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Executive Summary

A methodology for predicting heavy-duty vehicle fuel economy during operation over “unseen” activity
was developed based on fuel economy data gathered from operation measured from vehicles exercised
over chassis dynamometer cycles and properties of those cycles. West Virginia University (WVU) Center
for Alternative Fuels, Engines, and Emissions (CAFEE) heavy-duty chassis dynamometer data for over-
the-road trucks and 40-foot transit buses were gathered from the CRC E55/59 program and the WMATA
emission testing program, respectively. A linear model, a black box neural network model, and a
commercial software model (PSAT) were used to predict either fuel economy in a distance traveled per
volume of fuel consumed basis (miles per gallon) or fuel consumption inferred from CO, emissions mass
rate (grams per second) basis. Most of the resources of this project were dedicated to the linear model.
The methodology allowed for the prediction of fuel economy from vehicles operating on a number of
different chassis dynamometer cycles based on relatively few experimental measurements. The results
of the application of the linear model to a set of 56 heavy heavy-duty trucks operating over five different
cycles showed that the use of average velocity and average positive acceleration as metrics produced
the lowest average percentage error (less than 5%). The results of the application of the linear model to
a set of five buses operating over 16 or 17 different cycles showed again that average velocity and
average positive acceleration were suitable metrics to predict fuel economy with reasonable accuracy
(less than 10% average percentage error). It was also found that baseline cycles must include Idle cycle,
along with a relatively slow transient cycle and a relatively high speed cycle, preferably with an average
velocity at or above the average velocity of the unseen cycle. Based on the results obtained with both
data sets, it was recommended that the prediction be made in terms of CO, mass rate (g/s) and then
convert to fuel economy (mpg). The results of the application of the black box neural network model
and the commercial software model produced average percentage errors of the order of 10% and 4%,
respectively. The main disadvantages of these alternative approaches with respect to the linear model
were their inherent complexity (application difficulty) and the need to use continuous (second-by-
second) data.
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Modeling Heavy-duty Vehicle Fuel
Economy Based on Cycle Properties

1. Objective

The objective of this project was to develop a suitable methodology for predicting heavy duty vehicle
fuel economy over an “unseen” speed-time cycle or during “unseen” on-road activity, based on fuel
economy data from measured chassis dynamometer test cycles and properties of those cycles.

2. Introduction

This work was directed towards developing a methodology for inferring heavy-duty vehicle fuel
economy during operation over “unseen” chassis dynamometer driving cycles based on fuel economy
data which had been gathered from operation on known chassis dynamometer cycles and properties of
those cycles. The methodology allowed for the prediction of fuel economy from vehicles operating on a
number of different chassis dynamometer cycles based on relatively few experimental measurements.
Through the course of this work, three different approaches were taken to define the best methodology
to determine fuel economy for a vehicle exercised over a defined cycle. These approaches included a
mathematical empirical-based linear model, a neural network-based model, and a whole vehicle system
simulation model which incorporated fuel economy prediction.

In the modeling efforts presented herein, the West Virginia University (WVU) Center for Alternative
Fuels, Engines, and Emissions (CAFEE) heavy-duty chassis dynamometer data were mined to identify test
campaigns that could provide sufficient data to evaluate the three different modeling approaches. Two
different test campaigns were identified and these campaigns were from the CRC E55/59 program and
the WMATA emission testing program [1, 2]. The CRC E55/59 program data included 75 medium and
heavy-duty diesel-fueled over-the-road trucks and tractors exercised over seven chassis dynamometer
test cycles while the WMATA program included twelve transit buses exercised over as many as
seventeen chassis dynamometer test cycles.

3. Background

3.1 Road Load Equation

Vehicle (or engine) fuel consumption depends on vehicle power demand as the vehicle is driven. The
road load equation can be used to calculate the instantaneous power required to propel a vehicle. The
power requirement for zero grade includes the rolling resistance which arises from the friction of the
tires, the aerodynamic drag of the vehicle, and the inertial power required to accelerate the vehicle.
Equation 1 shows the road load equation where P represents the propulsion power demanded by the
vehicle at the drive wheels: this is vehicle power, not engine power; engine power would be greater



than vehicle power because drive train efficiencies are less than 100%. In Equation 1 m is the mass of
the vehicle, u represents the coefficient of rolling resistance, g is the acceleration due to gravity, V is the
instantaneous velocity, p is the ambient air density, A is the frontal cross sectional area of vehicle, Gy is
the wind drag coefficient, and t is time.

P = umgV + %pACDV3 + mV% (1)

Note that road grade will also have an effect on vehicle power demand. However, chassis dynamometer
testing is executed assuming level grade and road grade is excluded, with rare exception.

3.2 Cycle Properties (Metrics)

A chassis dynamometer test cycle is defined customarily as a speed versus time array, assuming level
road. A cycle has a defined test duration and a target distance. There are additional means to describe a
cycle using properties, or metrics, such as average velocity, standard deviation of velocity, average
acceleration, and stops per unit distance. These metrics provide some information that the speed-time
trace cannot give by itself. The most important metric to analyze fuel consumption is believed to be
average velocity, because in Equation 1 velocity appears in each term. Average velocity is a robust
indicator of the type of activity exhibited during a given cycle. A low average velocity can represent a
very transient cycle similar to what is expected in city traffic while a high average velocity can represent
a more steady behavior similar to what is expected in highway driving. Few vehicles travel at a steady,
low speed, unless they are engaged in unusual vocational activity. The road load equation contains
some cycle properties such as velocity and acceleration. However, the road load equation does not
include other important properties such as stops per unit distance and percentage of time idling that
can be taken into account in order to analyze fuel consumption.

Based on the rolling resistance and wind drag road load equation terms, it can be argued that fuel
consumption will be higher if the vehicle is operated through a higher average speed cycle. However, a
low average speed can represent a very transient cycle. Another metric should be introduced in order to
account for transient behavior. Standard deviation of speed, average acceleration, and stops per unit
distance are some of the examples of metrics that can account for transient behavior.

The main hypothesis of this research was that cycle metrics might be used to predict (with acceptable
accuracy) the fuel economy of a vehicle exercised through an “unseen” speed-time trace. The road load
equation suggests that average velocity should be one of the metrics to be used. Additional metrics may
be selected to refine the model further to provide for higher fidelity in the results while minimizing the
required amount of test data, or the number of chassis dynamometer cycles needed to be acquired.

3.3 Intensive and Extensive Properties

The data used in these models could be resolved by either using intensive or extensive cycle properties.
Extensive properties depend on the size of the system; in this case factors such as cycle time length or
distance traveled or integrated values of V2 over the duration of the cycle. If a test cycle is run twice
“back-to-back,” and treated as one cycle, the values of its extensive properties would be doubled. On
the other hand, intensive properties do not depend on the size (or length) of the system, and they are



exemplified by properties such as average speed. The objective of this work was to predict fuel
consumption on a mass rate (grams/second) or to predict fuel economy on a distance per unit volume of
fuel consumed (miles/gallon). Both of these sets of units are intensive properties and hence, only
intensive properties were used for the prediction. An equivalent approach would be to use extensive
cycle properties to predict fuel consumption in mass (an extensive property), rather than mass rate.
However, the desired units for this work are intensive and hence an intensive property set was selected.

Low average speed chassis dynamometer test cycles such as the Creep cycle or New York Bus cycle are
relatively low distance cycles with relatively high amounts of idle time. These cycles translate into high
fuel consumption values in volume per unit distance (gallons/mile) units. Idle cycles are more
problematic on a volume per unit distance because, by definition, this cycle would have an infinite value
of fuel consumption since the distance traveled is zero. As will be shown below, it is possible to convert
from one set of fuel economy, or consumption, units to another set of units through knowledge of the
properties of the cycle. As such, CO, emissions mass rate, in grams per second, is the desired intensive
property selected to measure fuel consumption. If a volume-specific fuel economy, miles per gallon
value would be needed, a conversion factor can be used, provided that the carbon content of the
petroleum fuel is estimated or known.

4. Procedure

The main features of the three techniques used to predict fuel economy for heavy duty vehicle are
summarized below.

4.1 Linear Model

The Linear Model approach involved identifying the most important intensive metrics of a cycle and
developing a technique which calculates the CO, mass rate emissions for a “new” cycle based on CO,
mass rate emissions from actual chassis dynamometer test cycle data using those selected metrics as
weighting factors. Using this technique, heavy-duty vehicles of a chosen category can be tested using a
limited number of chassis dynamometer test cycles, and the data from those tests may be used to
project emissions from an unseen cycle in a wide envelope, within certain bounds. This prediction
approach avoids the use of continuous (second by second) data and the predictions are made a priori
based on the relative cycle statistics. No regression is required. This simple method does not require
training a model as is needed in neural network modeling or the need for detailed component models as
is needed in vehicle system simulation modeling.

4.2 Commercial Software Model

Models such as ADVISOR or PSAT may be used to predict the fuel economy of a vehicle, by assembling
models of components of the vehicle, and employing estimates for losses, efficiency of components, and
vehicle inertia, under constraint of driver behavior. It is difficult to use a pure modeling approach for
actual or comparative fuel consumption prediction using this approach because a great deal of
information is required for each vehicle (such as drivetrain components), and because it is increasingly
difficult to verify that modeled control strategy (particularly for hybrid vehicles) reflects the in-use



control strategy. However, models of this kind may be used readily to translate performance from a
small set of real-world tests to an unseen cycle and accuracy is expected to be good.

4.3 Neural Network - Black Box Model

Another powerful tool that can be used to model fuel economy involves training of a neural network, or
other non-classical models, using second by second data, so that the neural network can then predict
second-by-second performance on unseen cycles. Training the neural network using continuous
emissions data requires some skill because one must account for delay and diffusion of data during
measurement, and one must avoid overtraining by selecting input variables and network architecture
suitably. Training should be done with data containing varied vehicle behavior that encompasses the
range of vehicle operation in the unseen cycle. Continuous data are required for this approach.

5. Linear Model Approach

WVU has identified and developed a method for predicting emissions data for transient vehicle activity
(such as a chassis dynamometer test cycle) based on information from other measured chassis
dynamometer test cycles. The technique was presented in a 2004 paper by Taylor et al. [3]. This
approach involves identifying the most important properties (metrics) of a cycle (such as average speed,
standard deviation of speed, and percent idle) and developing a technique which proportions emissions
for an “unseen” cycle based on emissions from real-world cycle data using those metrics for weighting.

The main assumption in this modeling approach is that for a given vehicle, fuel consumption over an
“unseen” cycle will be a linear combination of its fuel consumption over other baseline cycles. Each
baseline cycle will contribute to a percentage of the fuel consumption of the unseen cycle. Fuel
consumption depends on cycle properties so the weighing factors (or fractional contributions) of the
different baseline cycles will be obtained based on the selected cycle properties. A set of linear
equations based on cycle properties is posed in order to determine the weighting factors of each
baseline cycle to then estimate the “unseen” cycle. In each case, the predicted fuel economy (or CO,
emissions) would be a weighted summation of the fuel economy (or CO, emissions) from the baseline
cycles, with the weighting coefficients constrained to sum to unity.

The number (N) of baseline test cycles determines the number of simultaneous equations and, hence,
the number of properties that can be used. One of the equations will always constrain the sum of the
coefficients to be equal to one, so there will be N-1 properties that are used to solve the N simultaneous
equations. The following section explains the method more clearly using a step by step example.

5.1 Example

Assume that fuel economy measurements for three different test cycles are available and one wants to
estimate fuel economy for a fourth, different cycle. The three measured cycles are termed the “baseline
cycles” and the predicted cycle is termed “unseen cycle.” The baseline cycles form the basis to estimate
fuel economy for the unseen cycle. Each baseline cycle will have a weighting factor that defines the
relative proportion of that cycle to the unseen cycle in terms of the metrics used. It is expected that
these weighting factors also can be used to then estimate the unseen cycle fuel economy. Two cycle

4



properties should be used because the number of baseline cycles is three. Table 1 shows two properties
(average velocity and average acceleration) for three baseline cycles (termed Idle, Transient, and Cruise)
and one unseen cycle (UDDS cycle). The objective is to use information from the three baseline cycles to
predict fuel economy from the UDDS cycle. Note that metrics other than average velocity and average
acceleration could have been chosen to perform the analysis which is presented below.

Table 1. Metrics and measured fuel economy for three baseline cycles and one “unseen” cycle.

. Average Measured
Average Velocity .
Cycle (mph) Acceleration Fuel Economy
(mph/s) (mpg)
Baseli Idle 0.00 0.00 0.00
aseline Transient 14.92 0.29 3.85
cycles -
Cruise 39.87 0.12 6.58
unseen uUDDS 18.83 0.32 ?
cycle

The next step is to pose a set of three simultaneous equations, based on the selected cycle properties,
to calculate the weights of each baseline cycle to the “unseen” cycle. The three unknowns are the
weighting factor for each baseline cycle. The equation set is shown in Equations 2, 3, and 4. The first
two equations are linear combinations using the two different metrics. The first equation uses average
velocity, the second equation uses average acceleration, and the third equation constrains the weights
to sum to one.

Wldlespeedzdle + Wtransspeedtrans + Wcrulsespeedcrulse — SpeedUDDS (2)
wtdle geceltdle 4 wtransgeceltrans 4 ,,cruise g colCTuise — gce]UDDS (3)
wtdle 4 ytrans 4 y,cruise — q (4)

Replacing numerical values from Table 1 in Equations 2, 3, and 4 results with the following equation set:

widle (0) + wirans(14.92) + wers€(39.87) = 18.83 (5)
wie(0) + wirans(0.29) + wese(0.12) = 0.32 (6)
Widle + wtrans + Wcruise =1 (7)

The next step is to solve the simultaneous equations to obtain the weighting factors. Note that this
solution is unique and for this example is:

widle = —0.1446 (8)
wirans — 1.0744 (9)

weruise = 00702  (10)



Finally, the weighting factors are used to calculate fuel economy for the “unseen” cycle:

mpgUPPS = Widlemp gidle + wiransmp gtrans 4 Wcruisemp gcruise (11)
mpgUPPS = —0.1446 mpg't'e + 1.0744 mpg"®"s + 0.0702 mpgcrHise (12)
mpgUPPS = —0.1446 (0) + 1.0744(3.85) + 0.0702(6.58) (13)
mpgUPPS = 459 mpg (14)

The negative coefficient for the Idle cycle suggests that Transient and Cruise cycles already contain more
Idle than the UDDS cycle (less Idle should be considered in the UDDS than in the weighted active modes
Transient and Cruise cycles). The Transient term coefficient equal to approximately one (1.0744) suggest
that the UDDS is closest to the Transient mode and the low value for the Cruise coefficient (0.0702)
indicates that a relatively small portion of UDDS is at cruise conditions. In this example, the weight
coefficient for Idle, in effect, is not being used due to the zero value of fuel economy (mpg) for the Idle
cycle. Regardless of the mass of fuel used per hour of Idling, the Idle contribution will be the same. It is
recommended that one would predict fuel consumption using CO, mass rate (g/s) instead of fuel
economy (in mpg) to avoid negating the Idle information.

5.2 Geometric Explanation

The previous example has an alternative geometric explanation. Solving a system of three equations and
three unknowns as shown in the previous example is equivalent to finding the equation of a plane in a
three dimensional space. Figure 1 shows a geometric representation of the previous example. In this
case the dimensions of the three dimensional space are average velocity, average acceleration, and fuel
economy. Information for each baseline cycle represents a point in that three dimensional space. Once
the three points have been specified, a plane that crosses the three points (unless the points are
collinear) can be defined. This plane is unique because one and only one plane can cross through these
three points. The plane can be used to predict other cycle’s fuel economy a priori, just knowing these
new cycle’s properties (average velocity and average acceleration in this example). This modeling
approach simplifies the real world surface (which may be curvilinear) to a plane, using minimum
information. The prediction may use extrapolation (points on the plane but outside the triangle shown)
but as with other linear models, extrapolation should be exercised with caution.
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Figure 1. Geometric interpretation of the linear model method.

5.3 Predicted Properties

As discussed above, CO, mass rate emissions (g/s) or fuel economy (mpg) could be estimated in the
model and then the other property calculated. Conversion between mass rate (g/s) and fuel economy
(mpg) is based on average speed. Equation 15 shows the U.S. Environmental Protection Agency
recommended practice to perform the calculation from CO, mass rate to fuel consumption [10]. This
equation assumes diesel carbon content per gallon of 2,778 grams and an oxidation factor of 0.99 (99
percent of the carbon in the fuel is eventually oxidized, while 1 percent remains un-oxidized). Equation
16 shows the calculation from fuel consumption volumetric rate (gal/s) to fuel economy (mpg). This
calculation is cycle dependent because cycle average speed is used in the conversion. Note also that for
the Idle cycle, fuel economy (mpg) is zero. It is emphasized again that CO, mass rate (g/s) should be used
instead of fuel economy (mpg) to include idle information in the model.

g
gal) — COZ(S) (15)

Fuel Consumption (—
s 10084

Average Speed (mph)
921 x3600

N

Fuel Economy (mpg) = (16)

Fuel Consumption (

6. Linear Model Application - Truck Data

The linear model was applied to two different heavy duty vehicle types. These types included heavy-
duty trucks and transit buses. This section summarizes the linear model application to the truck data.
Chassis dynamometer data for 56 heavy heavy-duty trucks operating at a nominal 56,000lbs inertial
mass were used. The data used were gathered as part of the Coordinating Research Council E-55/E59
program, which was created to characterize heavy-duty trucks emissions in California. It is noted that
the other 19 vehicles in the E-55/59 program were medium-duty (and not tested at the 56,000lbs mass)
and or gasoline-fueled vehicles and were excluded in this analysis. That is, only the class 8 heavy-duty
trucks incorporating diesel engines were modeled in this work.



6.1 Cycles Used

California Air Resources Board created a four-mode speed versus time heavy-heavy duty diesel truck
vehicle chassis test schedule (HHDDT) based on data gathered from prior truck activity studies [12, 13].
Idle, Creep, Transient, and Cruise of the HHDDT schedule were used as baseline cycles and the UDDS
(Urban Dynamometer Cycle Schedule) was used as the “unseen” cycle. The UDDS cycle includes
behavior that represents both freeway and non-freeway operation and is located in the Code of Federal
Regulations [4]. Since actual UDDS data were available, the UDDS was considered a validation cycle.
Predicted and measured UDDS data could be compared. Figure 2 shows the test cycles used as baseline
cycles and Figure 3 shows the test cycle used for validation.
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Figure 2. Baseline cycles used with truck data set.
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Figure 3. Validation cycle used with truck data set.

6.2 Metrics Used

Nine different metrics were evaluated with this data set. Table 2 shows metrics values for the five cycles
used. Equations 17 to 25 show the formulation of the problem used to calculate the metrics. It is noted



that additional metrics could be defined but from the authors’ experience these metrics presented in

Table 2 best represented in-use vehicle activity.

Table 2. Metrics values for Truck data.

. Baseline Cycles Validation C.
Metric . .
Idle Creep Transient Cruise UDDS
Average Velocity (mph) 0.00 1.64 14.92 39.87 18.83
Standard Deviation of Velocity (mph) 0.00 2.02 13.44 22.01 19.82
Average of Squared Velocity (mph?) 0.00 6.76 403 2074 747
Average of Cubed Velocity (mph®) 0.00 34.78 13044 111410 33992
Average Acceleration (mph/s) 0.00 0.07 0.29 0.12 0.32
Inertial Power (mph?/s) 0.00 0.23 5.06 3.86 6.41
Average of Squared Acceleration (mph?/s?) 0.00 0.80 0.86 0.26 1.80
Stops per mile (stops/mile) 0.00 24.20 1.80 0.30 2.50
Percentage Idle (%) 100.00 42.30 16.30 8.00 33.40
Average Velocity
n
7 _ i=1Vi
V= " (17)
Standard Deviation of Velocity
_ R v =)
oy = ’ — (18)
Average of Squared Velocity
n 2
V2 — i=1 Vi
vV " (19)
Average of Cubic Velocity
n 3
73 = Zi=1Vi
vV - (20)
Average Acceleration
v yn Zii7li
i HTW when Vi1 > V; (21)

A Savitsky-Golay filtering method of 2" degree over 21 data points (2.1 seconds) was applied to the

speed time trace before calculating acceleration. This method computes a local polynomial regression

on the input data and is preferred over other techniques such as moving averages because it tends to

preserve features of the distribution such as relative maxima, minima and width. Acceleration was

calculated with a central differences scheme. Actual speed-time traces were used. Only positive values

were taken into account since it was assumed that the engine does not consume fuel when
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decelerating. Note that the denominator in the formula is the total number of data points, not the
number of data points with positive acceleration.

Average Inertial Power

Vi —V;
n Yi+1™Vi
= Vi— v —

v _ i ov
%4 Pyl - when o >0 (22)

Average of Squared Acceleration

e n (OV 2

av\? iﬂ(ﬁ)i av

- = ——when — 0 2
(at) n at > (23)
Stops per Mile
Stops _ number of stops (24)
mile  distance traveled (miles)

A velocity value below 0.5 miles per hour was counted as a stop to account for the resolution in the
chassis dynamometer data acquisition system. Stop duration was not taken into account, for example, if
the vehicle remained below 0.5 mph during a long period it was counted as only one stop. The stop
analysis was done without filtering of the speed-time trace.

Percentage Idle

Any data point with velocity below 0.5 mph was considered to be an idle event. The idle analysis was
done without filtering of the speed-time trace.

number of data points below 0.5 mph

% Idle = (25)

total number of data points

6.3 Cases Used

Sixty-one cases were evaluated, including five different combinations of baseline cycles and a number of
metrics. Table 3 show the cases used. Cycle averaged velocity was used in all cases as a metric. Cases 1
to 4 have eight possible combinations (velocity and another metric) and case 5 has 28 possible
combinations (velocity and two other metrics).
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Table 3. Cases used truck data

CASE ID Baseline cycles used # ofur:ee(:rlcs Metrics used
0 Transient and Cruise 1 Velocity only
1 Idle, Transient and Cruise 2
2 Creep, Transient and Cruise 2 Velocity + 1 metric
3 Idle, Creep and Cruise 2 (all combinations)
4 Idle, Creep and Transient 2
5 Idle, Creep, Transient and 3 Velocity + 2 metrics

Cruise (all combinations)

6.4 Goodness of Fit Criteria
Four criteria were selected to evaluate the goodness of fit between the measured and predicted UDDS

data: average percentage error (Equation 26 where Xpare predicted values and X_ are experimental

values), maximum absolute error, average absolute error (Equation 27 where Xpare predicted values

and X_are experimental values), and R? correlation coefficients between the measured and predicted

values. Note that R? could be a misleading measure when data are clustered, as may be the case with a
fuel economy measure. The recommended goodness of fit criterion in this work was average percentage
error or average absolute error but the other criteria are presented below as well.

X —X
Average % error — 1 Zn: ‘piel x 100 (26)
n i=1 (Xe)i
Average absolute error _ 12": X — X (27)
p

n =1 h
6.5 Truck Data Results and Analysis

Tables 4 and 5 show the summary of prediction results for CO, (g/s) and fuel economy (mpg),
respectively. The data were organized based on average percentage error values over 56 predictions
(one prediction per truck). Note that not all of the cases worked well. Some metrics yielded more
suitable than others to translate fuel economy or fuel consumption among cycles. Also, some baseline
cycle combinations were better than others when trying to predict the validation cycle. Note that 27
cases were below 10% error for CO, mass rate (g/s) and 16 cases were below 10% error for fuel
economy (mpg). This could be because of the loss of information when using the Idle cycle fuel
consumption (mpg) data discussed above. Tables 6 and 7 show more detail about the four lowest error
predictions for CO, (g/s) and fuel consumption (mpg), respectively. Figures 4 and 5 display scatter plots
of the average prediction error showing the cases where the average percentage error was lower than
12%. The best combination of accuracy and economy (in terms of number of baseline cycles used) was
obtained using Idle, Transient, and Cruise as baseline cycles with average velocity and average
acceleration as metrics. To incorporate four baseline cycles into the analysis, the best metric to add to
the model would be the number of stops per unit distance (stops/mile). It is worth mentioning that the
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use of average velocity as the only metric with the Transient and Cruise baseline cycles produced good
results for CO, (g/s) and was even better in terms of economy (number of metrics used) than the
recommended combination of average velocity and acceleration. However, the use of this metric alone
should be avoided because two cycles with similar average velocity can represent very different type of
activity and very different fuel consumption patterns. Use of an additional metric is recommended to
account for the degree of transient behavior of the cycle.

Another important issue is that the results were very similar for fuel economy (mpg) and for CO, (g/s)
even with the fuel economy prediction ignoring the weighting coefficient for the Idle cycle. This could be
due to the high similarity between the Transient cycle and UDDS cycle, and the fact that only a small
fraction of the fuel was consumed during idling portions of each cycle. Table 8 shows the weighting
factors sensitivity to the addition/subtraction of cycles and metrics. Note that the average percentage
error does not show a significant change for fuel economy but the error goes to more than 8% when
using velocity alone as a metric with the Creep and Transient cycle. Further insight in this topic will be
gained in the next section of this report.

Figures 6 and 7 show the results using the recommended baseline cycles and metrics for CO, mass rate
and fuel economy, respectively. Idle, Transient, and Cruise cycles with average velocity and average
acceleration as metrics were used to predict the UDDS cycle for 56 trucks. A parity plot between
measured and predicted values is shown, as well as the resulting equation for prediction. Note that the
weighting factors are the same for CO, and fuel economy prediction (using the same metrics and the
same baseline cycles), but the Idle cycle information is lost in the fuel economy prediction because of
the zero economy value for the Idle cycle. Figure 8 shows the CO, mass rate (g/s) predictions shown in
Figure 6, converted to fuel economy (mpg) using equations 15 and 16. It is recommended that the
prediction be made in terms of CO, mass rate (g/s) or the equivalent units of g/s of fuel mass flow. One
may then compute fuel economy (mpg) using average cycle speed.

As in the previous example, the Transient cycle weighting factor was nearly one, and the Idle cycle
weighting factor was negative. These coefficients suggest that the UDDS is closest to the Transient cycle
and that less idle should be considered in the UDDS than in the weighted active modes (Transient and
Cruise cycles).

Table 4. CO, mass rate prediction results.

Average .
Metrics Used SEZZ Perceﬁt ::I f;:?]cl(‘)T) Eﬁi?r(iﬁz) R?
Error (%)
Velocity, Acceleration, Stops/mile 5 4.29 2.00 0.52 0.82
Velocity , Acceleration 1 4.36 2.02 0.52 0.82
Velocity 0 4.36 243 0.54 0.83
Velocity , Acceleration 2 4.89 2.16 0.58 0.81
Velocity , Stops/mile 2 5.49 2.69 0.68 0.83
Velocity, Acceleration, Acceleration’ 5 6.68 3.89 0.82 0.65
Velocity, Acceleration, %ldle 5 7.13 2.61 0.84 0.78
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Velocity, Velocity®, Velocity? 5 7.31 3.13 0.90 0.80
Velocity, Acceleration® 4 7.65 3.09 0.90 0.73
Velocity, Acceleration, Inertial Power 5 7.96 2.75 0.94 0.76
Velocity, Inertial Power, %ldle 5 8.01 2.81 0.95 0.77
Velocity, Velocity®, %ldle 5 8.15 3.20 1.00 0.82
Velocity , Inertial Power 2 8.21 3.02 0.96 0.80
Velocity , Stops/mile 4 8.26 3.11 0.97 0.80
Velocity , Inertial Power 4 8.38 3.11 0.98 0.80
Velocity, Velocityz, Inertial Power 5 8.42 5.84 1.04 0.42
Velocity , Inertial Power 1 8.44 3.14 0.99 0.80
Velocity, Inertial Power, Stops/mile 5 8.45 3.15 0.99 0.80
Velocity ,Velocity® 1 8.68 3.25 1.06 0.82
Velocity, Velocity?, %Idle 5 8.71 3.29 1.07 0.82
Velocity, Velocity3, Stops/mile 5 8.82 3.26 1.08 0.82
Velocity ,Velocity3 2 9.06 3.28 1.11 0.82
Velocity, Velocity2 1 9.43 3.36 1.15 0.82
Velocity, Inertial Power, Acceleration® 5 9.47 3.56 1.11 0.74
Velocity , %ldle 4 9.47 3.13 1.11 0.77
Velocity, Velocity®, Inertial Power 5 9.49 7.19 1.19 0.30
Velocity, Velocityz, Stops/mile 5 9.65 3.39 1.18 0.82
Velocity, Velocity2 2 10.12 3.44 1.23 0.82
Velocity , Acceleration 4 10.36 3.63 1.22 0.71
Velocity , Stops/mile 1 11.69 3.82 1.37 0.78
Velocity , Std.Dev.Velocity 4 11.80 7.50 1.47 0.23
Velocity, Std.Dev.Velocity, Inertial Power 5 13.33 5.40 1.59 0.51
Velocity, Velocity3, Acceleration’ 5 13.49 5.43 1.64 0.54
Velocity , %ldle 1 13.59 4.01 1.65 0.80
Velocity, Stops/mile, %ldle 5 15.57 431 1.89 0.78
Velocity, Velocity?, Acceleration’ 5 17.33 6.21 2.10 0.46
Velocity , Std.Dev.Velocity 3 19.42 13.57 2.40 0.07
Velocity , Velocity® 4 19.47 11.69 2.35 0.24
Velocity, Velocitys, Acceleration 5 19.51 8.86 2.37 0.20
Velocity ,Velocity3 3 20.30 9.30 2.46 0.17
Velocity , Acceleration 3 20.42 9.20 2.48 0.18
Velocity, Std.Dev.Velocity, Acceleration’ 5 20.96 5.72 2.48 0.73
Velocity , Velocity® 3 21.65 8.19 2.61 0.25
Velocity , Std.Dev.Velocity 1 22.96 5.99 2.72 0.74
Velocity, Acceleration® 3 22.99 7.37 2.77 0.35
Velocity, Std.Dev.Velocity, Stops/mile 5 23.08 6.01 2.73 0.74
Velocity , %ldle 3 25.71 5.81 3.10 0.56
Velocity , Std.Dev.Velocity 2 26.07 6.41 3.09 0.72
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Velocity , Stops/mile 3 26.24 5.96 3.16 0.55
Velocity, Std.Dev.Velocity, %ldle 5 29.41 6.86 3.49 0.67
Velocity ,Velocity® 4 31.98 21.60 3.89 0.09
Velocity, Acceleration® 1 33.52 8.02 3.98 0.70
Velocity, Accelerationz, Stops/mile 5 35.12 8.32 4.17 0.69
Velocity , %ldle 2 37.64 8.12 4.52 0.19
Velocity, Velocity?, Acceleration 5 43.46 17.72 5.25 0.01
Velocity, Velocitys, Std.Dev.Velocity 5 71.85 38.05 8.73 0.00
Velocity, Std.Dev.Velocity, Acceleration 5 88.64 33.27 10.62 0.17
Velocity, Acceleration® 2 106.01 21.31 12.64 0.54
Velocity , Inertial Power 3 160.07 111.49 19.97 0.01
Velocity, Accelerationz, %ldle 5 808.14 162.68 96.50 0.38
Velocity, Std.Dev.Velocity, Velocity’ 5 1402.10 633.08 169.29 0.03
Table 5. Fuel economy (mpg) prediction results.

Metrics Used Sizz Avelrz::\fer;t;:')cent Maxiaupng\)Error Ave;z;‘gsglirror R2
Velocity , Acceleration 1 4.59 0.67 0.20 0.82
Velocity , Acceleration 2 4.83 0.57 0.21 0.82
Velocity , Inertial Power 2 4.94 0.60 0.22 0.79
Velocity, Acceleration, Stops/mile 5 498 0.70 0.21 0.82
Velocity 0 5.02 0.55 0.22 0.84
Velocity , Stops/mile 2 5.13 0.56 0.23 0.84
Velocity ,Velocity® 2 5.40 0.58 0.24 0.83
Velocity , Velocity® 2 5.48 0.59 0.24 0.83
Velocity , Std.Dev.Velocity 2 6.65 0.93 0.29 0.65
Velocity , Inertial Power 4 6.90 0.80 0.30 0.80
Velocity, Velocitys, Stops/mile 5 7.94 0.78 0.36 0.83
Velocity , %ldle 2 8.43 1.02 0.38 0.51
Velocity, Velocity?, Stops/mile 5 8.70 0.83 0.39 0.82
Velocity ,Velocity® 1 9.81 0.90 0.44 0.82
Velocity , Inertial Power 1 9.82 0.91 0.43 0.80
Velocity , Stops/mile 4 10.00 0.92 0.44 0.80
Velocity, Inertial Power, Stops/mile 5 10.20 0.93 0.44 0.80
Velocity , Velocity® 1 10.57 0.95 0.48 0.82
Velocity , %ldle 3 10.75 1.02 0.49 0.66
Velocity , Stops/mile 1 13.61 1.11 0.60 0.78
Velocity, Stops/mile, %ldle 5 14.21 1.19 0.64 0.77
Velocity , %lIdle 1 14.92 1.23 0.68 0.78
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Velocity, Velocity?, %Idle 5 16.77 1.33 0.76 0.79
Velocity, Velocity3, %ldle 5 16.99 134 0.77 0.79
Velocity, Acceleration® 2 18.07 2.45 0.80 0.29
Velocity, Acceleration, %ldle 5 22.69 1.64 1.02 0.69
Velocity, Inertial Power, %ldle 5 23.11 1.66 1.04 0.68
Velocity , %ldle 4 23.80 1.70 1.07 0.65
Velocity , Stops/mile 3 24.83 1.85 1.12 0.52
Velocity, Std.Dev.Velocity, Stops/mile 5 24.94 1.89 1.10 0.73
Velocity , Std.Dev.Velocity 1 26.05 1.95 1.15 0.73
Velocity, Acceleration, Inertial Power 5 28.75 1.99 1.29 0.61
Velocity, Velocity®, Velocity? 5 30.34 2.12 1.36 0.64
Velocity, Std.Dev.Velocity, %ldle 5 31.80 2.30 1.42 0.39
Velocity, Accelerationz, Stops/mile 5 37.08 2.71 1.65 0.67
Velocity, Acceleration® 1 37.86 2.75 1.68 0.68
Velocity, Std.Dev.Velocity, Acceleration’ 5 43.97 3.05 1.95 0.73
Velocity , Acceleration 4 45.71 2.97 2.04 0.30
Velocity, Inertial Power, Acceleration® 5 49.72 3.33 2.20 0.74
Velocity , Acceleration® 4 50.97 3.40 2.26 0.74
Velocity, Acceleration, Acceleration® 5 57.07 3.70 2.52 0.72
Velocity, Velocity®, Acceleration’ 5 60.73 3.88 2.69 0.70
Velocity, Velocityz, Acceleration’ 5 62.59 3.97 2.77 0.68
Velocity, Acceleration® 3 65.35 4.10 2.89 0.66
Velocity , Velocity’ 3 102.41 6.40 4.54 0.62
Velocity, Std.Dev.Velocity, Inertial Power 5 131.90 8.43 5.85 0.64
Velocity, Velocity’, Inertial Power 5 139.03 8.41 6.19 0.15
Velocity, Velocity3, Acceleration 5 142.47 8.89 6.32 0.60
Velocity , Acceleration 3 148.27 9.25 6.57 0.59
Velocity ,Velocity3 3 152.99 9.54 6.78 0.59
Velocity, Velocity®, Inertial Power 5 185.66 11.25 8.26 0.24
Velocity , Std.Dev.Velocity 4 225.89 14.17 10.03 0.58
Velocity , Velocity® 4 252.09 15.27 11.21 0.29
Velocity, Velocityz, Acceleration 5 294.59 18.15 13.07 0.52
Velocity, Accelerationz, %ldle 5 341.75 31.76 15.02 0.00
Velocity , Std.Dev.Velocity 3 346.92 21.57 15.41 0.54
Velocity ,Velocity® 4 506.02 30.91 22.50 0.38
Velocity, Std.Dev.Velocity, Acceleration 5 544.22 32.90 24.18 0.34
Velocity, Velocity®, Std.Dev.Velocity 5 820.60 50.52 36.45 0.48
Velocity , Inertial Power 3 2835.30 175.90 126.03 0.48
Velocity, Std.Dev.Velocity, Velocity’ 5 12207.33 746.53 542.24 0.43
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Table 6. Best predictions for CO, mass rate.

Average Average Max.
Baseline Cycles Used Metric(s) Used o g Error Error R?
% Error
(8/s) (8/s)
IdIe., Creep, Transient and VeIOC|ty,.AcceIerat|on and 4.9 0.52 500 0.82
Cruise Stops/mile
Idle, Transient and Cruise Velocity and Acceleration 4.36 0.52 2.02 0.82
Transient and Cruise Velocity 4.36 0.54 2.43 0.83
Creep, Transient and Cruise Velocity and Acceleration 4.89 0.58 2.16 0.81
Table 7. Best prediction for fuel economy (mpg).
Average Average Max.
Baseline Cycles Used Metrics Used & Error Error R?
% Error
(mpg) (mpg)
Idle, Transient and Cruise Velocity and Acceleration 4.59 0.20 0.67 0.82
Creep, Transient and Cruise Velocity and Acceleration 4.83 0.21 0.57 0.82
Creep, Transient and Cruise Velocity and Inertial Power 4,94 0.22 0.60 0.79
Idle., Creep, Transient and Velouty,‘AcceIeratlon and 4.08 0.1 0.70 0.82
Cruise Stops/mile
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Table 8. Weighting factors sensitivity to changes in baseline cycles and metrics used.

Weights Fuel
: Economy co,
. . Metrics Used Average
Idle Creep | Transient | Cruise Average Error (%)
Error (%)
01519 | 0.0243 | 1.0488 | 0.078 | " eloCity, Acceleration, [, oo 4.29
Stops/mile
-0.1326 1.0552 0.0774 | Velocity and Acceleration 4,59 4.36
-0.1672 | 1.0995 0.0677 | Velocity and Acceleration 4.83 4.89
0.8433 0.1567 Velocity 5.02 4.36
-0.2944 | 1.2944 Velocity 4.97 8.67
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7 Fuel Consumption Prediction
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Figure 6. Results for CO, prediction for 56 trucks using recommended baseline cycles and metrics.
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Inferred Fuel Economy from Fuel Consumption Prediction
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Figure 8. Inferred fuel economy based on fuel consumption prediction. Predicted CO, mass rate was converted
to fuel economy in mpg using equations 15 and 16 (See Predicted properties section).

6.6 Extrapolation

Other predictions performed using the recommended combination of Idle, Transient and Cruise as
baseline cycles and average velocity and average acceleration as metrics were tested with the High
Speed Cruise cycle of the HDDT schedule as the “unseen” cycle. This prediction showed that the method
did not extrapolate well (above 30% error), tending to overpredict fuel economy. Care must be taken
when predicting cycles with average speeds higher than the maximum average speed of the baseline
cycles.

Prediction of the Cruise cycle using Idle, Creep, and UDDS cycles, along with velocity and acceleration as
metrics, resulted in high errors (38% error). Once more, the method did not extrapolate well.

The inaccuracy in the prediction using extrapolation could only be circumvented when the functional
form assumed by the method (in this case a plane) accurately represented the nature of the function
being extrapolated. The nature of the aerodynamic drag term in the road load equation (cubic velocity
dependence) could affect the results when using baseline cycles without significant aerodynamic drag
contribution (perhaps at speeds below 40 mph or so). Also, the High Speed Cruise cycle involved
steadier engine operation than the Transient or Cruise cycles, a fact discussed in detail in recent papers
[15,16,17]. A recommendation is to always include a relatively high speed cycle in the baseline cycles
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with the caveat that high speed is a relative term and engineering judgment plays an important role in
the linear model development.

6.7 UDDS-Transient Interchange

The suggested similarity between the UDDS cycle and Transient cycle was investigated by interchanging
these cycles in the analysis (using the UDDS as a baseline cycle along with the Idle and Cruise cycles with
velocity and acceleration metrics). The prediction worked well with a 4.8% average error. The following
equations show the values of the baseline cycles used in both cases.

Predicting UDDS cycle with Idle, Transient, and Cruise as baseline cycles:
widle = —0.1326

wirans = 1,0552

weruise = 0.0774

Predicting transient cycle with Idle, UDDS, and Cruise cycles

widle = 0.1257

wUPDS =0,9476

werHise = —(,0733

As expected, the weight coefficient for UDDS was also nearly one. Note also that the sign of idle and
cruise were interchanged meaning that UDDS has less Idle contribution than the Transient cycle and the
Transient cycle has less Cruise cycle contribution than the UDDS cycle.

6.8 Recommendations (Truck Data)

Based on the results, the recommendation is to use average velocity and average acceleration as
metrics. If another metric (and baseline cycle) is going to be added to the model, it is recommended to
use stops per unit distance as the additional metric.

It is necessary to have baseline cycles which are sufficiently dissimilar so that they provide a wide basis
for establishing the metric-dependent behavior. The best combination in terms of accuracy and
economy is the use of Idle, Transient, and Cruise cycle in this work. Based on actual truck operation as
found in the field, it is believed that these three cycles, or cycles with similar characteristics, would
provide sufficient data to predict other cycles (or actual vehicle activity). However, it is recognized that
there are always exceptions and engineering judgment will need to be used to determine the most
appropriate baseline cycles that should be used. This combination of cycles has a good diversity of
characteristics in terms of the metrics used, it has a zero velocity, zero acceleration cycle (ldle), a low
velocity, high acceleration cycle (Transient), and a high velocity low acceleration cycle (Cruise). Cycles
should cover a broad range of operation in order to be suitable as baseline cycles.
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Due to the fact that the Idle cycle fuel economy (mpg) was zero and some information was lost during
the modeling, it is recommended that the prediction be made in terms of CO, mass rate (g/s) and then
convert to fuel economy (mpg). Extrapolation should be used with care.

7. Bus Data

The second vehicle type chosen was 40 foot transit buses. Chassis dynamometer data from two
conventional diesel buses, two compressed natural gas buses, and one hybrid bus were used in this part
of the research. The U.S. Department of Energy (DOE) and the U.S. Department of Transportation (DOT)
sponsored the Center for Alternative Fuels, Engines, and Emissions (CAFEE) of West Virginia University
(WVU) to conduct the program in cooperation with Washington Metropolitan Area Transit Authority
(WMATA) [14]. Table 9 shows relative information of the buses.

Table 9. Transit buses analyzed in this research.

Bus Type . .
Bus WMATA Engine Type & GVW Available
Number | Bus No. Technology | Manufacturer | & xzt:el Model Year (kg) Cycles
Orion RG6081
32 2640 CNG John Deere 280hp/206kW 19,334 16
2005
2005
Orion Cummins CG
35 2503 CNG Cummins 280hp/206kW 19,334 16
2005
2005
New Cummins
37 6003 Hybrid Allison Flyer 18,416 16
ISL280 2005
2005
Orion DDC S50
39 9654 Diesel DDC 275hp/202kW 17,896 17
1992
2003
New Cummins
41 6150 Diesel Cummins ;I)y:)eg ISM280 2006 18,416 17

7.1 Cycles Used

Seventeen different cycles were available for the diesel buses and sixteen cycles were available for the
CNG and hybrid buses. Table 10 shows the available cycles and average measured properties of velocity,
acceleration and stops/mile. The measured Idle cycle average velocity was not equal to zero because
some tests presented wheel speed noise during measurement as described above for the motivation to
define idle and stop at velocities under 0.5 mph. Target speed-time traces for these cycles are shown in
Appendix C.
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Table 10. Average measured properties over 5 buses for 17 cycles used.

Average Measured Properties
(over 5 buses)
# Cycle Name Cycle ID - -
Velocity Acceleration Stops/mile
(mph) (mph/s)
1 | CARB Idle Cycle Idle 0.06 0.00 0.00
2 New York Bus Cycle NYBus 3.54 0.25 18.71
3 Paris Cycle PARIS 6.68 0.32 12.40
4 Manhattan Cycle Manhattan 6.86 0.37 9.76
5 Washington Metro Transit Authority WMATA 8.43 0.30 6.26
Cycle

6 New York Composite Cycle NY-Comp 8.75 0.15 7.21
7 Orange County Transit Authority Cycle OCTA 12.22 0.41 4.87
8 Central Business District Cycle CBD 13.08 0.52 6.80
9 Braunschweig Cycle BRAUN 13.88 0.45 4.19
10 | City Suburban Heavy Vehicle Cycle CSHVC 14.02 0.27 2.29
11 | Beeline Cycle Beeline 14.03 0.43 3.73
12 | European Test Cycle Urban ETCURBAN 14.11 0.28 1.92
13 | CARB Transient Cycle TRANS 15.33 0.28 1.69
14 | Urban Dynamometer Driving Schedule Test D 18.71 0.20 2.04
15 | King County Metro Cycle KCM 23.35 0.41 1.85
16 | Arterial Cycle ART 25.58 0.55 1.47
17 | Commuter Cycle COMM 44.37 0.18 0.17

7.2 Metrics and Cases Used

Based on the results from the truck study, average velocity and average acceleration were selected to
perform the analysis. For each bus, all possible combinations of three baseline cycles were used to
predict CO, mass rate (g/s) over the remaining thirteen or fourteen cycles. That is a total of 3040
predictions were made including 560 combinations among 16 cycles for three buses and 680
combinations among 17 cycles for two buses.

7.3 Bus Data Results and Analysis

As anticipated, not all combinations of baseline cycles were suitable to perform a good prediction.
Figure 9 shows a histogram of average percent error lower than 200%. Approximately 44% of the
combinations produced errors less than 20%. Note that some combinations of cycles produced very high
prediction errors. There were errors above the 200% upper scale value shown in the figure but were not
plotted. The method is not suitable if the cycles are ill chosen. For example, using two very low speed
cycles plus idle to predict high speed behavior is fraught with difficulty, and is exacerbated if a poor
combination of metrics is chosen. Note that average percentage error in this case is among 13 or 14
predicted cycles for the same vehicle while in the previous data set (truck data) the average percent
error was among 56 vehicles over the same cycle (UDDS). One should not attempt to compare the errors
from the two data sets; these errors are comparable within the same data set only.
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Histogram of % Error for CO2 (g/s) prediction.
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Figure 9. Histogram of average % Error among 13 or 14 predictions.

Tables 11 and 12 show the best predictions for each bus for CO, mass rate and fuel economy,
respectively. Note that the Idle cycle is present in the best predictions for all vehicles. Figures 10 to 19
show parity plots of measured versus predicted values of CO, mass rate and fuel economy for the best
predictions for buses 32, 35, 37, 39, and 41. By visual inspection of the slope of the linear regression line
and R? correlation coefficients values it can be seen that CO, predictions were better than the fuel
economy prediction. Moreover, CO, prediction errors were below 8.88% while fuel economy prediction
errors were 15.89% or worst. The best baseline cycle combination for CO, was usually not the best
baseline cycle combination for fuel economy, but the Idle cycle was present in both the best CO, mass
rate and best fuel economy models. Most of the combinations included a cycle with relatively high
average velocity such as COMM, ART, KCM, or Test_D and a transient cycle with relatively low average
velocity such as WMATA, Paris, or OCTA. The KCM cycle appears to be valuable because it worked
relatively well both as a low speed cycle or as a high speed cycle depending on the baseline cycle
combination. The KCM cycle average velocity was approximately 50% of the highest average velocity of
the cycles used (COMM cycle has an average velocity of 44.37mph) and the KCM cycle average
acceleration was approximately 75% of the highest average acceleration (ART cycle with 0.55mph/s).
Overall, values of average velocity above 18.7 mph produced average percentage errors below 10%
when used as high speed, low acceleration baseline cycle and values of acceleration above 0.3 mph/s
produced average percentage errors below 10% when used as low speed, high acceleration baseline
cycles. Based on the results shown in Figure 14, hybrid vehicles appear to be able to be modeled using
the linear modeling methodology presented here. However, additional hybrid vehicles and hybrid
vehicle architecture will need to be investigated to substantiate this claim.

7.4 Extrapolation

For diesel transit buses (Figure 16 and Figure 18) fuel consumption was under predicted for the COMM
cycle due to extrapolation (predicting a cycle with higher average velocity than the baseline cycle with
highest average velocity) and this brought the linear regression line down for the CO, mass rate plot
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causing the slope in the regression line to be less than one. However, it appears that as long as a high

speed cycle was used as a baseline cycle, the extrapolation would not produce significant deviations

between the measured and estimated values. CNG bus 35 (Figure 12) illustrated an exception to this

observation. The best results for bus 35 were obtained when using baseline cycles idle, Paris and
WMATA. The highest average velocity baseline cycle in this case was 8.43 mph for the WMATA cycle and
was able to predict the COMM cycle with an average velocity of 44.37 mph within 1.12g/s. In this case

higher average speed extrapolation is possible.

Table 11. Best CO, mass rate results for each bus.

Cycle Name CO;, (g/s)
Bus ID Average Max. Error | Std. Dev. 2
CycleA | CycleB | CycleC | %E R
ycle ycle ycle o Error Error (g/s) (g/s) Error (g/s)
32 | Idle Beeline | KCM 8.48 0.54 1.12 0.37 0.92
35 | Idle PARIS WMATA 7.53 0.53 1.20 0.37 0.95
37 | Idle OCTA KCM 8.17 0.51 1.29 0.40 0.98
39 | Idle KCM ART 8.70 0.83 2.45 0.68 0.93
41 | Idle PARIS KCM 8.88 0.76 2.33 0.65 0.93
Table 12. Best fuel economy (mpg) results for each bus.
Cycle Name Fuel Economy (mpg)
Bus ID . . .
us Cycle A Cycle B Cycle C | % Error Average Max. Error Std. Dev R?
Error (mpg) (mpg) Error (mpg)
32 | Idle Manhattan | OCTA 15.89 0.67 2.61 0.67 0.77
35 | Idle BRAUN KCM 19.73 0.70 1.57 0.58 0.60
37 | Idle OCTA COMM 22.26 1.19 2.43 0.93 0.18
39 | Idle Manhattan | KCM 20.34 0.85 2.12 0.76 0.38
41 | Idle Manhattan | KCM 22.17 1.01 2.19 0.77 0.39
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Figure 11. Best fuel economy prediction, Bus #32
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Figure 13. Best fuel economy prediction, Bus #35.

27




Best Prediction CO2(g/s) Hybrid Bus #37

201 o Data
Parity line
B | —— Linear fit
16—
14-
8 120 o
5
B 10+
o
sl
©
oL
a ¢}
[0}
oL
% 2 P 6 0 12 4 1 1
Measured
CycleN co2
Bus ycle Name (g/s)
ID Average Error Max. Error Std. Dev. Error 2
Cycle A | CycleB | CycleC | % Error R
Y Y Y i (g/s) (g/s) (g/s)
37 Idle OCTA KCM 8.17 0.51 1.29 0.40 0.98
Figure 14. Best CO2 mass rate prediction, Bus #37.
Best Prediction MPG(miles/gallon) Hybrid Bus #37
o
+ Data
8- Parity line
— Linear fit 4
e}
g
o
e
o
[a
s
Measured
Cycle Name Fuel Economy (mpg)
Bus ID Average Max. Error Std. Dev. 2
leA leB | %E R
Cycle Cycle Cycle C % Error Error (mpg) (mpg) Error (mpg)
37 | Idle OCTA COMM 22.26 1.19 2.43 0.93 0.18

Figure 15. Best fuel economy prediction, Bus #37.
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Figure 17. Best fuel economy prediction, Bus #39.
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Figure 19. Best fuel economy prediction, Bus #41.
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7.5 Comparison between COz and Fuel Economy Predictions

The prediction of CO, mass rate tends to be a better method of prediction than a direct fuel economy
prediction. This stems from the fuel economy at idle being equal for all vehicles (a value of zero by
definition), whereas CO, mass rate for the Idle cycle was different (and non zero) for each vehicle. Using
CO, mass rate provides additional information in the model. Another possible explanation is the more
linear dependence between CO, and speed than fuel economy and speed as is shown by comparison of
R’ correlation coefficients of linear fits in Figure 20. The non-linearity of fuel consumption or of distance-
specific emissions levels with respect to average speed is well-documented in “speed correction factors”
which are often used in emissions inventory models, such as EMFAC.
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Figure 20. CO, mass rate and fuel economy as functions of average speed.

7.6 Best Bus Baseline Cycles

The key to obtaining a prediction with low error is the selection of suitable combinations of baseline
cycles. A given baseline cycle is not “good” or “bad” by itself. Rather, it is the combination of individual
baseline cycles that makes the predictive approach suitable or not. Also, a baseline cycle can have low
errors with some metrics but have high errors with other metrics. Further, the success of the approach
may vary according to the application because in some cases the best average prediction for a fleet of
vehicles may be the objective, whereas in other applications there may be a need to constrain the worst
individual error in the prediction. To this end, an analysis was performed to identify which cycles are
more associated with predictions with low errors using average velocity and average acceleration. Figure
21 shows a histogram of the frequency of a given cycle in the combinations with percentage error less
than 10%. The analysis was done using the CO, mass rate data. The plots show that the Idle cycle should
be used in every prediction. Note also that cycles like ETCURBAN or NYBus are not present in any
combination with error less than 10%. These two cycles are transient, low speed but their values of

acceleration are below 0.3 mph/s.
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Figure 21. Frequency of a baseline cycle in prediction with average error below 10%.

7.7 Best Bus Baseline Combinations
Table 13 shows the three combinations of baseline cycles with the lowest error for the prediction of CO,
mass rate for the five buses considered. The combination of Idle cycle, a relatively low average speed
with high average acceleration cycle, and a relatively high speed cycle was present in the three
combinations. Note that these combinations produced prediction results with less than 10% average

error for all buses over a very wide range of cycles.

Table 13. Best bus baseline combinations results for CO2 (g/s) prediction.

Average Percentage Error (%) Average
. Max.
Baseline Cycles Percent.
. . . o Absolute
Used CNG #32 | CNG #35 | Hybrid #37 | Diesel #39 | Diesel #41 | Error (%)
Error (g/s)
(5 buses)
Idle OCTA KCM 8.61 7.78 8.17 8.75 9.26 8.51 3.95
Idle PARIS KCM 9.11 7.55 8.89 8.72 8.88 8.63 3.18
Idle OCTA COMM 8.52 7.80 8.38 9.21 9.80 8.74 2.20

7.8 Other Possible Bus Baseline Cycle Combinations
Other baseline combinations identified in the bus data with average percentage error below 10% among
five buses are summarized in Table 14. All combinations include Idle cycle, and most of them included
one intermediate transient cycle and one relatively high speed cycle. Baseline cycles should cover a

broad range of operation encompassing the unseen cycle.
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Table 14. Combinations of baseline cycles with average percentage error below 10%.

Average Percentage Error (over predicted cycles)
Cycles Average Percentage Error
Bus 32 | Bus 35 Bus 37 Bus 39 Bus 41
Idle KCM OCTA 8.61 7.78 8.17 8.75 9.26 8.51
Idle KCM PARIS 9.11 7.55 8.89 8.72 8.88 8.63
Idle KCM Manhattan 8.51 8.08 NA 8.84 9.14 8.64
Idle Manhattan ART NA 8.10 NA 8.86 9.21 8.72
Idle OCTA COMM 8.52 7.80 8.38 9.21 9.80 8.74
Idle PARIS ART NA 7.54 9.95 8.76 9.05 8.82
Idle WMATA KCM 9.00 7.56 8.20 9.73 10.42 8.98
Idle OCTA Test_D 10.16 8.41 8.24 9.56 9.54 9.18
Idle ART COMM NA 7.79 9.89 9.61 9.80 9.27
Idle WMATA COMM 9.02 7.74 8.67 10.68 12.06 9.63
Idle WMATA Test_D 10.18 8.13 8.38 10.35 11.13 9.63
Idle WMATA ART NA 7.53 10.45 10.17 10.45 9.65
Idle KCM COMM 8.48 8.57 8.43 11.14 11.67 9.66
Idle BRAUN COMM 9.41 8.74 11.17 9.34 9.75 9.68
Idle PARIS Test_D 10.94 8.15 9.55 10.07 9.84 9.71
Idle OCTA ART NA 7.80 11.52 8.76 10.76 9.71
Idle Beeline KCM 8.48 9.15 8.38 9.66 13.38 9.81
Idle Test_D ART NA 9.03 10.28 10.59 9.45 9.84
Idle PARIS COMM 9.75 7.85 10.47 10.44 10.93 9.89
Idle Beeline COMM 8.58 8.52 8.77 9.97 13.71 9.91
Idle OCTA TRANS 8.94 10.55 8.72 11.28 10.37 9.97
Idle Manhattan CSHVC | 9.66 9.53 NA 9.74 11.00 9.98
Idle Beeline Test_D 9.95 8.56 8.52 9.81 13.13 9.99

NA — Not Available.

7.9 Non Compatible Bus Cycle Combinations

A non compatible pair is defined as a pair of cycles that produce prediction average percentage errors
above 50% when used as baseline cycles. Some non compatible cycle pairs were identified. Beeline cycle
was not compatible with Braun, CBD, ETCURBAN or OCTA cycles. ETCURBAN was not compatible with
CSHVC, COMM, KCM or ART cycles. It is clear that it is necessary to have cycles which are sufficiently
dissimilar so that they provide an accurate basis for establishing the metric-dependent behavior. For
example CSHVC and ETCURBAN resulted in very high average prediction errors of above 2000%. This is
believed to be due to the similarity between their metrics (average velocities of 14.02mph and
14.11mph and average accelerations of 0.27mph/s and 0.28mph/s) so that the ability to extrapolate
using the data is severely curtailed. Defining a plane based on three points when two points are in (or
very near) the same location, results in an ill-defined surface. Although matrix inversion (solving of
simultaneous equations) is possible in that scenario, the solution becomes sensitive to changes in one
particular metric. It is speculated that experimental error then becomes a first order effect in the
analysis.
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7.10 Best Bus Data Combination: Idle, OCTA, and KCM

Table 15 shows the results for the combination of baseline cycles with the lowest error. Figure 22
further illustrates how this combination predicted each cycle to a high fidelity and could be useful to see
when fuel consumption for one cycle is consistently overpredicted or underpredicted. For example it can
be seen that CBD, CSHVC, ETCURBAN, and Transient cycles’ fuel consumption were overpredicted for all
of the buses. The COMM cycle fuel consumption was mostly underpredicted (particularly for the diesel
buses) because extrapolation appeared to be unable to account for the aerodynamic drag portion of the
road load equation. Figure 23 shows a parity plot of measured versus predicted values for all the

predictions using the recommended combination. Note that extrapolation caused subtle
underpredictions.
Table 15. Results for recommended combination of baseline cycles for the bus data.
Cycle Name C02 (g/s)
Bus ID 2
Cyclel | Cycle2 | Cycle3 | % Error | Average Error | Max. Error | Std. Dev. Error | R
35 Idle OCTA | KCM 7.78 0.53 1.14 0.35 0.96
37 Idle OCTA | KCM 8.17 0.51 1.29 0.40 0.98
32 Idle OCTA | KCM 8.61 0.50 1.39 0.35 0.95
39 Idle OCTA | KCM 8.75 0.81 2.11 0.61 0.95
41 Idle OCTA | KCM 9.26 0.72 2.09 0.57 0.94
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Figure 22. Prediction errors using idle, OCTA and KCM as baseline cycles and average velocity and average
acceleration as metrics.
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Figure 23. Parity plot for prediction using Idle, OCTA, and KCM cycles and velocity and acceleration metrics.

7.11 Alternative Metrics

An exploratory analysis was completed to discern if other metrics had the potential to replace
acceleration or to be used in conjunction with velocity and acceleration to obtain improved results.
Figure 24 shows the ratio of average percentage error for alternative metrics over average percentage
error using velocity and acceleration. A value below one for this ratio meant that the alternative metrics
combination had the potential to have lower errors than the velocity and acceleration combination
alone. It can be seen that stops per mile and average of (velocity squared) are metrics that could reduce
the error when compared to using just the velocity and acceleration metrics. The plot also shows that
the accuracy of prediction could be improved by adding one more metric to the analysis but at the cost
of adding one more baseline cycle. Only the best possible case (the case with minimum average percent
error) was used for this analysis and further research should be done in order to validate these
conclusions. The next section shows a more detailed analysis using stops per mile as an alternative
metric.
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7.12 Using Stops per Mile as a Metric

Based on the results shown in Figure 24, the bus data were modeled using the velocity and stops per

Figure 24. Percentage error ratios when using other metrics combinations.

mile metrics with different combinations of three baseline cycles. The results with the lowest errors are
shown in Table 16. The data was evaluated using velocity, acceleration, and stops per mile using
different combinations of four baseline cycles. Table 17 shows the results with the lowest errors for this

case. It is worth mentioning that the idle cycle was still present in all of the cases.

Table 16. Best results with velocity and stops/mile.

Std.
BusID | CycleA | CycleB Cycle C % Error E?r:)ir?gg/i) EI\:'I::r (Agljz) IIE)r(:Zr R?
(g/s)
32 Idle NYBus CBD 6.08 0.47 1.89 0.49 0.97
35 Idle NYBus KCM 8.99 0.77 2.55 0.63 0.94
37 Idle NYBus WMATA 6.56 0.46 1.23 0.41 0.98
39 Idle PARIS Test_D 9.55 0.94 1.85 0.45 0.95
41 Idle NYBus COMM 7.82 0.59 1.42 0.51 0.89
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Table 17. Bus results with lowest error using velocity, acceleration, and stops per mile metrics.

Average Max. Std.
P;;S Cycle A CycleB CycleC | CycleD | % Error | Error S?Zr ;?Zr R?
€ | @5 | )
32 Idle NYBus BRAUN COMM 4.92 0.32 0.55 0.19 0.91
35 Idle NYBus WMATA | COMM 5.65 0.40 1.13 0.33 0.94
37 Idle NYBus PARIS Test_D 6.97 0.48 1.23 0.42 0.98
39 Idle NYBus BRAUN KCM 6.82 0.63 1.63 0.42 0.98
41 Idle Manhattan OCTA Test_ D 8.15 0.63 1.33 0.45 0.97

7.13 Best Combination: Idle, NYBus, and KCM

The Idle, NYBus, and KCM combination of baseline cycles resulted in the lowest error for the bus data
when the stops per mile metric was used. Note that using velocity and acceleration as metrics, the best
combination of baseline cycles was Idle, OCTA and KCM and when using velocity and stops per mile as
metrics, the best combination of baseline cycles was Idle, NYBus, and KCM. The NYBus cycle was not a
good baseline cycle when using average acceleration but was one of the best cycles when using stops
per mile. Table 18, Figure 25, and Figure 26 show these result in more detail.

Table 18. Best results using Idle NYBUs and KCM. Average velocity and stops/mile.

Cycle Name CO, mass rate (g/s)

Bus Average | Max. Abs Std. Dev

o . . . . 2
ID Cycle A Cycle B Cycle C % Error Error (g/s) | Error (g/s) | Error (g/s) R
32 Idle NYBus KCM 6.32 0.49 2.28 0.57 0.98
37 Idle NYBus KCM 6.78 0.45 1.31 0.45 0.98
41 Idle NYBus KCM 7.92 0.59 1.37 0.51 0.96
35 Idle NYBus KCM 8.99 0.77 2.55 0.63 0.94
39 Idle NYBus KCM 9.63 0.96 1.98 0.52 0.94
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Figure 25. Prediction errors using Idle, NYBus, and KCM as baseline cycles and average velocity and stops per
mile as metrics.
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Figure 26. Parity plot for prediction using Idle, NYBus, and KCM using velocity and stops per mile metrics.

38



7.14 Bus Data Recommendations

Average velocity, average acceleration, and stops per mile were the metrics identified to predict CO,
mass rate from unseen cycles. The Idle cycle must be present as a baseline cycle, along with a relatively
slow transient cycle (about 25% of the maximum average speed and average acceleration higher than
0.3 mph/s) and a relatively high speed cycle, preferably with an average velocity at or above the average
velocity of the unseen cycle. Care must be used when extrapolating higher average speed cycles relative
to the cycles used in the prediction.

It is interesting to note that KCM cycle was identified as a suitable cycle using both average velocity and
average acceleration as metrics and average velocity and stops per mile as metrics. It appears as though
this cycle has advantageous characteristics that minimize the errors in the linear model.

8. Black Box Model (Neural Networks)

The second approach used to predict fuel consumption used the training of a neural network with
continuous second-by-second data (instantaneous properties and instantaneous fuel consumption) from
baseline cycles. The model was then used to predict second-by-second fuel consumption over an unseen
cycle, and the cycle-averaged CO, emissions mass rate could be determined. Training the neural
network requires some skill because one must select the training data appropriately. Neural networks
require a large diversity of training in order to capture all of the details of the physical system. However
one must avoid overtraining of the neural network.

Chassis dynamometer data for 56 heavy heavy-duty trucks operating at a nominal 56,000 Ibs were used
in this part of the research. This data were the same as used to perform the linear modeling for the
truck data. This data were gathered as part of the Coordinating Research Council E-55/E59 program,
which was created to characterize heavy-duty trucks emissions in California.

Training of the neural network was done with the second-by-second data from all of the transient cycles
and cruise cycles that were available from a given vehicle. Input data included properties such as
instantaneous velocity, instantaneous acceleration, instantaneous square of velocity, instantaneous
cube of velocity, and instantaneous inertial power. The output variable was CO, mass rate emissions, in
g/s. One neural network was created and trained for each of the 56 vehicles considered. The neural
network then was used to predict second-by-second CO, mass rate emissions for the UDDS cycle
(validation cycle).

Several network architectures were evaluated using the Matlab Neural Network Toolbox [5]. These
architectures included different number of hidden nodes, number of hidden layers, and different types
of transfer function of the nodes. Different combinations of metrics were also used. The best results
were obtained using a back propagation neural network with two hidden layers, 100 neurons in the first
layer with a tan-sigmoid transfer function and one linear neuron in the output layer. The input layer
used instantaneous values of velocity, velocity cubed, and inertial power as metrics. Figure 27 shows a
schematic of the neural network architecture. The scope present program did not include the
optimization of the neural net architecture for the specific application.
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Figure 27. Schematic of neural network architecture.

8.1 Neural Network Results

Figure 28 shows a representative example of the results obtained for one particular vehicle. It appears
that the neural net was able to capture the overall trend with an acceptable accuracy. However,
between 500 seconds and 800 second of the UDDS cycle, the neural net underpredicted the measured
response. Causes for second-by-second differences might be adscribed to the binary nature of cooling
fan load, the use of a different gear than anticipated, or the use of an engine control strategy that not
anticipated by the training data set. The overall results were calculated by integrating the instantaneous
results and are summarized in Figure 29 where each data point represents one UDDS cycle (There are
more than 56 data points because of repeated tests). The model was systematically underestimating the
average fuel consumption of the UDDS cycle.

Neural network analysis has some disadvantages with respect to the linear model. The main one is that
second-by-second data is required and that there are thousands of data points (at 1Hz) compared with
only a few properties used in the linear model. Another disadvantage is that the prediction is not
unique, because the neural network model depends on the selection of training parameters, the
network architecture, and the algorithm used.
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Figure 28. Neural network results in the prediction of UDDS cycle CO, mass rate emissions.
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Figure 29. Summary of neural network prediction of CO, mass rate (g/s). Prediction error 10.24%.

9, PSAT Commercial Software Model

PSAT is a forward-looking model that simulates fuel economy and performance in a realistic manner
taking into account transient behavior and control strategy [6]. PSAT is also called a command-based
model [7]. The necessary wheel torque to reach the desired speed is estimated by passing information
from the driver model to the vehicle controller (different components), such as throttle command for
the engine, gear number for transmission, and mechanical braking for wheels [8]. There are three main
components losses and they include the inertia of the vehicle, the aerodynamic drag, and the rolling
resistance. These losses are added together to produce a rough estimate for the torque demand at the
vehicle's wheels. Then decisions about how different components work are made based on the driver
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demand and the latest information from the components’ sensors. Eventually, the vehicle controller
commands (i.e., engine torque) are transformed and can then be used by the respective component
models (i.e. throttle). Briefly, the forward-looking method works by modeling the command of the
driver which in turn causes the appropriate components’ response to meet the desired vehicle speed
[7]. As components react to the commands as if a person were driving the vehicle, the user can
implement advanced component models by taking into account transient effects (such as engine
starting, clutch engagement/disengagement, or shifting) or developing realistic control strategies [7].
Figure 30 shows the PSAT graphical user interface.
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Figure 30. The PSAT graphical user interface.

A PSAT model was developed for a 1998 Peterbilt truck, with a 410hp C12 Caterpillar engine. CO, mass
rate was predicted following the procedure below:

1) A PSAT model was developed (Figure 30)for the truck listed above.

2) The model was run over Idle and Transient cycles, and the results were compared to measured values
in order to find the effective coefficient of rolling resistance.

3) Keeping the rolling resistance fixed, the model was evaluated over the Cruise cycle, and the results
were compared to measured values in order to find the aerodynamic drag coefficient.

4) Steps 2 and 3 were repeated in order to find the best fit between measured and PSAT simulated
results.

5) Finally, the model was evaluated over the UDDS cycle and CO, mass rate predictions were compared
to measured values.
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9.1 PSAT Results

Figures 31 and 32 show the parity plot of measured versus predicted values of CO, mass rate in (g/s) for
Transient cycle and Cruise cycle, respectively. The coefficient of rolling resistance for this prediction was
0.0136, and the aerodynamic drag coefficient 0.37. These are best fit values, but the drag coefficient is
low and the rolling resistance is high in comparison to common wisdom. Figure 33 shows the parity plot
of measured versus predicted values of CO, mass rate in (g/s) for UDDS cycle. Second-by second
prediction of the UDDS cycle is good with a percentage error below 4%. However, the procedure of
selecting components and assembling the model should be repeated for each different vehicle that
needs to be simulated.
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Figure 31. CO, mass rate prediction results for Transient cycle. Predicted mass rate: 9.30 g/s; Measured mass
rate: 9.76 g/s; Prediction error 4.68%. Coefficient of rolling resistance 0.0136.
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Figure 32. CO, mass rate prediction results for Cruise cycle. Predicted mass rate: 19.00g/s; Measured mass rate:
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Figure 33. CO, mass rate prediction results for UDDS cycle. Predicted mass rate: 11.68 g/s; Measured mass rate:

12.13 g/s; Prediction error 3.69%.
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10. Conclusion

A linear model methodology for the prediction of heavy-duty vehicle fuel economy based on measured
chassis dynamometer test cycles and properties of those cycles was developed and verified. The
methodology allowed for the prediction of fuel economy from vehicles operating on a number of
different chassis dynamometer cycles based on relatively few experimental measurements. The results
of the application of the linear model to a set of fifty-six heavy heavy-duty trucks operating over five
different cycles showed that the use of average velocity and average positive acceleration as metrics
produced the best results in terms of average percentage error (less than 5%). The results of the
application of the linear model to a set of five buses operating over up to seventeen different cycles
showed again that average velocity and average positive acceleration were suitable metrics to predict
fuel economy with reasonable accuracy (less than 10% average percentage error). If another metric (and
baseline cycle) is going to be added to the model, it is recommended to use stops per unit distance as
the additional metric. It was also found that baseline cycles must include Idle cycle, along with a
relatively slow transient cycle and a relatively high speed cycle, preferably with an average velocity at or
above the average velocity of the unseen cycle. Based on the results obtained with both data sets, it was
recommended that the prediction be made in terms of CO2 mass rate (g/s) and then convert to fuel
economy (mpg).

Two alternative approaches using neural networks and the commercial simulation software PSAT were
also developed and verified. The results of the application of these modeling strategies produced
average percentage errors of the order of 10% and 4% respectively. The main disadvantages of these
alternative approaches with respect to the linear model were their inherent complexity (application
difficulty) and the need to use continuous (second-by-second) data.
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Appendix A- Weight Correction

Two types of weight correction techniques were applied to a subset of the truck data. Table 19 shows
information of the eleven trucks used. Test data for three different weights (30,000lbs, 56,000lbs, and
66,0001lbs) over Idle, Creep, Transient, and Cruise cycles were available for these trucks.

The first weight correction technique consisted of calculating the “percent change in CO, emissions per
percent change in test weight.” Figure 33 shows a plot of CO, mass rate percentage change as a function
of percentage change in weight for the Creep, Transient, and Cruise cycles. Each point represents the
average change among the subset of trucks. The accompanying table shows the slopes of the linear fit
for each cycle. In this way, a 10% increase in weight produced a 6% increase in CO, mass rate (g/s) over
the transient cycle, 1.8% increase in CO, mass rate over the creep cycle, and a 3.7% increase in CO, mass
rate over the cruise cycle. Note that Idle cycle analysis is not relevant because emissions should be the
same regardless of the weight if the vehicle is not moving.

It can be seen that for each cycle there was an increase in the CO, emissions with increasing weight. The
CO, emissions are a measure of the energy expended as they directly correspond to the fuel
consumption of the vehicle. The relationship between test weight and CO, emissions is cycle dependant
due to differences in transient behavior. Transient operation involves extra energy spent during
accelerations, which is lost during decelerations (braking). This means that the Transient cycle will
require the vehicle to expend higher energy with increasing weight than the Cruise or Creep cycles as it
is seen in the values of slopes in the table accompanying Figure 33.

It is believed that the change in slope for the Cruise cycle is due to the fact that wind drag losses for
heavy duty trucks become a substantial contribution only at sustained speeds of over 50 mph [11].

Table 19. Subset of CRC truck data for weight correction analysis.

. . Engine
. Engine Engine . Odometer
Vehicle ) . Disp.
E55CRC- del Vehicle Engine
mode
(truck) Manufacturer Power (hp) Readi
year . eading
Manufacture| Model (Liter) )
(mile)
27 2000 Freightliner Detroit Series 60 500 12.7 420927
28 1999 Freightliner Detroit Series 60 500 12.7 645034
29 2000 Volvo Cummins [ 1SX475ST2 450 14.9 120000
30 1999 Freightliner Detroit Series 60 500 12.7 138625
31 1998 Kenworth Cummins | N14-460E+ 460 14 587389
32 1992 Volvo Caterpillar 3406B 280 14.6 595242
33 1985 Freightliner Caterpillar 3406 310 14.6 988726
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Figure 33. percent change in CO, emissions per percent change in test weight

A more theoretical approach makes use of axle horsepower to correlate it with CO, emissions. Axle

horsepower (AHP) is given by the road load equation for a level road, as follows:

AHP(hp) = mV =7+ > CpApV? + umgV

(28)

Where m is the mass of the vehicle (kg), V is the vehicle velocity (m/s), A is the frontal area of the vehicle
(m?), g is the acceleration due to gravity (m/s°), Cp is the aerodynamic drag coefficient of the vehicle,p is

the tire rolling resistance coefficient, and p is the density of air (kg/m?).

Chassis dynamometer test data can be used to obtain reliable correlations between axle horse power

and CO, mass rate emissions of the form:
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COZ = ClAHP + Cz

If the equation above (values of C; and C,) remains reliable for a wide variety of truck applications, it is
possible to apply these relationships to the axle power known for a given cycle (integration of
instantaneous AHP over the test duration) and, therefore, to predict the total CO, mass arising from that
cycle. Figure 34 shows variation of CO, emissions with axle power (test weight) for the Creep, Transient,
and Cruise cycles. Again, the relationship between test weight and emissions will be cycle dependent; a
highly transient cycle with high loads is likely to emphasize the effect of weight on CO, production in
comparison to a steady-state operation with the same average speed. Conversely, if a test schedule
contains long periods of idle, the idle CO, emissions contribution may become significant and will be
weight insensitive [11].
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Figure 34. Variation of CO, emissions with axle power (test weight) for the Creep, Transient, and Cruise cycles.
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Appendix B - Method of use

10.

Identify fleet of vehicle subset from a fleet to be analyzed.

Obtain vehicle set driving characteristics. This could be either vehicle speed-time cycles or on-
road activity. This is called “unseen” cycle.

Specify cycle metrics that can be used to translate fuel economy between cycles: Average
velocity and average acceleration.

Calculate metrics for the selected vehicle set driving characteristics.

Average Velocity: Summation of instantaneous velocity over number of data points.

noy.
i7 i=1Vi

V =
n
Average Acceleration: Summation of instantaneous positive acceleration over number of data

points. Instantaneous positive acceleration is calculated using a central differences scheme.

Filtering of speed-time trace before calculation of acceleration is recommended.
— n Visa-Vi
av i=1
E=TW whenVi_,_l >Vi

Select representative chassis dynamometer baseline cycles.

a. ldle cycle.

b. Low average speed (50% to 100% of average speed of fleet), relatively high acceleration
(100% to 150% of average acceleration of fleet) cycle.

c. High average speed (more than 150% of average speed of fleet), relatively low acceleration
cycle (50% to 100% of average acceleration of fleet) cycle.

Perform chassis dynamometer test for each vehicle/drivetrain/engine configuration. Obtain

integrated CO, mass emissions, test duration, and distance traveled.

Pose a linear set of equations using average velocity and average acceleration of the three

baseline cycles and the “unseen” cycle.

chcle aspeedcycle a4 chcle bspeedcycle b + chcle cspeedcycle c — Speed"unseen"

chcle aaccelcycle a i chcle baccelcycle b + chcle caccelcycle c — accel"unseen"

chcle a4 chcle b + chcle c=1

Obtain the three weighting factors by solving the linear set of equations.

Apply the weighting factors to predict the vehicle “unseen” cycle’s CO, emissions.

COZ”unseen" — chcle acozcycle a + chcle bcozcycle b + chcle CCOZCyCle c

Convert the CO, mass rate emissions to fuel economy.

. ny _ oS
Fuel Consumption (ﬂ) _ ()
s 10084

Average Speed (mph)
gal

Fuel Consumption (T)X%OO

Fuel Economy (mpg) =
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Appendix C - Bus cycles
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Figure 36. New York Bus cycle.
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Figure 37. Paris cycle.
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Figure 38. Manhattan cycle.
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Figure 39. Washington Metro Transit Authority cycle.
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Figure 40. New York Composite cycle.
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Figure 41. Orange County Transit Authority cycle.
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Figure 42. Central Business District cycle.
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Figure 43. Braunschweig cycle.
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Figure 44. City Suburban Heavy Vehicle cycle.
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Figure 45. Beeline cycle.
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Figure 46. European Test Cycle Urban cycle.
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Figure 47. CARB Transient cycle.
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Figure 48. Urban Dynamometer Driving Schedule (Test_D cycle).
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Figure 49. King County Metro cycle.
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Figure 50. Arterial cycle.
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Figure 51. Commuter cycle.



