4 NOx, HC, CO

Kalam and 
Masjuki (2008) Malaysia HDV Palm Steady-state test — NOx, HC, CO

Karavalakis 
(2016) United States LDV UCO UDDS, HHDDT 

Transient Tier 2 NOx, PM, HC, CO

Karavalakis et al. 
(2007) Greece LDV Soybean Athens Driving 

Cycle Euro 2 NOx, PM, HC, CO

Karavalakis et al. 
(2009) Greece LDV Rapeseed, palm NEDC, UDC, ADC Euro 2 NOx, PM, HC, CO

Karavalakis et al. 
(2011) Greece LDV Palm, soybean, rapeseed blended 

with sunflower oil and UCO
Artemis (full), 

NEDC Euro 4 NOx, PM, HC, CO

Karavalakis et al. 
(Dec. 2008) Greece LDV Soybean UDC, NEDC, ADC Euro 2 NOx, PM, HC, CO

Karavalakis et al. 
(Nov. 2008) Greece HDV Palm UDC, NEDC, ADC Euro 3 NOx, PM, HC, CO

Kawano et al. 
(2008) Japan LDV Rapeseed JE05 Mode Test Euro 5 NOx, PM, HC, CO

Kaya et al. (2018) Turkey LDV FAME (unspecified) NEDC, WLTC Euro 5 NOx, HC, CO

Kinoshita (2003) Japan Engine Palm, rapeseed Steady-state test — NOx, HC, CO

Kinoshita (2006) Japan Engine Palm, coconut, rapeseed Steady-state test — NOx, HC, CO

Kinoshita (2011) Japan Engine Palm, rapeseed Steady-state test — NOx

Knothe (2006) United States HDV

Methyl soyate (commercial 
biodiesel), methyl oleate, methyl 

pamitate, methyl laurate (technical 
biodiesel)

FTP Transient Tier 2 NOx, PM, HC, CO

Koszalka (2010) Poland HDV FAME 13-mode ESC test Tier 2 NOx, HC, CO
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Kousoulidou et 
al. (2009) Greece LDV Palm, rapeseed

NEDC; Artemis 
Urban, Road, 

Motorway
Euro 3 NOx, PM, HC, CO

Krahl (2005) Germany HDV Rapeseed, rapeseed/soybean/palm 
oil blends 13-mode ESC test Euro 3 NOx, PM, HC, CO

Krahl (2008) Germany HDV Rapeseed 13-mode ESC test Euro 4 NOx, PM, HC, CO

Krahl (2009) Germany HDV Rapeseed 13-mode ESC test Euro 3 NOx, PM, CO

Lahane (2015) India Engine Karanja Steady-state test  — NOx, HC, CO

Lance et al. 
(2009)

United States, 
Japan LDV Jatropha, coconut, rapeseed NEDC Euro 4 NOx, HC, CO

Lapuerta et al. 
(2008) Spain LDV UCO, sunflower oil Various SS 

operating points Euro 4 NOx, PM

Leevijit (2010) Thailand Engine Palm Steady-state test — NOx, CO

Lesnik (2013) Slovenia HDV Engine Rapeseed Steady-state test — NOx, CO

Li (2007) Europe HDV Rapeseed 23 kW Hot-Start 
SS Euro 2 NOx, PM, HC, CO

Lim et al. (2014) Korea LDV Soybean, UCO, jatropha, palm, 
rapeseed NEDC Euro 4 NOx, PM, HC, CO

Liotta and 
Montalvo (1993) United States HDV Soybean FTP Transient 

(Hot Start) Tier 1 NOx, PM, HC, CO

Lopez (2009) Spain HDV FAME (unspecified) Transient Cycle Euro 4 NOx, PM, HC, CO

Lujan (2009) Spain LDV FAME (unspecified) NEDC Euro 4 NOx, PM, HC, CO

Macor et al. 
(2011) Italy LDV Rapeseed UDC, Artemis 

Urban Euro 4 NOx, PM, HC, CO

Marshall (1995) United States HDV Soybean FTP retarded 
timing Tier 1 NOx, PM, HC, CO

Martini et al. 
(2007) European Union LDV 50/50 soybean and sunflower, palm, 

rapeseed NEDC, EUDC Euro 3 NOx, PM, HC, CO

Mazzoleni (2007) United States HDV FAME On-road Driving 
Cycle Tier 1 NOx, PM, HC, CO

McCormick 
(1997) United States HDV Soybean FTP Transient 

(Hot Start) Tier 1 NOx, PM, HC, CO

McCormick 
(2003) US HDV UCO, soybean FTP Transient 

(Composite) Tier 1 NOx, PM, HC, CO

McCormick 
(2005) United States HDV Soybean, UCO, rapeseed, animal fat FTP Transient Tier 1 NOx, PM

McCormick 
(2006) United States HDV Soybean

City-Suburban 
Heavy Vehicle 

Cycle (CSHVC), 
UDDS, RUCSBC, 
Freeway Cycle

Tier 1, 
Tier 2 NOx, PM, HC, CO

McGill et al. 
(2003) United States LDV, HDV Rapeseed FTP 75, AVL 

8-Mode
Tier 1, 
Euro 2 NOx, PM

Mizushima and 
Takada (2014) Japan HDV FAME

JE05 “ED12” 
transient test 

cycle
Euro 5 NOx, PM

Mofijur (2013) Malaysia LDV Palm, M. oliefera oil Steady-state test Euro 2 NOx, HC, CO

Mormino (2009) Belgium LDV Animal fat, palm, rapeseed Steady-state test — NOx, HC

Nabi (2005) Bangladesh Engine Neem oil Steady-state test — NOx, CO

Nathangopal 
(2018) India Engine Calophyllum inophyllum Steady-state test — NOx, HC, CO

Ng (2011) Malaysia LDV Palm

Steady-state 
(representative 

of on-road 
conditions)

— NOx, HC, CO
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Ng (2012) Malaysia Engine Palm, soybean, coconut 7-mode ESC test Euro 2 NOx, HC, CO

Nikanjam (2009) United States HDV Soybean UDDS Tier 2 NOx, HC, CO

Nuszkowki 
(2008) United States HDV Soybean, animal fat, cottonseed FTP Transient 

(Hot Start) Tier 1 NOx, PM, HC, CO

Olatunji (2010) United States HDV Soybean, animal fat Steady-state test Tier 2 NOx, PM, HC, CO

Ozsezen and 
Canacki (2010) Turkey HDV Palm Steady-state test — NOx, HC, CO

Ozsezen and 
Canacki (2011) Turkey Engine Palm, rapeseed Steady-state test — NOx, HC, CO

Pala-En (2013) United States HDV Rapeseed, UCO, animal fat, soybean
UDDS, On-road 

(highway, arterial, 
idling)

Tier 2 NOx, PM, HC, CO

Payri (2005) Spain HDV UCO Steady-state test Euro 3 NOx, PM, HC, CO

Peterson (2000) United States HDV Soybean FTP Transient 
(Hot Start) Tier 1 NOx, PM, HC, CO

Peterson and 
Reece (1996) United States HDV Rapeseed ethyl ester (REE) FTP Transient Tier 1 NOx, PM, HC, CO

Proc (2006) United States HDV FAME
City-Suburban 
Heavy Vehicle 
Cycle (CSHVC)

Tier 1 NOx, PM, HC, CO

Prokopowicz et 
al. (2015) Poland LDV Rapeseed NEDC, UDC, 

EUDC Euro 4 NOx, PM, HC, CO

Purcell (1996) United States LDV Soybean
Heavy Duty 

Transient (US 
Bureau of Mines)

Tier 1 NOx, PM, HC, CO

Purcell et al. 
(1996) United States HDV Soybean

Transient Cycle 
(US Bureau of 

Mines)
Euro 1 NOx, PM, HC, CO

Rahman (2013) Malaysia Engine Palm, calophyllum inophyllum Steady-state test — NOx, HC, CO

Rakopoulos 
(2007) Greece HDV Sunflower oil, cottonseed Steady-state test — NOx, HC, CO

Rantanen (1993) Finland HDV Rapeseed 13-mode ESC test Tier 1 NOx, PM, HC, CO

Romig and 
Spataru (1995) United States HDV Rapeseed FTP Transient 

(Hot Start) Tier 1 NOx, PM, HC, CO

Ropkins et al. 
(2007) United Kingdom LDV Rapeseed UDC, EUDC, FTP 

75 Euro 1 NOx

Rose et al. (2010) Europe LDV Rapeseed NEDC, UDC, 
EUDC Euro 4 NOx, HC, CO

Roy (2016) Canada HDV Engine Rapeseed Steady-state test — NOx, HC, CO

Schumacher 
(1994) United States HDV Soybean FTP Transient Euro 2 NOx, PM, HC, CO

Schumacher 
(1996) United States HDV Soybean FTP Transient Tier 1 NOx, PM, HC, CO

Sedari et al. 
(1999) Greece LDV, Engine Sunflower oil On-road idling, 

Steady-state Euro 1 NOx

Serrano et al. 
(2015) Portugal LDV Soybean NEDC, UDC, 

EUDC Euro 5 NOx

Sharp (1994) United States HDV Soybean FTP Transient 
(Hot Start) Tier 1 NOx, PM, HC, CO

Sharp (1996) United States HDV Rapeseed FTP Transient Tier 1 NOx, PM, HC, CO

Sharp (2000) United States HDV Soybean FTP Transient Tier 1 NOx, PM, HC, CO

Sharp and 
Knothe (2005) United States HDV Soybean FTP Transient 

(Hot Start) Tier 1 NOx, PM, HC, CO



36 ICCT WHITE PAPER   |  AIR QUALITY IMPACTS OF BIODIESEL IN THE UNITED STATES

Study Location Vehicle type FAME feedstock(s) Test cycle(s)
Emission 
standard

Pollutant(s) 
measured

Shen et al. (2018) China LDV Rapeseed
PEMS (Non 

Highway/Highway 
Driving)

Euro 3, 
Euro 4 NOx, PM, HC, CO

Sinha and Kumar 
(2019) India Engine Jatropha Steady-state test — NOx, HC, CO

Souligny (2004) Canada HDV Animal fat, UCO, vegetable oil FTP Transient Tier 1 NOx, PM, HC, CO

Starr (1997) United States HDV Soybean FTP Transient Tier 1 NOx, PM, HC, CO

Sze (2007) United States HDV Soybean HWY, FTP, WHTC, 
UDDC (6k, 28k) Tier 2 NOx, PM, HC, CO

Tadano (2015) Brazil HDV Soybean 13-Mode ESC test Euro 5 NOx

Tatur et al. 
(2009) United States LDV Soybean FTP 75, HWFET Euro 4 NOx, HC, CO

Tian et al. (2013) China LDV Rapeseed Various — NOx, PM, HC

Tompkins (2009) United States Engine Palm Steady-state test — NOx

Tzirakis (2006) Greece LDV UCO On-road (urban 
driving) Euro 4 NOx, CO

Ullman (1983) United States HDV Soybean
1979 13-mode 
Federal Test 
Procedure

Tier 1 NOx, PM, HC, CO

Usta (2005) Turkey Engine Tobacco seed oil Steady-state test — NOx, CO

van Niekerk et al. 
(2019) United Kingdom LDV FAME (unspecified) WLTC Euro 4 NOx, CO

Wallington et al. 
(2016) United States LDV Butyl nonanoate FTP 75, HWFET, 

US06 Euro 4 NOx, PM, HC, CO

Wang (2000) United States HDV Soybean WVU 5 peak 
truck cycle Tier 1 NOx, PM, HC, CO

Wirawan et al. 
(2008) Indonesia LDV Palm UDC and EUDC Euro 2 NOx, PM, HC, CO

Wu (2008) China HDV Engine Coconut, rapeseed, soybean, palm, 
UCO Steady-state test Euro 3 NOx, PM, HC, CO

Yasin (2015) Malaysia, Iran LDV Palm Steady-state test — NOx, HC, CO

Yoshida et al. 
(2008) Japan LDV Rapeseed NEDC Euro 5 NOx, PM, HC, CO

Zhu (2010a) China HDV Engine UCO Steady-state test Euro 5 NOx, PM, HC, CO

Zhu (2010b) China HDV Palm, rapeseed, UCO Steady-state test — NOx


