5th ICCT Workshop on Marine Black Carbon Emissions

Bio-Oil use in Marine Engines

John Storey, Mike Kass, Tim Theiss, Brian Kaul, and Eric Nafziger

Oak Ridge National Laboratory

September 19, 2018

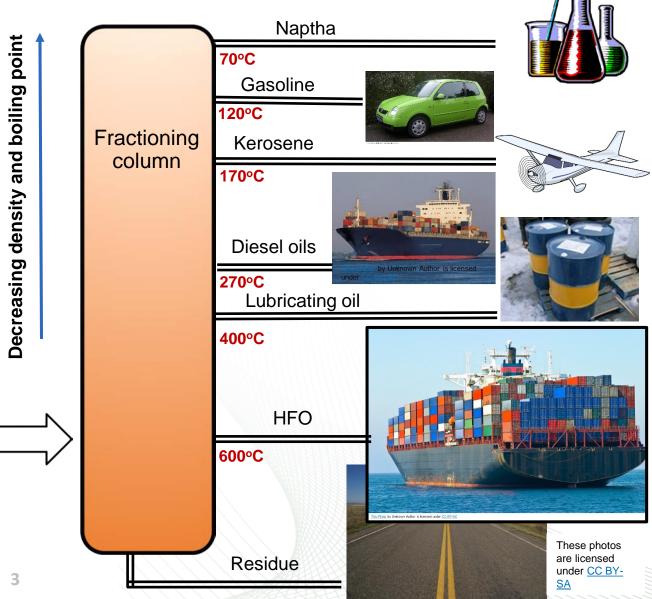
ORNL is managed by UT-Battelle for the US Department of Energy

Use of Bio-Oil in Marine Engines

AF KARAAAA

THE T

MARTIN


Over 75% of fuel used to operate marine cargo vessels is Heavy Fuel Oil (HFO), other fuels include medium distillate oil, marine gas oil, and liquid natural gas.

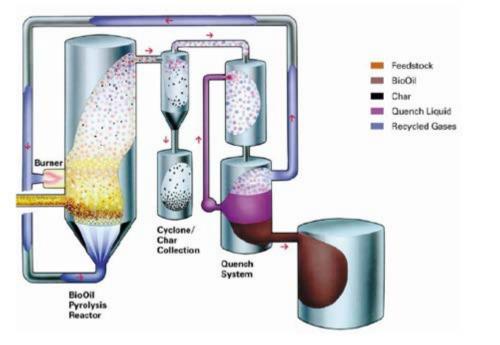
Crude Oil

- HFO is the lowest fraction removed from crude oil
 - Viscosity at room temperature is roughly the same as molasses
 - Fuel has to be heated to around 90-120 °C for proper flow and run through a centrifuge to remove solids and water

- HFO contains up to 3.5% sulfur

Bio-Oil: What is this stuff?

- Bio-Oil is made by pyrolysis of lignocellulosic biomass (plant material)
- Typically 30-40% oxygen
- Hydrophilic lots of water and acidic components
- Will typically polymerize on its own if not "upgraded"
- Will not mix with distillate fuel unless upgraded


Property	Pyrolysis Oil	Diesel
Density at 20°C, g/cc	1.2	0.85
Viscosity at 20°C, cStoke	13	2.5
Lower heating value, MJ,kg	17.5	42.9
Ash, wt.%	0.13	<0.01
Water content, wt.%	20.5	0.1
Oxygen content, wt.%	42.5	0.9

Fast pyrolysis is an efficient pathway to lignocellulosic liquid fuels

A Fast Pyrolysis Process (Dynamotive)

- Whole biomass
- Temperature: 450 °C
- Pressure: 1 atm
- Residence time: 1-2 s
- Atmosphere: inert
- High yield in liquids (bio-oils)
- Inexpensive
- Viable as small scale operation
- Bio-oils are highly acidic

40.1
7.6
52.1
23.9

ORNL Project: Evaluation of Bio-oils for Use in Marine Engines

Goal: Evaluate bio-oils as substitutes/blends for HFO Motivation:

- Bio-oils low in sulfur, high in oxygen.
- Dilute 3.5% sulfur HFO
- Oxygenated fuels typically reduce PM in diesel application
- Bio-oils need upgrading to become "drop in" fuels
- Bio-oil upgrading (catalytic, hydrogen addition) very expensive

ORNL Project: Evaluation of Bio-oils for Use in Marine Engines

Steps:

- 1. Measure fuel properties of pyrolysis oil-HFO blends ongoing
 - Pre-separator stability (HFO is typically heated) does it polymerize in situ?
 - Viscosity, density measurements as a function of time, temperature
 - Post-separator: How effective is the separator at water, particulate removal? Does bio-oil "carry" water past the separator? (May or may not be a problem)
 - What is the cetane of different blends?
- 2. Operate in marine engine *Summer 2020*
- 3. Emissions measurement Summer 2020

ORNL Marine Engine Facility

THE T

-1-1-1-1

Big ships require big engines. Two noteworthy features are their high efficiencies (50%) and that they are directly coupled to the propeller.

QMX	
Configuration	Turbocharged crosshead 2-stroke inline diesel, 6 to 14 cylinders
Bore	0.96m (3.14 ft)
Stroke	2.5m (8.4 ft)
Speed	22 – 102 RPM
BMEP	1.96MPa @ full load
Power	5720 kW/cylinder
Fuel consumption	160 g per cylinder per cycle (up to 250 tons/day)
Crankshaft weight	300 tons (14 cylinder version)
Piston weight	5.5 tons

Primary Engine Companies:

- MAN Diesel & Turbo
- Wartsila

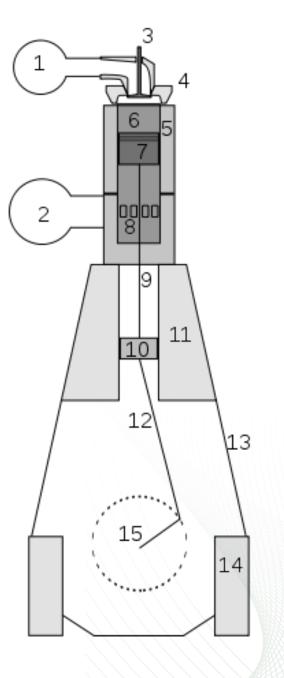
Wärtsilä RT-flex96C

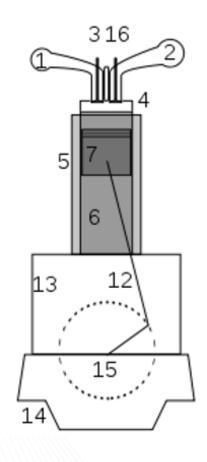
Photo taken from Pinterest

Long stroke. Very long stroke.

- Bore/stroke ratio
 - Square (1:1)
 - Oversquare (1.x:1)
 - Undersquare (0.x:1)
- Marine...the extreme "stroker" motor
 - Bore/stroke ratios of 3:1 or 4:1
 - Extremely high torque

"more torque = more better"

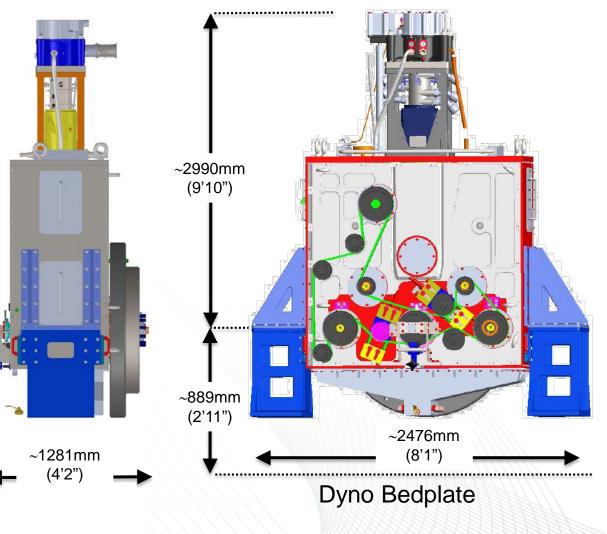




Crosshead vs Trunk Piston

Trunk piston engine

- Power piston connected directly to the crankshaft by means of a connecting rod
- Horizontal pin (wrist pin) used for piston-rod interface
- Crosshead engine
 - Connecting rod connects the crankshaft to a "crosshead"...a noncompression piston that slides up and down in a liner
 - A piston rod is a rigid member connecting the crosshead piston to the power piston



ExxonMobil selected ORNL and Mahle as key partners in the development of new marine lubricants.

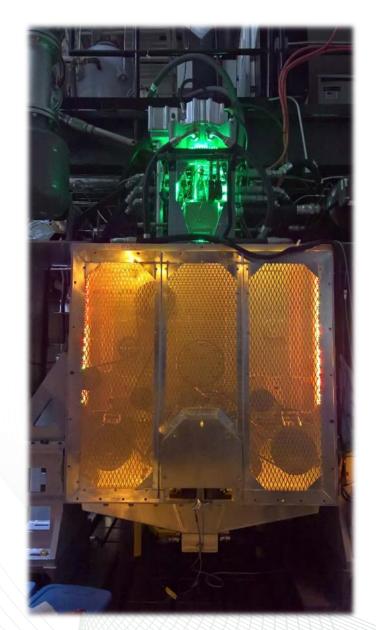
- ORNL now operates the only downscaled single-cylinder crosshead engine (Mahle) in the world
- 1/10th scale
- Stands ~12 feet tall
- Weighs ~16,000 pounds
- Future Opportunities:
 - CO₂ Regulations
 - PM emissions
 - Bio-oil blends

Bore = 108mm Stroke = 432mm Disp = 4L

A scaled-down approach – Why do it?

Economics

- Previous full-scale test engine had become too costly to operate
- Perform detailed analysis on deposit and wear



A scaled-down approach – How do we do it?

- Engine designed to match mean piston speed
 - As size scales down, speed scales up
 - 520 rpm ≈ 100 rpm
- Replicated 2-stroke uniflow scavenged design
- Further single cylinder engine considerations
 - Simulated boost with variable speed compressor
 - Pulse damping tanks
 - Balancing
 - Primary and secondary
 - 3,000 lb flywheel!!


A scaled-down approach – How do we do it?

- Deposit and wear studies require careful matching of liner temperature
 - 4 distinct cooling zones used to set temperature profile
- Lubricators located every 90° around cylinder liner for timed lubrication of piston rings

Installing the Engine

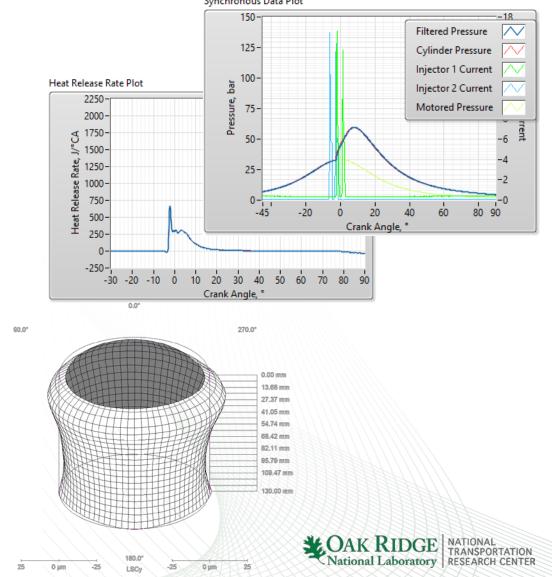
So, how much horse-power does this thing make?

~ 100 hp and 1,000 ft-lbs torque

More torque than a Powerstroke

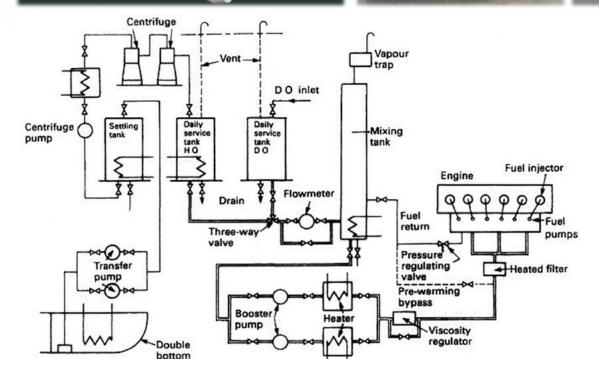
That's not horsing around!! More torque than a Duramax

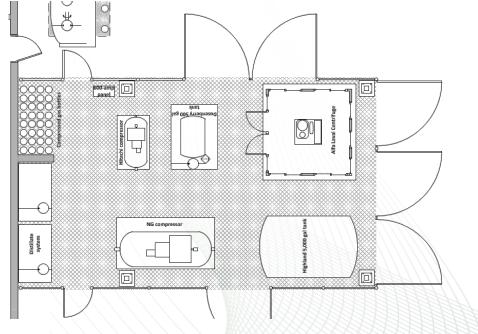
More torque than a Cummins



Research Goal: Determine Impact of Lubricants on Engine Efficiency and Durability (Wear, Corrosion, Deposits)

18


- Engine instrumentation (online data acquisition)
 - Cylinder P (measured every 0.2°CA)
 - Intake & exhaust P & T
 - Exhaust emissions
 - P, T, flow rate of all coolant & oil flows
 - Brake torque
 - Piston T (telemetry) & liner T
- Wear instrumentation (offline inspection)
 - Incometer (liner profile)
 - XRF (scrapedown oil metal content)
 - Surface replicas (for microscopy)



HFO system design

The systems and processes needed to condition the fuel are complex

What does the engine run on now? Future research?

- Active experiments running on distillate (#2 diesel fuel)
- Currently installing processing systems to allow operation on HFO
- Sample ports available for PM emissions
 - Extensive PM measurement capabilities at ORNL
 - PM mass, size, number, bulk composition
 - Real time soot carbon (AVL smokemeter, micro soot sensor)
 - Chemical composition of PM and semi-volatiles by GC-MS, LC-MS, ICP-MS
- Bio-oil/HFO blends in future if fuel passes stability tests

Questions?

Acknowledgments

E‰onMobil

- **Research and Engineering**
- Sponsor of marine diesel research at ORNL

Robert Wagner

 Support of program development efforts and expanding capabilities

Steve Whitted & Scott Palko

Ongoing technical support

Other key participants: Dean Edwards, Norberto Domingo, John Czachowski, Roger Claiborne & Jennifer Carpenter

States -

