

Marine Black Carbon emissions study at the University of Rostock, Germany

Presented by:

Researchers (alphabetical order):

<u>Greg Smallwood²</u> B. Behrends¹, S. Gagné², A. Momenimovahed², K. Thomson², M. Tutuianu³, V.

Wichmann⁴.

¹ Marena Ltd
 ² Measurement Science and Standards, National Research Council Canada
 ³ Emission Test Instrumentation, AVL
 ⁴ Department Fakultät für Maschinenbau und Schiffstechnik, Universität Rostock

7-8 September 2016 ICCT's 3rd Workshop on Marine Black Carbon Emission: BC Control Strategies

A collaborative effort

NRC CNRC

Goals

Following IMO's PPR recommendation to Member Governments to initiate BC measurement studies, the German Government organized a measurement campaign with these goals:

- Black Carbon measurements
 - on a ship engine
 - with different bunker fuels
 - with different engine ratings
 - with alternative measurement methods
- Submission to PPR4 (by Germany and Canada)

Campaign Objectives

- 1. Use of miniCAST for instruments comparison
- 2. Instrument comparison on marine engine for test matrix of fuels and operating conditions
- 3. Evaluation of miniCAST results as a calibration adjustment factor
 - does it improve agreement?
- 4. Emission factors for test matrix
- 5. Study of the particle characteristics
 - TEM, Raman, EEPS, TOT-OC/EC, MS-OC/EC, effective density

Engine

1VDS18/15CR Elbe Werke Roßlau (research engine) technical specifications:

- medium speed 4 stroke engine
- style: 1 cylinder
- power: 76 kW
- bore: 150 mm
- stroke: 180 mm
- super-charging: externally supplied (4 bar)
- rated speed: 1,500 min-1
- heavy oil valid to 580 cSt
- injection pressure <1,300 bar
- common rail injection system (individual production)
- control of injection over the motor control unit
- emission standard IMO tier II / III

Fuels

Diesel Diesel Oil (according to DIN EN 590 upper limits):

- Very low sulphur content (0.00063%)
- Automotive Diesel
- Ash content <0.01%

DMA DMA fuel (ISO 8217):

- Low sulphur content (0.087%)
- 100% distillate oil
- Marine Gas Oil
- Ash content < 0.001%

IFO Intermediate Fuel Oil IFO 380:

- High sulphur content (2.3%)
- Residual oil
- Marine fuel
- Ash content 0.055%

Engine test cycles – D2

Cycle #1: reversed **D2** (ISO 8178-4)

Mode #	5	4	3	2	1
RPM	1500	1500	1500	1500	1500
Load (%)	10	25	50	75	100

Engine test cycles – E3

Cycle #2: *reversed* **E3** (ISO 8178-4)

Mode #	4	3	2	1
RPM	945	1200	1365	1500
Load (%)	25	50	75	100

Campaign Schedule

Engine test cell was available for 2 weeks

	Monday	Tuesday	Wed.day	Thursday	Friday	Saturday	Sunday
1	Setup	Setup	Setup	Setup + MiniCAST	D2, Diesel		
2	<mark>E3</mark> , Diesel	D2, DMA	E3, DMA	D2 + part <mark>E3</mark> , IFO	Part <mark>E3</mark> , IFO	Tear down + packing	

NRC CNRC

Not enough time to fully repeat all test points

Cycle #1: reversed **D2** (ISO 8178-4)

		X		/	
Mode #	5	4	3	2	1
RPM	1500	1500	1500	1500	1500
Load (%)	10	25	50	75	100

Cycle #2: reversed E3 (ISO 8178-4)

Mode #	4	3	2	1
RPM	945	1200	1365	1500
Load (%)	25	50	75	100

Participating Instrumentation

BC Diagnostics

- Laser-induced Incandescence
 (LII 300, x 2)
- Micro Soot Sensor
 (MSS+)
- Smoke Meter
 - (415SE)
- Photoacoustic Extinctiometer
 (PAX λ=870nm)
- Thermal-Optical Analysis
 (x 3)
- Aethalometer
 - (AE33-7λ)
- Gravimetric BC analysis

Other Diagnostics

- Transmission Electron Microscopy
 - (TEM)
- Raman analysis
- Effective Density

 (CPMA/SMPS)
- Particle Counter
 (PMP)
- Engine Exhaust Particle Sizer
 (EEPS)
- Opacimeter
 - (439)

NRC CNRC

Experimental Setup – Engine Sampling

Experimental Setup – MiniCAST Sampling

Concentrations:

NRC CNRC

OCEC (Munich,

Preliminary impressions...

Concentration Variability

NRC CNRC

Mass Concentration vs. Time

Concentration range through all test points: 0.05 – 40 mg/m³

Concentration Variability

- Pattern in mass concentration emissions (~500 seconds)
- Concentration decreases over the hour

Concentration Variability... varied with load

Mass / Volume

- \rightarrow Select particle size
- \rightarrow Measure concentration for varying masses
- \rightarrow Peak mass divided by mobility-equivalent volume
- → Use with or without thermodenuder / catalytic stripper to remove volatile coating
- Information about the particle's morphology
- Information about the extent of volatile coating

 $\rho \downarrow \text{eff} = m/\pi/6 \ d\downarrow \text{m} \ 13$ •

- Used for number concentration to mass concentration conversions
- Impacts particle transport and deposition properties in lungs

Mass / Volume

- \rightarrow Select particle size
- \rightarrow Measure concentration for varying masses
- \rightarrow Peak mass divided by mobility-equivalent volume

→ Use with or without thermodenuder / catalytic stripper to remove volatile coating

- black carbon material density: 1900 kg/m³
- Diesel fuel material density: 800 kg/m³
- 250 nm d_m BC aggregate effective density: 400-500 kg/m³

$\rho \downarrow \text{eff} = m/\pi/6 \ d\downarrow \text{m} \ 13$

NRC CNRC

Effective density for denuded particles decreases with increasing particle size → supports the idea that particles from marine engines are fractal-like aggregates

NCCNC

Challenges arising from emission variability

Emissions were not stable through a 1h test point

- What is the best approach to averaging in order to compare instruments?
- Some continuous instruments had breaks during some test points. How best to process the data?
- Some instruments were not continuous. How to compare adequately?
- Particularly challenging for Effective Density measurements, where size/mass is scanned as a function of time with an assumption of a constant source concentration
 - introduced a mixing chamber into CPMA sampling line to damp oscillations

General issues during the campaign

Issues that will affect validation of some measurement data:

- Shipping damage to one instrument was not fully fixed until day 2 of engine testing
- One instrument displayed overheating error message
 - Some missing minutes during some DMA tests points
 - Resolved before tests with IFO
- One instrument reported some internal leak errors at times (although there were no actual leaks)
- Dilution ratio to the sampling tunnel varied widely due to particle buildup in the dilutor
 - Can be corrected with real time CO_2 monitoring of dilution

TEM images

DMA (100%, 1500 RPM)

IFO (100%, 1500 RPM)

NRC·CNRC

24

Summary

Test matrix was successfully completed with data acquired at all test points

Some general issues resulted in missed data for some instruments at a few test points

Need to develop strategies for appropriate data averaging for each instrument at each test point

Full data processing underway with objectives:

- comparison measurements of different instruments using a miniCAST
- instrument comparison on engine
- engine emission factors
- chemical/physical particulate emission characterization

Aiming to submit results as a paper to PPR4

Acknowledgements / Funding

Funding:

- German Federal Environment Agency (UBA)
- German Federal Ministry for the Environment (BMUB)
- Transport Canada (TC)

Thanks to:

- NRC staff: Dan Clavel, Brett Smith, Simon-Alexandre Lussier, Bob Sawchuk, Xiaomei Du
- Uni Rostock staff for running the engine, getting us missing parts, tools, etc. Thanks for the hospitality!

Umwelt 🌍 Bundesamt

Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety

*

Transport T Canada (

Transports Canada

NRC CNRC

Thank you

Brigitte.Behrends@marenaltd.com (Project Coordinator) Volker.Wichmann@uni-rostock.de (Leader of Engine Facilities) Stephanie.Gagne@nrc-cnrc.gc.ca (Project Manager for NRC) Monica.Tutuianu@avl.com (Application Engineer for AVL)

NRC.CNRC

Engine test cycles

Two hour warmup with diesel used for engine start and shutdown Hold each test point for 1 hour

Stabilization period > 30 min for each test point

Cycle #1: *reversed* **D2** (ISO 8178-4)

Mode #	5	4	3	2	1
RPM	1500	1500	1500	1500	1500
Load (%)	10	25	50	75	100

Cycle #2: *reversed* **E3** (ISO 8178-4)

•				
Mode #	4	3	2	1
RPM	945	1200	1365	1500
Load (%)	25	50	75	100

Engine test cycles

>2 hours warmup/setup with diesel used for engine warmup
 Each test point held for 1 hour
 Stabilization period > 30 min for each test point
 → 9-10 hour days when everything goes well

Cycle #1: *reversed* **D2** (ISO 8178-4)

Mode #	1	2	3	4	5
RPM	1500	1500	1500	1500	1500
Load (%)	10	25	50	75	100

Cycle #2: *reversed* **E3** (ISO 8178-4)

Mode #	1	2	3	4
RPM	945	1200	1365	1500
Load (%)	25	50	75	100

