Emissions Control Strategies from Ocean Going Vessels Effect on Black Carbon Emission Methods

Center for Environmental Research and Technology, College of Engineering, University of California, Riverside

ICCT Third Workshop on Marine Black Carbon Emissions September 7th and 8th 2016 Vancouver, British Columbia, Canada

UC RIVERSITY OF CALIFORNIA

Outline

- Background
- Objective
- Approach
- Results
- Discussions

Emissions Control Areas (ECAs)

Sulfur Limits for Fue	l in ECAs	Sulfur Limits in Other Sea Areas		
Before 1 July 2010	1.5% m/m	Before 1 July 2012	4.5% m/m	
1 July 2010 – 1 January 2015	1.0% m/m	1 July 2012 – 1 January 2020	3.5% m/m	
After 1 January 2015	0.1% m/m	After 1 January 2020	0.5% m/m	

MARPOL Annex VI is targeting 0.5% of sulfur in the fuel by 2020 internationally
Strict sulfur limits are in place in ECAs, and potential of increase ECAs

Strategies to Control Sulfur Emissions

□ Monitoring SO₂, CO₂, PH,

PAH, and turbidity

On Sea Scrubber Main and Auxiliary Engine

Source	Engine Mfg.	Model	Engine Power kW	Run Hours	EGCS	Exhaust Fraction ²
ME	Mitsui B&W	7L70	16,578	177,962	yes	93%
AE_1s	Wartsila	6R32D	2,105	70,096	yes	0%
AE_1p	Wartsila	6R32D	2,105	79,020	yes	7%
AE_2s	Wartsila	4R32BC	1.263	63,211	no	n/a
AE_2p	Wartsila	4R32BC	1.263	55,067	no	n/a
Boiler	n/a	n/a	n/a		no	n/a

Performed 4 loads on HFO fuel (1.9% S) pre and post scrubber

□ Measured gaseous and PM emissions

Measured BC via three methods

MSS: Light absorption-photoacoustic
FSN: Light absorption-optical
ECOC: Thermal/optical

Emissions Sampling System

Post Scrubber Sampling

Test Sequence

Day	Location	Special Notes ³	Deck	Source	Scrubber	Mode	ME Load	AE Load
1	dock ¹	-	3	AE	Pre	4	0%	50%
2	at-sea	-	2	ME	Pre	3	50%	50%
2	at-sea	-	2	ME	Pre	2	75%	50%
2	at-sea	High DR	2	ME	Pre	2	75%	50%
2	at-sea	-	2	ME	Pre	1	92%	50%
3	at-sea	-	5	ME+AE	Post	1	92%	50%
3	at-sea	-	5	ME+AE	Post	2	75%	50%
3	at-sea	High DR	5	ME+AE	Post	2	75%	50%
3	at-sea	-	5	ME+AE	Post	3	50%	50%
3	at-sea	No AE	5	ME-only	Post	1	92%	50%
4	at-sea	CL Mode	5	ME+AE	Post	2	75%	50%
5	dock ²	-	5	AE	Post	4	0%	50%

Preliminary Results: SO₂ Reduction

96-99% of the SO₂ reduction
SO2/CO2 ratio < 4.3
SO₂ emission reduction makes the fuel equivalent to 0.1% sulfur
Fuel sulfur rule is being met with scrubber system (on a SO2 basis)

Preliminary Results: Overall Sulfur Reduction

□Study done by Schneider et al. (2005) explained -Formation of nucleation mode particles from diesel exhaust occurs only under certain condition: high sulfur content and cooling effect.

Schneider, J., Hock, N., Weimer, S., Borrmann, S., Kirchner, U., Vogt, R., & Scheer, V. (2005). Nucleation particles in diesel exhaust: Composition inferred from in situ mass spectrometric analysis. *Environmental science & technology*, *39*(16), 6153-6161.

Lemmetty, M., Pirjola, L., Mäkelä, J. M., Rönkkö, T., & Keskinen, J. (2006). Computation of maximum rate of water–sulphuric acid nucleation in diesel exhaust. *Journal of aerosol Science*, *37*(11), 1596-1604.

	Engine Load (ME+AE)	SO4 µg/min*filter
	48%	64.60
Pre Scrubber	70%	131.47
	85%	158.73
	48%	64.00
Post Scrubber	70%	118.33
	85%	160.33

*Same dilution ratio at each load

FIGURE 1. Schematic of the emissions and particle formation mechanisms in diesel exhaust. Solid lines indicate well-established processes, dotted lines indicate processes under discussion.

11

Insignificant removal of the sulfur in the PM
Health impact on the nanosize sulfuric acid particle is not clear

Exhaust Plume

Equivalent Sulfur in the Fuel (gas + particle)

□ 79-93% of the overall sulfur content reduction.

ISO Weighted Particle Reduction

Combined Load (ME + AE)	Suggested Weighting Factor
85%	0.22
70%	0.52
48%	0.21
4%	0.05

The scrubber is able to remove approximately 10% of the total PM, 30% on the OC, and 5% on sulfur PM.
The reduction of the BC carbon varies on the measurement method has a range o 20-40% of reduction by scrubber.

BC Measurement EF Comparison

TTEST	MSS	FSN
MSS	Х	X
FSN	0.8556	X
EC	0.2436	0.2740

*AE included

AE trends to have more BC emissions rate (g/kWhr) than ME, 5-10 times
Trend of BC emissions reduction by scrubber from AE, not ME
FSN and EC trend to have higher BC results than MSS
None of the instruments show a statistically difference

BC Measurement Comparison – FSN vs MSS

UCRIVERSITY OF CALIFORNIA

BC Measurement Comparison – EC vs MSS

Birch, M. E., & Cary, R. A. (1996). Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. *Aerosol Science and Technology*, *25*(3), 221-241.

Lower EC element in a higher sulfur filter, 150 times lower than task 1
High sulfur content on the quartz filter made the pyrolyzation of the OC happens at low temperature, change OC-EC split point

Dilution Effect on BC Sampling

Summary and Conclusion

□ Nucleation mode sulfuric acid particles were formed in high sulfur fuel and cooling effect, which is not able to be removed by scrubber system. Scrubber system is not as effective as the fuel sulfur rule when considering the sulfur in the particle phase.

Quartz filter based ECOC shown higher EC results when high amount of sulfur on the filter due to the pyrolyzation at low temperature effect the ECOC split point.

□ MSS and FSN shown comparable correlation with task 1. □ Scrubber system able to meet SO_2/CO_2 (ppm_v/%_v) ratio less than 4.3, which corresponds to a 0.1% sulfur fuel.

Acknowledgment

Funding:

International Council for Clean Transportation (ICCT)

UCR Faculty, Student and Staff:

Dr. Kent Johnson, Dr. Wayne Miller, Dr. Thomas Durbin, Yu Jiang, Eddie

O'Neil, Mark Villela, and Don Pacocha

Environmental Canada: Tak Chan

NRC-Canada: Kevin Thomson

AVL: Monica Tutuianu

CICCT

Environment Canada

nt Environnement Canada

NRC·CNRC

Thank You for Your Attention

$\label{eq:pm2.5} \boxtimes \mathsf{PM}_{\mathsf{S}} \boxtimes \mathsf{PM}_{\mathsf{OC}} \boxtimes \mathsf{PM}_{\mathsf{EC}}$

Preliminary BC Comparisons look good

Concentrations very high for BC on AE engine (8x)
ME+AE data shows a high R2 and good slope (0.82)
ME only shows a poor R2 and low slow and high offset
Concentrations for Scrubber vessel much higher than the Tier 2
Prelim data suggest scrubber is reducing BC emissions.

Real Time Evaluation

First Ever Tier 2 Main Engine Tested

Source	Engine Mfg.	MY and Model	Engine Power kW	Run Hours	EGCS
ME	Mitsui MAN B&W	2011 12K98ME6.1	68,666	25,985	no
AE1	Daihatsu	2011 8DC32e	3,162	n/a	no
AE2	Daihatsu	2011 8DC32e	3,162	n/a	no
AE3	Daihatsu	2011 8DC32e	3,162	14,550	no
AE4	Daihatsu	2011 8DC32e	3,162	n/a	no
Boiler	Alfa-Laval	2011 n/a	n/a	n/a	no

Performed VSR and 3 other loads on MGO fuel (0.03% S)
Measured gaseous and PM emissions
Measured BC via three methods (MSS, FSN, and EC)
Used ISO reference

sampling methods

NOx Emissions in Compliance

Load	%	25	(50)	75	90	100	100
Engine Running Mode		Economy	Economy	Economy	Economy	Economy	Economy
T/C Intake air Temp.	°C	18.6	18.9	19.2	19.6	21.4	20.8
Barom. Press.	hPa	1015	1015	1015	1015	1015	1015

 Vessel operated in "TC Cut Out" mode
Shop trial performed in "Economy" mdoe
Estimated ISO weighted NOx value of 15.5 g/kWhr
ISO Cat 3 standard is 14.4 g/ kWhr (dif of 7%)
Engine is in compliance

Marin State TWE	Endge 0.0	Rpeed (HTW) Speed Weakher	Faul India (%)
Engine Not Blocked	ECR 0.0 LOP 0.0	Bartoni Actual	
Eurone Unite TCCCCCCC	General Walks DPM Control Well Dd State Air SBar - 4 - 4 SBar - 4 SBa		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Auto Stopp	Auto Supped	Lak	

PM Emissions Lowest at 40% Load

- □ PM emissions highest at VSR (~ 0.12 g/kWhr)
- □ Most of the PM is organic with some little BC
- □ Organic PM follows the trend of total PM
- Sulfate estimated at "tbd"

BC Emissions Lowest at high load and possibly still dropping

BC Measurement Methods Correlated Well

Project Background

BC Measuring methods

- 1) Light-absorbing property --- often referred to as BC
- 2) Thermal or thermal/optical technique --- referred to as EC

Figure 1-1 Measurement of the Carbonaceous Components of Particles (SOURCE: EPA)

Preliminary Results: NOx Emissions

Dilution Effect on BC Sampling

Dilution ratio has an larger effect at pre scrubber (exhaust temperature) □ Filter based EC has a larger derivation than MSS Iower EC element in a higher S filter

FSN mg/m3

Scrubber Operation Effect on BC Emissions

