Measure Marine Black Carbon Emissions Test Stand and Two On-Sea Campaigns

ICCT Third Workshop on Marine Black Carbon Emissions September 7th and 8th 2016 Vancouver, British Columbia Canada

Motivation

Background

Approach

Results

Discussions

Project Motivation/Background

- International shipping has been reported at 2% of global BC emissions (Lack et al. 2012)
- Wide range (0.01-1 gBC/kg-fuel) of black carbon emission ratios in literature (Gysel et al., 2016, Lack et al. 2013, Kahn et al 2012, Petzold et al., 2010, Murphy et al. 2009, Agrawal et al. 2008)
- Different techniques used to estimate BC
 - Thermal/optical (EC/OC)
 - Laser induced incandescence (SP2, LII)
 - Light absorption-optical (MAAP, Aethalometer, FSN)
 - Light absorption-photoacoustic (MSS, PAS)

Project Background

UCR data shows wide BC EF range which appears to trend with engine size (photo acoustic method MSS-483)

Is the wide range measurement method or some other cause?

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Marine Test Stand Research

Environment and Climate Change Canada

MARAD

Engine Test Stand Details

Engine Specifications and Test Setup						
Marine Engine	2-Stroke	BMEP = 641 kPa	RPM (1100-2100)			
210 Hp@2100 RPM	7.0 Liter	DDC 6-71N				
			O.F			

Fuel Specs.	DMA	RMA-12	RMG-380	Sulfur 1
Sulfur %	0.0013	0.0013	3.18	Viscosity
Viscosity (cSt)	2.69	13.7	358.9	15005109
Density (g/mL)	0.831	0.859	0.983	

Test Modes	Speed (rpm)	Load	Conditoning ²
Mode 1	1100	25%	CS and BP
Mode 2	1100	50%	CS
Mode 3	1100	75%	CS and BP

¹ CS stands for catalytic stripper and BP stands for bypass. Repeats for each of the three fuels.

Experimental Design Comprehensive

Sample Conditioning did Change Particle Composition

Calibration improves some BC correlations

	By P	ass	Sample conditioning		
Fuel	No Calibration		No	Calibration	
	Calibration		Calibration		
DMA	23%		29%		
RMA-12	39%	17%	34%	7%	
RMG-380	29%	12%	40%	12%	

Post-hoc calibration factors varied

- Slopes from 1.13 to 0.53
- Intercepts from 0.13 to 2.91

¹ Since the fuels are calibrated based on the DMA fuel, DMA calibrated spreads are null. The calibration % are defined as the spread which is defined as the difference between the biggest and the smallest slope divided by the average of the two.

Test Stand Conclusions

- Calibration improved BC results up to 75% level
- Sample conditioning improved the comparability of BC measurements up to 25% level, but PM losses confounded some results
- » BC Calibration is recommended, but sample conditioning showed small benefit
- » BC reported measurement discrepancies (orders of magnitude) <u>do not</u> appear to be the result of BC measurement methods

Measured BC from ME: Meeting Tier 2 Stds.

Source	Engine Mfg.	MY and Model	Engine Power kW	Run Hours	EGCS
ME	Mitsui MAN B&W	2011 12K98ME6.1	68,666	25,985	no
AE1	Daihatsu	2011 8DC32e	3,162	n/a	no
AE2	Daihatsu	2011 8DC32e	3,162	n/a	no
AE3	Daihatsu	2011 8DC32e	3,162	14,550	no
AE4	Daihatsu	2011 8DC32e	3,162	n/a	no
Boiler	Alfa-Laval	2011 n/a	n/a	n/a	no

 Performed VSR and 3 other loads on MGO fuel (0.03% S)
 Measured gaseous and PM emissions
 Measured BC via three methods (MSS, FSN, and EC)
 Used ISO reference

sampling methods

2

BC Emission Factor Very Low for Tier 2 Engine

BC Measurement Methods Correlated Well

Task 3: BC Control with Sea Scrubber for ME and AE

Source	Engine Mfg.	Model	Engine Power kW	Run Hours	EGCS	Exhaust Fraction ²
ME	Mitsui B&W	7L70	16,578	177,962	yes	93%
AE_1s	Wartsila	6R32D	2,105	70,096	yes	0%
AE_1p	Wartsila	6R32D	2,105	79,020	yes	7%
AE_2s	Wartsila	4R32BC	1.263	63,211	no	n/a
AE_2p	Wartsila	4R32BC	1.263	55,067	no	n/a
Boiler	n/a	n/a	n/a		no	n/a

Performed 4 loads on HFO fuel (1.9% S) pre and post scrubber

Measured gaseous and PM emissions
 Measured BC via three methods (MSS, FSN, and EC)

Measured emissions with updated 14 sampling system (post-scrubber design)

BC Measurement Methods Relatively Poor Correlation

□BC emission factor for the weighted loads was 0.038 g/kg-fuel (post scrubber)
 □Correlation shows good R² and good slopes (1.34 to 0.93). Very similar trend and magnitude as Task 1 and 2 (for like instruments)

□ ME results lower left corner, AE results upper right corner. What if data AE's is removed?

BC Measurement Methods Relatively Poor Correlation for ME

□ ME results show EC and FSN slopes of 2.26 and 1.60 (much further away from 1 than task 1 and 2)

□ R² was poor and below 0.2 for both methods (mostly likely a result of the small data spread)

□ Post-hoc calibration improved FSN slope from 1.60 to 1.40, but the EC method showed a worse slope (2.97 vs 2.26)

UC RIVERSITY OF CALIFORNIA

What Caused the Correlation to go from Good to Poor?

The PM fraction changed from AE to ME:

- □ Sulfate fraction was about the same (slightly higher)
- □ Organic carbon fraction was about the same (slightly lower)
- \square BC fraction changed significantly from 5% to ~ 0.3% (eBC/PM_{2.5})

Overall BC Measurement Method Conclusions

> Calibration improvements mixed (FSN, EC, and MSS)

- > Test stand and Tier 2 at-sea improved
- > At-sea PM scrubber got worse
- > BC method agreement ranged from 5% to a factor of 2.9
- » BC Measurement methods seem to be sensitive to BC concentration as a fraction of total PM (PM_{2.5})
- In general BC reported measurement discrepancies (orders of magnitude) <u>do not</u> appear to be the result of BC measurement methods

ICCT BC EF agree with observations and Tier 2 engine shows possible factor of 10 reduction in BC EF (0.002 g/kg-fuel)

Acknowledgment

Funding:

- International Council for Clean Transportation (ICCT)
- United States Maritime Administration (MARAD)

Equipment in-kind loans Task 1

- AVL Filter Smoke Number (FSN) Task 1-3
- SunSet Labs SemiCont EC/OC
- South Coast Air Quality Management District (SC-AQMD) Aethalometer
- * National Resource Canada, Two (2) LIIs, RAMAN, TEM analysis
- Environment and Climate Change
- Canada, LII, Rotating disk dilutor, CPC
- UC Riverside, GC by GC, AMS, SMPS, CPC, PAX 375 nm, HTDMA, MAAP
- California Air Resources Board EEPS
- NTK-Sparkplugs Stack OBD NOv /PM/PN Sensor

icct

Acknowledgment Cont. Task 1

Faculty, Technical Support, and Graduate Students

- Dr. Kelley Barsanti, Lindsay Hatch
- Don Pacocha, Eddie O'Neil, Mark Villa, David Buote (E.C.), Danny Gomez, Rachael Hirst, and Lauren Aycock
- Paul Van Rooy, Justin Hernandez Dingle, and Eric Peng

CLEAN TRANSPORTATION

Back up Slides

ISO 8178 Sampling Method

23

Key BC Mass Concentration Instruments

Instrument	Manufacturer	Model	Abbreviatio n	Measureme nt Principle	Reported As
Semi-continuous Organic Carbon/ Elemental Carbon	Sunset Laboratories		SemiOCEC	thermal-optical	EC
Batched Organic Carbon/Elemental Carbon	Sunset Laboratories		OCEC	thermal-optical	eBC
Laser Induced Incandescence	Artium	300	LII	thermal radiation	rBC
Micro-Soot Sensor	AVL	483	MSS	light absorption (photoacoustic)	eBC
Smoke Meter	AVL	415SE	FSN	light absorption	eBC
Multi-Angle Absorption Photometer	Thermo Scientific	5012	MAAP	light absorption and scattering	eBC
Aethalometer	M a g e e Scientific	AE21	Aethalo	light absorption and scattering	eBC

Test Stand: Catalytic stripper and Sulfur adsorber

- Flow-through ceramic monoliths for organic PM reduction
- platinum and palladium based wash coats
- 40 liter/minute maximum flow
- Catalyst operation:
 350 °C to 400 °C
- Two sulfur adsorbers designed for SO₃ oxidation at 150 °C

Test Stand: Percent of total PM Composition

26

Test Stand: Total PM Mass Composition (mg/m3)

Test Stand: Post-Hoc Calibration Factors Obtained

	By Pass (BP)		Conditionin	g System (CS)
Instrument	Slope	Intercept	Slope	Intercept
FSN (DR 1:1)	1.13	0.13	1.30	0.00
LII (DR 1:1)	1.22	-0.83	1.56	-1.16
MSS (DR 14:1)	1.00	0.00	1.00	0.00
SemiOCEC (DR			• / `	$\times \setminus 1$
14:1)	0.89	-0.01	0.88	-0.09
LII (DR 14:1)	N/A	N/A	N/A	N/A
OCEC (DR 14:1)	0.76	0.03	0.85	0.15
MAAP (DR 1400:1)	0.53	3.24	0.42	2.91
Aeth (DR 1400:1)	1.25	2.93	1.14	2.53

The DMA fuel was used as the calibration source so that fuel will not have a calibration correction