EVOLUTION OF MARINE BLACK CARBON EMISSIONS

HARMONY IL SEAS

innovation for life

in European seas from 2012 to 2050 | Jan Hulskotte

CONTENTS

- POSEIDON modelling tool
- > Black Carbon emission factors
- > Important parameters
- Modelling
 - > Sea specific scenarios
 - > Trends shown per sea
 - > Averaged emission factors
 - > Change of Emissions 2050/2012
 - > MACC-emission density difference maps 2050/2012
- > Conclusions

The innovation for life

POSEIDON MODELLING TOOL

POSEIDON DETAILS

Shiptypes	Shipvolumes (GT)	Enginetypes	Fuels	Substances	Areas
Oil tanker	100 - 1,600	Slow-speed	HFO	CO2	Dutch Continental Shelf
Chemical/LNG/LPG tanker	1,600 - 3,000	Medium/High speed	MDO	SO2	Rotterdam area
Bulk carrier	3,000 - 5,000	Steamturbines	MGO	NOx	Amsterdam area
Container ship	5,000 - 10,000	Gasturbines	LNG	со	Scheldt area
General Dry Cargo	10,000 - 30,000			NMVOC	Ems area
RoRo Cargo / Vehicle	30,000 - 60,000			Methane	Den Helder area
Reefer	60,000 -100,000			PM10	Harlingen area
Passenger	> 100,000			PM2.5	
Miscellaneous				(Black Carbon)	
Tug/Supply				<u></u>	
Fishing					
Non Merchant					

Ref.:Hulskotte. J.H.J., POSEIDON user manual (in Dutch), TNO-2014-R211208 dd 2014/08/27

Commissioned by PBL Netherlands Environmental Assessment Agency

EVOLUTION OF SHIP SIZE IN ROTTERDAM

Harbour has grown 1.6% p/a, energy efficiency by ships volume growth compensates ca. 0.5% p/a

BLACK CARBON EMISSION FACTORS

- > Until now no differentation between Fuels, Engine Type, Engine Age
- > J.P. Jalkanen et al., 2012 (STEAM-model): BC = 0.08 g/kWh
- > J. Moldanova. 2010 (TRANSPHORM-project): BC = 0.05 0.06 g/kWh
- M. Winther et al., 2014 (Polar-study): BC = 0.35 g/kg fuel
- > Very poor support for studies on future emission scenarios

TNO innovation for life

EMISSION FACTORS SEARCH FOR DIFFERENTIATION (1)

Elaborated data taken from: Lauer presented at ETH conference 2007-08-13

Source: D. Lack and J. Corbett, Atmos. Chem. Phys., 12, 3985–4000, 2012

Conclusions: With identical engines there is an influence of fuel type (1) and %MCR (2), However the extent of influence of %MCR at medium loads is not very clear (3)

for life

EMISSION FACTORS SEARCH FOR DIFFERENTIATION (2)

	Tex/ (Lack et a	AQS al., 2009)	Lower Elbe (Diesch et al., 2013)		Calnex (Buffaloe et al., 2014)	
Engine- type	gBC/kWh	S% *)	gBC/kWh	S%	gBC/kWh	S%
HSD	0.07	0.98	0.04	0.20%	0.06	0.03%
MSD	0.14	1.46	0.03	0.46%	0.07	0.09%
SSD	0.06	2.87	0.02	0.55%	0.05	0.40%

Conclusions: Fuel quality is important but Sulphur% is not the ultimate indicator (1), Slow-speed (SSD) engines tend to have lower emission factors independent on fuel quality (2)

for life

BASIC BC EMISSION FACTORS APPLIED IN POSEIDON

Engine year of build	Slow speed (g BC/kWh)		Medium/High speed (g BC/kWh)	
	MDO/MGO	HFO	MDO/MGO	HFO
< 1974	0.06	0.08	0.06	0.12
1975-1979	0.06	0.08	0.06	0.12
1980-1984	0.06	0.08	0.06	0.12
1985-1989	0.06	0.08	0.06	0.12
1990-1994	0.06	0.08	0.05	0.12
1995-1999	0.04	0.06	0.04	0.1
2000-2010 (IMO 1)	0.04	0.06	0.04	0.1
2011-2019 (IMO 2)	0.04	0.04	0.04	0.1
2020- ? (IMO 3)	0.03	0.04	0.03	0.07

Simple approach applied here: Take 20% of the part of PM that is not caused by Sulphur

CONCLUSIONS ON EMISSION FACTORS

- > BC emissionfactors are dependent on:
 - > Fuel Quality

(= not directly the same as Sulphur content, MGO shows approx. half of emission of HFO and MDO)

> Engine type

(Slow Speed engine emit little less than Medium Speed engines)

> Engine year of build

(older engines can have much higher emission factors)

> %MCR

(especially very low loads show much higher emissions, the resulting effect of slow-steaming on emission is still unclear)

SEA SPECIFIC SCENARIOS

Sea area	North Sea, Baltic Sea	Mediterranean Sea, Black Sea, Atlantic Ocean
2.7% transport growth/year	\checkmark	\checkmark
SECA in 2015: 0.1% S	\checkmark	X
IMO worldwide 2020: 0.5% S	-	\checkmark
NECA in 2020	\checkmark	X
8% LNG in 2050 (scenario I)	\checkmark	\checkmark
30% LNG in 2050 (scenario II)	\checkmark	\checkmark

TNO innovation for life

MODELLED TRENDS IN EMISSION FACTORS BC AND PM

Conclusions: PM-emission factors show strong reduction caused by IMO-SECA and IMO global regulation (1), BC-emission factors show much less reduction (2), Reduction of BC-emission factors in SECA are slightly stronger than non-SECA reduction (3)

TNO innovation for life

CHANGE OF EMISSIONS 2050/2012 WITH EXISTING POLICIES

MACC shipping emission change grids of PM10 and EC 2050/2012 for NW-Europe

CONCLUSIONS

Black Carbon emission factors are dependent on:

Fuel Quality

(= not directly the same as Sulphur content, MGO shows approx. half of Black Carbon emission of HFO and MDO)

> Engine type

(Slow Speed engines tend to emit less Black Carbon than Medium Speed engines)

> Engine year of build

(older engines can have much higher Black Carbon emission factors)

> %MCR

(especially very low loads show much higher black carbon emissions, the resulting effect of slow-steaming on emission however is still unclear)

- > Current IMO-policies on Sulphur and NOx have very little influence on future Black Carbon emissions:
 - > Exemption is **IMO EEDI** that deminishes future Black Carbon emissions little
 - > LNG and other alternative marine fuels show strong potence of deminishing of future emissions
 - Dedicated research is adviced on fuel parameters (i.e. aromatic HC-content) that specifically deminish BC emissions

THANK YOU FOR YOUR ATTENTION

.....

innovatio

for life

Thanks also to: Jeroen Kuenen and Sander Jonkers (bothTNO) who made the MACC-maps

More inspiration: TIME.TNO.NL

Email: jan.hulskotte@tno.nl