MAN NRC CNRC

Marine BC measurements: Two large engine test facility campaigns

Presented by: Researchers:

Greg Smallwood¹

Kevin Thomson¹, Jens Peter Hansen², Jannik Pedersen³, Flemming Bak³, Stephanie Gagne¹

- ¹ National Research Council Canada
- ² Alfa Laval Aalborg
- ³ MAN Diesel and Turbo

ICCT 4th Workshop on Marine Black Carbon Emissions 4-5 October 2017 Washington, DC, USA

- International Maritime Organization (IMO) has become interested in assessing the impact on climate forcing in the Arctic of Black Carbon (BC) emissions due to shipping
- Members to perform measurement campaigns involving measurements with different instrument and sampling methods, marine engines, engine conditions and marine fuels

- Evaluate the comparability of different BC measurement instruments and methods as a function of engine type and fuel type
 - \circ Engine types:
 - large 2-stroke marine engine
 - Iarge 4-stroke marine engine
 - \circ Fuel types:
 - Marine Diesel Oil (MDO)
 - Heavy Fuel Oil (HFO)

MAN Diesel & Turbo research centre in Copenhagen

Test engine specification – 4T50ME-X

Engine type	Diesel, two-stroke
Manufacture	MAN Diesel & Turbo
No, of cylinders	4
Bore	500 mm
Stroke	2200 mm
Power (MCR)	7080 kW
Max speed	123 rpm

Alfa Laval research centre in Aalborg

Test engine specification - 9L28/32H	
Engine type	Diesel, four-stroke
Manufacture	MAN Diesel & Turbo
No, of cylinders	9
Bore	280 mm
Stroke	320 mm
Power (MCR)	1980 kW
Max speed	750 rpm

- test installation for research and development of emissions control systems
 - SCR, boiler and SOx scrubber
 - non-optimized for absolute emissions performance
 - configuration produces a high backpressure
 - results in atypical emissions levels for this engine

Test Matrix

- Two-stroke engine
 - $_{\odot}$ MDO at 25% and 75% load (214 ppm Sulphur, 50 ppm ash) $_{\odot}$ HFO at 75% load (2.2% Sulphur, 200 ppm ash)
- Four-stroke engine
 - \circ MDO at 37% and 60% load (60 ppm Sulphur, 10 ppm ash)
 - $_{\odot}$ HFO at 37% and 60% load (1.9% Sulphur, 410 ppm ash)

Instrumentation

- Two-stroke engine
 - AVL 415S Smoke Meter
 - $_{\odot}$ Dilution tunnel (ISO 8178) (12:1 to 25:1 dil.)
 - DMT PAX870 Photoacoustic Spectrocopy
 - Sunset Labs Thermal Optical Analysis
 - Gravimetric Filters
 - Electrostatic Precipitator onto TEM grids
 - o In-stack (EN 13284-1 Dust)
 - TOA and gravimetric filters
- Four-stroke engine
 - $_{\odot}$ Dilution tunnel (7:1 to 17:1 dil.)
 - DMT PAX870 Photoacoustic Spectrocopy
 - Sunset Labs Thermal Optical Analysis
 - Gravimetric Filters
 - Electrostatic Precipitator onto TEM grids
 - Artium LII300 Laser Induced Incandescence

Baseline Instrument Comparison

- Instruments calibrated using different methods and different calibration aerosols
- Baseline comparison made to understand the agreement (or disagreement) of instruments
- 5201c miniCAST burner operating as Set Point 1 used as source for instrument comparison
- Dilution using Dekati injection dilutor and mixing with HEPA filtered air
- Common sampling tunnel

Baseline Instrument Comparison

NRC·CNRC

TEM Samples – 4-Stroke Engine - MDO

TEM Samples – 4-Stroke Engine - HFO

TEM Samples – 2-Stroke Engine - MDO

TEM Samples – 2-Stroke Engine - HFO

Thermal Optical Analysis Thermograms

• 2-stroke MDO, 75% load

Thermal Optical Analysis Thermograms

• 2-stroke HFO, 75% load

TOA Carbon Make-up

Base OC Char OC Corrected EC

BC Results – 4 Stroke Engine

NCCNCC

BC Results, 2 Stroke Engine

NCCNCC

Total PM & Total Carbon

- Measurement of BC relatively consistent across different measurement technologies except for 2-Stroke/HFO
 - Spread of measurement 109% of mean for 2-Stroke/HFO
 - Non-EC particles dominate 2-stroke/HFO emissions
 - Charring may impact TOA EC accuracy
 - Coatings may impact optical eBC accuracy
 - $_{\odot}$ Spread of measurements < 32% of mean for other conditions
 - Charring does not appear to impact agreement of 4-Stroke/HFO measurements
- Significant differences in PM are observed between 2stroke and 4-stroke engine emissions and for MDO and HFO
 - $_{\odot}$ Significant presence of liquid particles that char easily with HFO
 - $_{\odot}$ BC/EC lower proportion of particulate with 2-stroke engine

Discussion and Conclusions

- Carbon particles dominates PM emission for MDO
- Significant reduction of PM for fuel switching

 4-Stroke engine 13 times reduction at 60% Load
 2-Stroke engine 21 times reduction at 75% Load
- Switching from HFO to MDO reduces BC emissions for non-optimized 4-stroke engine

 $_{\odot}$ 7 times reduction at 60% Load

 Switching from HFO to MDO has no apparent reduction in BC on 2-stroke engine

 $_{\odot}$ Same or increased BC emission

Discussion and Conclusions

- Issues with measurements
 - repeatability of limited number of experiments does not represent full uncertainty of measurement
 - o sampling system not optimized or standardized
 - most measurements with dilution tunnel but not all
 - great variations in PM depending on the dilution ratio
 - $_{\odot}$ TOA analysis becomes very uncertain
 - due to charring, and
 - due to extremely low EC content

- PM, BC and eBC emissions are dependent on many factors:
 - Engine type and operating conditions including combustion pressure and temperature, nozzle SAC volume, engine load, ambient conditions
 - Fuel type, fuel composition, lube oil type, lube BN number, lubrication system
 - Possible use of emissions control system (scrubber)
 - variables include seawater scrubbing, fresh water scrubbing, salt concentration of scrubber water, temperature of scrubber water, demister type, gas-water contact in scrubber, water spraying pattern...
 - $_{\odot}$ Possible use of EGR and all its variables...

 $\circ\,$ Possible use of SCR and all its variables...

- Cooperation between engine suppliers, instrument suppliers, emissions control system suppliers, laboratories, universities and authorities is required to solve this huge challenge
 - $\circ\,$ our cooperation was dependent on support from the Danish and Canadian government, and is a good example of the path forward
- More research is needed!

Thank you

Project Sponsors: Danish Maritime Fund – INNO+ Blue INNOship project #11 Transport Canada – Clean Transportation Initiative

Copyright © Det Bla Inno+ 2014 by Web-Smart.dk

Transports Canada Transport Canada

Kevin Thomson <u>kevin.thomson@nrc-cnrc.gc.ca</u> Jens Peter Hansen jens.peterhansen@alfalaval.com Flemming Bak flemming.bak@man.eu

Greg Smallwood greg.smallwood@nrc-cnrc.gc.ca

National Research Conseil national de council Canada recherches Canada

