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1 Introduction

This technical note addresses an important empirical issue in the study of bio-fuels and
indirect land use. Incremental crops used by the bio-fuel industry are provided by some
combination of decreased demand and increased production. That increased production, in
turn, results from some combination of increased yields and increased land use. Because of
the potentially large carbon costs of increased agricultural land use, the “indirect land use
change” (ILUC) from bio-fuels has been the subject of increasing study and policy concern,
beginning with the pioneering study of Searchinger, Heimlich, Houghton, Dong, Elobeid,
Fabiosa, Tokgoz, Hayes, and Yu (2008). If higher prices drive higher crops yields, the
amount of indirect land use associated with bio-fuel production will be reduced. In general,
indirect land use change will be larger the larger the land-price elasticity and the lower the
yield-price elasticity. This leads to an important policy interest in the yield-price elasticity
of crop production.

Our report provides direct empirical evidence on crop yield-price (and land-price) elas-
ticities. These are critically important quantities in any attempt to simulate the effect of the
massive bio-fuel policies that are presently implemented and/or under consideration around
the world. The present report has a tight empirical focus and should be read in the context
of Berry’s earlier report to CARB, the California Air Resources Board (Berry 2011).

We use an instrumental variables empirical approach that builds closely on the work of
Roberts and Schlenker (2010) and Roberts and Schlenker (2009), who propose the use of
last year ’s yield shock as an instrument that effectively shifts the demand for new produc-
tion while being uncorrelated with the current year’s supply shock. We estimate yield-price
elasticities using an updated and improved version of their dataset and making use of a
broader set of instrumental variables that potentially account for serially correlated unob-
served shocks to yields. Our estimates of yield-price elasticities are close to zero. This is
consistent with existing literature that finds low yield-price elasticities (see the literature re-
view in Berry (2011), referring particularly to that report’s Table 1 and Figure 1.) However,
as compared to most of the prior literature, our improved approach allows for somewhat
more precise and credible yield-elasticity estimates.
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Our research firmly indicates that yield elasticities for US crops are close to zero. How-
ever, note that these are net yield elasticities. When output prices rise there are two opposing
effects. First, yields on existing land might rise. Second, new land is called into production
and this land could have different yield characteristics as compared to previously farmed
land. Our empirical “net yield” elasticity estimates combine both effects. A finding of near-
zero net yield elasticities is consistent with, for example, a world that features [i] a clearly
positive yield elasticity that applies to existing farm land, together with [ii] a substantial
farm land-use price elasticity and [iii] incremental farm land that is less productive than
existing land. The increased yield on existing land could be offset by the lower yield on
“new land.”

While we don’t have an estimate for a price-yield elasticity, we have estimates for the
area-price elasticity. Given an estimate for the productivity of marginal land, we can then
back out an implied yield-price elasticity for non-marginal land. For example, suppose that
the ratio of the productivity of marginal land to the productivity of existing land is 0.66. In
this case, our preferred estimates imply a yield-price elasticity for non-marginal land that is
no higher than roughly 0.1.

As with any empirical results, there is uncertainty in our estimates due to sampling error.
Additional research and better data would always be valuable. However, policy-makers often
need guidance as to the best point estimate of policy-relevant parameters and we believe that
our estimates have a stronger foundation than many earlier estimates used in policy analysis
(again, see (Berry 2011).)

We begin with US data, first providing an overview of US aggregate data and then a much
more detailed analysis of a panel dataset on US states over time. The overview shows that
observed US yields are very well explained by a very smooth (nearly linear) “technology”
time trend together with a parsimonious observed set of weather variables. There is very
little variance left to be explained by prices. The panel results show, that for a variety of
empirical approaches, the estimated net yield-price elasticities are not statistically different
from zero. On the other hand, we find a highly significant area-price elasticity of 0.25-0.3.
Assuming that the new marginal land has a productivity of two thirds of the land that is in
production, the yield-price elasticity can be no larger than 0.1.

We also provide results on fertilizer use; these results are consistent with our near zero
findings for yield elasticities. We finish with a discussion of empirical results on yield and land
elasticities for four main crops (maize, soybeans, wheat and rice) across all major producing
countries. Unlike our US data, we do not have detailed weather data for these results and we
put somewhat less weight on the exact point estimates from these results. However, these
crop-by-country results broadly support the finding of net yield-elasticities that are close to
zero.

One intriguing finding from the crop-by-country analysis is a marginally statistically
significant positive yield elasticity for soybeans in Brazil, which is combined with a much
larger and highly statistically significant land-use elasticity. There are also some statistically
significant negative net yield elasticities for wheat and rice in China. Both the positive
and negative yield results are interesting and deserve further study, but they could simply
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be the kind statistical artifacts that would be expected to occasionally occur when a large
number of specifications are run on modestly sized datasets. They do point to the value of
obtaining better data (for example, on weather, yields and land-use within sub-regions of
large countries.)

2 US Data and Empirical Approach

We would like estimates of the world-wide yield elasticity of crops. However, US data is of
considerably higher quality than world-level datasets and much of the debate about yield
elasticities takes place in the context of US data. It is true that US agricultural practices
are quite different from agriculture in poorer countries. However, it is difficult to know how
third-world elasticities will compare to US elasticities.1

There is little controversy that yields are highly influenced by both slow-moving technical
change and by short-run weather. Technical change is typically proxied by a time trend.
Because our data runs over many decades, we would like this trend to be modeled in a
flexible way, allowing for the possibility that technical change is more or less rapid during
some sub-sets of the data. In all our results, we pay use flexible time trends and pay attention
to the sensitivity of our results to how the time trend is modeled.

Weather obviously has a huge effect on annual yields, but obtaining a parsimonious
measure of “good” or “bad” weather requires some care. For the US, Roberts and Schlenker
(2009) develop a parsimonious set of state-level variables that are highly correlated with
corn and soy yields. Yields are increasing in temperature approximately linearly up to a
threshold, above which they sharply decline. This piecewise linear growth is best captured
by the concept of degree days (see Section 5.1 for a definition). These unusually good weather
controls allow us to more precisely isolate the effect of price on yields.

We begin with a graphical analysis of US aggregate data and then turn to more detailed
statistical results on a panel dataset of US crop-producing states over time.

2.1 Aggregate US Data on Yield, Weather and Price

Data on aggregate US yields are displayed in Figure 1.2 Each panel of Figure 1 plots three
lines. The blue “Actual Yield” lines are the actual US yield data averaged over the entire
country for either corn or soybeans. The green lines are a simple smooth quadratic or spline
time trend fit to that data. The estimated yield trends are remarkably close to linear,
which is consistent with steady technological progress that changes very little with changes

1On one hand, third world farmers are likely far away from the technological frontier and so there are
probably greater potential yield gains. On the other hand, there is much evidence that third-world farmers
do not and/or cannot make economically efficient use of inputs like fertilizer. This may greatly limit any
price-responsive behavior of third-world farmers. On both points see Duflo, Kremer, and Robinson (2008)
and related literature.

2We generally model log yields as a function of time trends and weather. The graphs display the results
from a log-model that is transferred back to a linear scale for easier display.
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Figure 1: US Maize and Soybean Yields
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Notes: Figure displays actual yields (blue), a time trend (green) as well as yield predictions (red) from a
model using the same weather variables as in Table 1 and Table 2. The top row displays the results for
maize, the bottom for soybeans. The left column uses a quadratic time trend, while the right column uses
restricted cubic splines with 3 knots.

in medium-run market conditions (whereas price and land-use trends, not displayed, show
much more variability over the same time period.)

The red lines in Figure 1 are the predicted values of yields from a regression of yields (in
levels) on both the time trend variables and US weather variables that are inspired by Roberts
and Schlenker (2009). The figures show a remarkable fit of the trend plus weather data to
actual yields, for both maize and corn. Note that there is very little remaining variance for
price to “explain.” This is consistent with traditional agricultural economics models that
treat yields as functions of technology (measured by a time trend) and idiosyncratic weather.
This is also consistent with agronomic evidence (discussed in Berry (2011)) that the marginal
product of fertilizer, in the US, is very small (or even zero) at observed levels of use.
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2.2 US State-Level Panel Data

For more detailed statistical analysis, we now turn to a state-level panel dataset. The crop-
producing states used in the analysis are shown in Figure 2. Looking at each of the 30 states
across the time period 1961-2009 (up to 49 years) gives us more than 1400 observations, as
opposed to the annual data that has one observations per year.3

Figure 2: States in Analysis

Notes: Figure displays the states used in the state-level analysis in grey.

To obtain correct estimates of yield elasticities, Berry (2011) discusses the need for “in-
struments” that separately and exogenously shift supply and demand. (See, for example,
the standard undergraduate textbook treatment in Stock and Watson (2006).) In keeping
with standard econometric practice, to look at the “causal effect” of price on the supply side,
we need an “instrumental variable” that moves demand without directly affecting supply.
It is important that the instrument not be correlated with any unobserved determinants of
supply and that it do a good job of predicting changes in price. Intuitively, such a variable
shifts demand while supply is held, on average, constant. This allows us to “trace out” the

3The maximum number of observations is 30*49=1470. Since some states do not grow all crops in a given
year, especially at the beginning of the analysis, the number is slightly lower.

5



supply relationships.
Current-year weather is the classic supply-side instrument used in the identification of

demand: weather shifts supply while having little or no effect on demand. Roberts and
Schlenker (2010) propose the use of last year ’s yield shock (that is mostly due to weather) as
an instrument that effectively shifts the demand for new production while being uncorrelated
with the current year’s unobserved supply shock. The argument is that better than expected
yields last year are at lest partially placed into inventories that are held over to this year.
Crop inventories are an excellent demand-side substitute for newly produced crops. By this
argument, last year’s weather-induced yield shock should be a good instrument that moves
this year’s demand curve while being uncorrelated with the supply shock.

In our first results (columns (1a) and (1b) in Tables 1 and 2), we use last year’s observed
US weather as our “instrumental variable” that shifts demand but not current-year yields.4

US weather, in crop-producing states, is likely to be highly uncorrelated over time and
thus should be uncorrelated with any serially time-correlated yield shocks. Weather is not
observed at the time of planting and so does not effect input and land-use decisions at the
time of planting. This makes observed US weather it a potentially good instrument.

On the other hand, world prices are shifted by world aggregate weather events, and there
is a question about how well lagged US weather predicts current-year futures prices. Since
the US at present produces around 40% of global corn and soybeans production, US shocks
alone should have some explanatory power. This is partly an empirical question and we
find below that lagged US weather does a reasonably good job of predicting current prices.
However, world aggregate weather shocks likely predict prices even better and so we also use
three “yield residual” measures of the aggregate weather shock. One of these is the original
Roberts and Schlenker instrument, while the other two are designed to address the problem
of serially correlated yield shocks.

Table 1 and Table 2 present the results for corn and soybeans, respectively. Columns
vary by the time trends as well as the instrument for price. All regressions use instrumented
futures prices from the Chicago Board of trade at the average time of planting, i.e., prices
can vary by state as the planting dates vary by state.

This data improves on the existing aggregate data by including weather and “time-of-
planting” variables that vary by location. This more precise control of the aggregate weather
shock allows for potentially more precise measure of the price effect.

Note that while we have greatly increased the number of observed yields, the variance
in price is still mostly annual (with some small additional variation due to differences in
planting time.) In the regression results, standard errors are clustered by state and year, so
as to account for important correlated unobservables and so as to not exaggerate the effect
of the increased number of observations in the panel data, as opposed to the US aggregate
data.

The two tables give four sets of instruments (indicated by 1-4) as well as two different
time trends (indicated by a and b). The time trends are as follows: Columns (a) use a
quadratic time trend, while columns (b) use restricted cubic splines with 3 knots.

4The construction of US weather is further outlined in the appendix.
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Table 1: Regression of Log Corn Yields and Area Planted on Instrumented Price
Variable (1a) (1b) (2a) (2b) (3a) (3b) (4a) (4b)

Panel A: Regressing Log Yields on Instrumented Price
Instrumented Log Price 0.055 0.044 -0.007 -0.012 0.014 0.011 0.031 0.041

(0.125) (0.175) (0.064) (0.074) (0.065) (0.073) (0.120) (0.127)
Heat (100 Degree Days) -0.593∗∗∗ -0.595∗∗∗ -0.595∗∗∗ -0.598∗∗∗ -0.595∗∗∗ -0.597∗∗∗ -0.594∗∗∗ -0.595∗∗∗

(0.077) (0.083) (0.077) (0.084) (0.077) (0.084) (0.077) (0.083)
Mod. Temp (1000 Degree Days) 0.050 0.047 0.037 0.035 0.041 0.040 0.045 0.046

(0.191) (0.211) (0.185) (0.201) (0.185) (0.200) (0.187) (0.202)
Precipitation (m) 0.202 0.203 0.191 0.194 0.195 0.198 0.198 0.203

(0.531) (0.565) (0.531) (0.567) (0.531) (0.567) (0.533) (0.568)
Precipitation Squared -0.410 -0.411 -0.392 -0.395 -0.398 -0.402 -0.403 -0.410

(0.395) (0.411) (0.392) (0.410) (0.392) (0.411) (0.397) (0.415)

R2 0.7569 0.7578 0.7584 0.7590 0.7582 0.7588 0.7578 0.7579
Observations 1439 1439 1439 1439 1439 1439 1439 1439

Panel B: First Stage - Regressing Log Price on Instruments
Lag Shock -0.782∗∗∗ -0.779∗∗∗ -0.784∗∗∗ -0.779∗∗∗ -0.694∗∗ -0.704∗

(0.151) (0.224) (0.135) (0.197) (0.261) (0.378)
Lag US Heat (100 Degree Days) 0.491∗∗ 0.476

(0.211) (0.326)
Lag US Mod. Temp (1000 DDays) 0.069 0.087

(0.410) (0.643)
Lag US Precipitation (m) 1.410 1.533

(2.231) (3.379)
Lag US Precipitation Squared -0.494 -0.609

(2.008) (3.044)
Heat (100 Degree Days) 0.010 0.004 -0.020 -0.024 -0.052 -0.056 -0.016 -0.020

(0.085) (0.098) (0.086) (0.094) (0.074) (0.078) (0.088) (0.099)
Mod. Temp (1000 Degree Days) -0.209 -0.203 -0.237 -0.232 -0.233 -0.229 -0.229 -0.225

(0.210) (0.300) (0.179) (0.242) (0.173) (0.235) (0.197) (0.275)
Precipitation (m) 0.220 0.226 0.232 0.239 0.200 0.206 0.041 0.056

(0.613) (0.687) (0.489) (0.544) (0.491) (0.539) (0.556) (0.616)
Precipitation Squared 0.010 0.005 -0.066 -0.074 -0.018 -0.026 0.115 0.099

(0.452) (0.484) (0.364) (0.403) (0.363) (0.397) (0.408) (0.444)

R2 0.7521 0.7517 0.7757 0.7754 0.7845 0.7838 0.7453 0.7458
Observations 1439 1439 1439 1439 1439 1439 1439 1439
F-stat on Inst. 4.13 1.72 26.97 12.12 33.86 15.57 7.07 3.47
p-value on F .009064 .1727 .0000148 .001599 2.62e-06 .0004629 .0126 .07255

Panel C: Regressing Log Area Planted on Instrumented Price
Instrumented Log Price 0.252∗∗∗ 0.257∗∗ 0.298∗∗∗ 0.301∗∗∗ 0.230∗∗∗ 0.230∗∗∗ 0.293∗∗ 0.284∗∗

(0.098) (0.107) (0.067) (0.081) (0.087) (0.073) (0.144) (0.138)

R2 0.0254 0.0245 0.0223 0.0215 0.0264 0.0256 0.0227 0.0228
Observations 1439 1439 1439 1439 1439 1439 1439 1439
Time Trend Quad. 3 knots Quad. 3 knots Quad. 3 knots Quad. 3 knots

Notes: Table regresses state-level log corn yields (and area planted) on time trends, weather variables for the state, and instrumented prices.
Columns (a) us quadratic time trends, columns (b) use restricted cubic splines in time with 3 knots. The futures price at the time of planting
(varies by state) is instrumented with different variables. Columns (1) use the production-weighted lagged average weather in the US. Columns
(2) use world caloric shocks summed over all countries and the four commodity crops: maize, rice, soybeans, and wheat. Columns (3) are similar
to columns (2), but only use caloric shocks of the other three crops. Columns (4) use lagged residuals from a regression of yields on area (as well
as lagged area) as well as output and input (oil) prices for each country and crop in the world. Significance levels: ∗∗∗ 0.01; ∗∗ 0.05; and ∗ 0.1.

Columns (1a)-(1b) instrument futures price at the time of planting on lagged weather
outcomes in the United States for the same crop. If there was excessive heat in the previous
year as measured by the variable Lag US Heat (which is bad for crops), future prices generally
go up. Appendix 5.2 outlines how the weather variables were constructed. Using observed
weather as an instrument has the advantage that it is clearly exogenous and US weather is
unlikely to exhibit any important serial correlation. The disadvantage is that prices respond
not only to US weather, but to world weather. Unfortunately, we do not (as of yet) have
good weather data for the rest of the world.

Columns (2a)-(2b) instrument futures price at the time of planting on lagged world caloric
shocks. These regressions use new extended data from the Foreign Agricultural Service of
the United States Department of Agriculture, but follow the same methodology of Roberts-
Schlenker, i.e., yield shocks for each of the four staple crops (maize, rice, soybeans, wheat)
and each country (not just the big ones) are fit and then aggregated based on the caloric
production along a trend line for the crop. Countries and their production shares are given
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Table 2: Regression of Log Soybean Yields and Area Planted on Instrumented Price
Variable (1a) (1b) (2a) (2b) (3a) (3b) (4a) (4b)

Panel A: Regressing Log Yields on Instrumented Price
Instrumented Log Price 0.008 0.006 0.021 0.019 -0.010 -0.011 0.149 0.147

(0.066) (0.083) (0.089) (0.101) (0.088) (0.101) (0.112) (0.121)
Heat (100 Degree Days) -0.582∗∗∗ -0.583∗∗∗ -0.582∗∗∗ -0.583∗∗∗ -0.582∗∗∗ -0.583∗∗∗ -0.584∗∗∗ -0.584∗∗∗

(0.042) (0.052) (0.042) (0.052) (0.042) (0.052) (0.043) (0.053)
Mod. Temp (1000 Degree Days) 0.368∗∗∗ 0.367∗∗∗ 0.368∗∗∗ 0.367∗∗∗ 0.368∗∗∗ 0.367∗∗∗ 0.365∗∗∗ 0.364∗∗∗

(0.119) (0.131) (0.120) (0.131) (0.119) (0.131) (0.130) (0.139)
Precipitation (m) 1.356∗∗∗ 1.355∗∗∗ 1.359∗∗∗ 1.358∗∗∗ 1.351∗∗∗ 1.351∗∗∗ 1.391∗∗∗ 1.389∗∗∗

(0.382) (0.408) (0.376) (0.406) (0.373) (0.404) (0.395) (0.422)
Precipitation Squared -0.981∗∗∗ -0.980∗∗∗ -0.986∗∗∗ -0.986∗∗∗ -0.974∗∗∗ -0.974∗∗∗ -1.037∗∗∗ -1.034∗∗∗

(0.249) (0.272) (0.241) (0.270) (0.238) (0.268) (0.252) (0.280)

R2 0.6504 0.6505 0.6502 0.6502 0.6501 0.6502 0.6279 0.6284
Observations 1291 1291 1291 1291 1291 1291 1291 1291

Panel B: First Stage - Regressing Log Price on Instruments
Lag Shock -0.699∗∗∗ -0.691∗∗∗ -0.744∗∗∗ -0.739∗∗∗ -0.809∗∗∗ -0.833∗∗

(0.178) (0.222) (0.174) (0.219) (0.251) (0.304)
Lag US Heat (100 Degree Days) -0.054 -0.062

(0.269) (0.340)
Lag US Mod. Temp (1000 DDays) 1.223∗∗∗ 1.207∗∗

(0.423) (0.581)
Lag US Precipitation (m) -2.579 -2.456

(2.441) (3.170)
Lag US Precipitation Squared 2.621 2.496

(2.011) (2.610)
Heat (100 Degree Days) 0.064 0.058 0.041 0.034 0.026 0.019 0.053 0.045

(0.061) (0.083) (0.058) (0.079) (0.056) (0.075) (0.064) (0.085)
Mod. Temp (1000 Degree Days) 0.046 0.047 -0.009 -0.011 0.003 0.002 0.011 0.009

(0.274) (0.318) (0.248) (0.278) (0.245) (0.275) (0.270) (0.302)
Precipitation (m) 0.255 0.248 0.047 0.050 0.097 0.102 -0.015 -0.001

(0.532) (0.655) (0.548) (0.614) (0.533) (0.601) (0.605) (0.670)
Precipitation Squared 0.093 0.093 0.119 0.109 0.088 0.077 0.195 0.175

(0.415) (0.514) (0.428) (0.487) (0.419) (0.479) (0.456) (0.512)

R2 0.7427 0.7428 0.7150 0.7189 0.7193 0.7234 0.6989 0.7046
Observations 1291 1291 1291 1291 1291 1291 1291 1291
F-stat on Inst. 4.69 2.29 15.40 9.67 18.27 11.40 10.43 7.50
p-value on F .004828 .08349 .0004914 .004174 .0001892 .002109 .003073 .01044

Panel C: Regressing Log Area Planted on Instrumented Price
Instrumented Log Price 0.312∗∗∗ 0.292∗∗ 0.338∗∗ 0.333∗∗∗ 0.307∗ 0.310∗∗ 0.329∗∗ 0.357∗∗

(0.112) (0.129) (0.151) (0.106) (0.161) (0.121) (0.139) (0.147)

R2 0.2897 0.2869 0.2897 0.2869 0.2897 0.2870 0.2897 0.2866
Observations 1291 1291 1291 1291 1291 1291 1291 1291
Time Trend Quad. 3 knots Quad. 3 knots Quad. 3 knots Quad. 3 knots

Notes: Table regresses state-level log soybean yields (and area planted) on time trends, weather variables for the state, and instrumented prices.
Columns (a) us quadratic time trends, columns (b) use restricted cubic splines in time with 3 knots. The futures price at the time of planting
(varies by state) is instrumented with different variables. Columns (1) use the production-weighted lagged average weather in the US. Columns
(2) use world caloric shocks summed over all countries and the four commodity crops: maize, rice, soybeans, and wheat. Columns (3) are similar
to columns (2), but only use caloric shocks of the other three crops. Columns (4) use lagged residuals from a regression of yields on area (as well
as lagged area) as well as output and input (oil) prices for each country and crop in the world. Significance levels: ∗∗∗ 0.01; ∗∗ 0.05; and ∗ 0.1.

in Appendix 5.3, while the methodology is further described in Appendix5.4.5 The average
log caloric shock is divided by the fraction of a years production that is currently stored,
i.e., shocks are presumed to have a larger effect if storage levels are low. This method
for measuring “lagged weather” creates an instrument that is strongly correlated with the
current-year prices, but it is not valid if there are serially correlated shocks to yields.

Columns (3a)-(3b) instrument futures price at the beginning of planting on lagged world
caloric shocks just like columns (2a)-(2b), with one exception: Caloric shocks are derived from
the other three crops, e.g., the maize regression uses only lagged shocks for rice, soybeans,
and wheat. In case there was a technological break-through, yield shocks might be auto-
correlated. Using only shocks from other crops circumvents this problem if technological
innovations are not correlated between crops, as seems relatively reasonable.

To measure aggregate weather shocks in the face of other (unobserved to us) yield shocks

5The baseline model use caloric conversion rates between crops that are derived by setting the average
price per calory to be the same in 1961-2010. In a sensitivity check (available upon request) we use the
conversion ratios of Williamson and Williamson (1942) and obtain comparable results.
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that are correlated across both time and crops, we make use of new method (part of an on-
going research agenda) that uses proxy variables to control for unobserved correlated supply
and demand shocks. The method is similar to the proxy production function estimation
method introduced in the classic paper of Olley and Pakes (1996). In this method, we
supplement the time trend in the Roberts and Schlenker (2010) paper with four additional
variables that are intended to proxy for the effects of serially correlated demand and supply
shocks. These are the log futures price, the log of harvested area, lagged log area and oil
prices.6. This last shifts the price of inputs like fertilizer. Columns (4a)-(4b) make use of
the this new lagged “weather” (yield-residual) instrument, which ought to be considered still
somewhat experimental.

None of the estimated net yield-price elasticity coefficients are statistically significantly
different from zero in Panel A. In some cases, the coefficients are sufficiently precisely esti-
mated to statistically reject a net yield elasticity as high as 0.25.

In discussing the results, it is important to look at the F-statistics of the first-stage
regressions in Panel B, which indicate whether the instruments are “strong enough” to
produce reliable results. We begin with the corn yield results, ignoring the “experimental”
columns (4a)-(4b) for now. The “p values” for the F-test (found at’ at the bottom of the
table), which we hope to be quite small, are particularly encouraging for columns (2a) and
(3a). The results in (2a) might be biased by serially correlated yield shocks, so the results
in (3a) would be preferred. This result shows a slightly negative point-estimate of the net
yield-price elasticity, which is reasonable if newly farmed land is sufficiently less productive
than existing land.

Recall that the numbers in Panel A reflect net yield-price elasticities, as they are averaged
over the growing area in a county, which itself might change as prices changes. Panel C
examines this directly: it is the same regression as Panel A with a different dependent
variable: log area planted instead of log yield. Note that we find a highly significant area-
price elasticity of 0.25-0.3. These are own-crop elasticities and one might reasonably wonder
if total crop elasticity would be substantially lower, as some of the own-crop elasticity could
reflect cross-crop substitution. Table (4), discussed more below, looks at the total crop land
elasticity across various countries and finds very similar US land elasticities, in the range of
0.27.

The crop-land elasticity estimates allow us to derive an implied on the direct yield-price
elasticity for existing land because the (i) net yield elasticity is function of the (ii) direct yield-
price elasticity; the (iii) area-yield elasticity; and (iv) the yield reduction on new marginal
land. If we assume various values for (iv), we can solve for (ii). For example, if the area-
price elasticity is 0.25 and the yields are roughly two-thirds on the new marginal land, the
direct yield-price elasticity is 0.08. If yields on marginal land are higher, or if the crop-yield
elasticity is lower, the direct yield-price elasticity will be lower.

Turning next to the soybean table, we note that the pattern of F-statistics across columns
is similar to the results for corn. In columns (1)-(3), the point estimates of the yield elastic-

6We use the average price of the Western Texas Intermediate oil averaged over the growing season March-
August
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ities are all very small in absolute value.
Turning finally to the more experimental results in columns (4a)-(4b), for both corn and

soy, we see that the F-stats in the first-stage regressions are slightly better than for columns
(1), but worse than in columns (2) or (3). This may be because on one hand a measurement
of “world weather” is better than using just US weather, but on the other hand outside
of the US we have access only to a limited amount of time-series data and the coefficients
on the proxy variables in the original country-specific yield equations may, in at least some
cases, be somewhat badly estimated.

For both corn and soy, the experimental column (4) estimates are not statistically signifi-
cantly different from zero. In the case of corn, the point estimates are smaller as compared to
column 1(a), but the in case of soybeans, we see the only point estimates (across all tables)
that exceed 0.1. However, the average of our soybean yield-price elasticity estimates across
the first row of table 2 is still quite small and there seems to be no reason, for either corn or
soy, to privilege our most experimental estimates.

3 Fertilizer and Crop Prices

One plausible mechanism for a substantial yield-price elasticity is that farmers make greater
use of productive inputs in response to a price increase. Fertilizer is frequently suggested as
an input that will respond to price (however, again see Berry (2011) for possible counter-
arguments.) While this effect could be offset by the lower productivity of new land, there is
still an interesting question of whether fertilizer in fact varies systematically with price.

Table (3) shows instrumental variable regressions of fertilizer use per area on instrumented
price. The Foreign Agricultural Service does not report fertilizer use, and we hence rely on
data from the FAO but pair it with the same yield shocks from the previous section. FAO
reports total fertilizer use up until 2002 when reporting stopped and our data set hence spans
42 years: 1961-2002. These data are not crop-specific, but crop prices are highly correlated
and hence fertilizer use should change for crops synchronously. We regress log fertilizer use
per area (the log of the ration of total fertilizer use to the sum of the growing area for the
four crops) on instrumented prices.

Columns (1a) and (1b) use world caloric shocks - analogous to columns (2a) and (2b) in
Tables 1 and 2 above. Since we are looking at individual countries in Panels B-F, we add a
second specification where we use the lagged caloric shocks from all other countries in columns
(2a) and (2b). For example, the regression for the United States uses only caloric shocks
from all other countries than the United States. Note how the F-stat decreases significantly,
which is not surprising as the United States produce 23% of global caloric production from
the four commodities.

The resulting coefficient estimates have unstable signs and are never positive and sig-
nificantly different from zero. While we do not want to over-emphasize these preliminary
results, this finding is again consistent with yields that do not vary with price.
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Table 3: Fertilizer Use as Function of Commodity Price
(1a) (1b) (2a) (2b) (1a) (1b) (2a) (2b)

Panel A: World Panel B: United States
Instrumented Log Price -0.048 -0.090 -0.109 -0.117 0.192 0.216

(0.078) (0.076) (0.146) (0.155) (0.255) (0.277)
R2 0.9794 0.9817 0.5298 0.4991 0.3152 0.2589
Observations 42 42 42 42 42 42
F-stat on Inst. 16.69 16.12 16.69 16.12 6.45 6.05
p-value on F 2.2e-04 2.7e-04 2.2e-04 2.7e-04 .0153 .0185

Panel C: Brazil Panel D: China
Instrumented Log Price 0.056 0.002 0.036 -0.016 -0.023 -0.079 0.202 0.213

(0.350) (0.357) (0.351) (0.358) (0.212) (0.223) (0.327) (0.347)
R2 0.8978 0.8995 0.8968 0.8986 0.9821 0.9814 0.9779 0.9757
Observations 42 42 42 42 42 42 42 42
F-stat on Inst. 16.69 16.12 16.78 16.28 16.69 16.12 7.19 7.27
p-value on F 2.2e-04 2.7e-04 2.1e-04 2.5e-04 2.2e-04 2.7e-04 .0108 .0104

Panel E: India Panel F: Thailand
Instrumented Log Price -0.241 -0.296 -0.401∗∗ -0.481∗∗ -0.663∗∗ -0.686∗ -0.661∗∗ -0.684∗

(0.165) (0.193) (0.198) (0.233) (0.336) (0.364) (0.334) (0.361)
R2 0.9866 0.9827 0.9858 0.9813 0.9622 0.9581 0.9622 0.9581
Observations 42 42 42 42 42 42 42 42
F-stat on Inst. 16.69 16.12 11.17 10.82 16.69 16.12 17.02 16.47
p-value on F 2.2e-04 2.7e-04 .0019 .0022 2.2e-04 2.7e-04 1.9e-04 2.4e-04
Time Trend Quad. 3 knots Quad. 3 knots Quad. 3 knots Quad. 3 knots

Notes: Table regresses the log of total fertilizer use for all crops per total growing area on instrumented prices as well as time trends.
Columns (a) use quadratic time trends, columns (b) use restricted cubic splines in time with 3 knots. The futures price as traded at the end of the
previous year is instrumented with different variables. Columns (1) use world caloric shocks summed over all countries and the four commodity
crops: maize, rice, soybeans, and wheat. Columns (2) is similar to columns (2), but only countries except for the country in question are used
(e.g., columns (2a) and (2b) in Panel B - United States - adds shocks of all four commodities for all countries besides the United States).

4 World Regional Results

In this section, we use Roberts and Schlenker (2010) style lagged yield-residual instruments
to consider yield-price and area-price elasticities for a variety of crops and countries around
the world.

Looking at Tables (4) through (8), notice that there is first a table that considers all
crops aggregated together followed by a table for each of four crops: maize, soy, wheat and
rice. Within each table, there is a panel of results for each of the large producing countries.
Yield and area elasticities are presented for a combination of instruments and time trend
specifications. In the crop specific tables, columns (2a)-(2b) use an instrument that is robust
to serial correlation in unobserved own-crop yield factors and so they may be preferred. The
aggregate crop results use only the original Robert-Schlenker instrument. We have not as of
yet considered a version of the “experimental” proxy method that was presented for the US
panel data.

As compared to our US results, the absence of high-quality weather data leads us to
place less emphasis on the results of this section. As opposed to our previous state-level
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panel data, the datasets in this section are pure time-series. We can summarize the time-
series world / regional / crop results of Tables 4 through 8 as follows. First, the broad
pattern of very little evidence of large positive yield-price elasticities continues to hold.
There are some interesting possible exceptions: some positive yield elasticity results for
Brazil and some negative elasticities for China. Second, we note that the time-series results
for corn and soybeans in the United States are quite comparable to our previous state-level
panel analysis: we find a significant area-price elasticity, but not a significant net yield-price
elasticity. Third, in addition to the fairly large area elasticities in the US (also found for some
other exporting crop / country combinations), we see very large estimated land elasticities
for Brazilian soybeans.

We now turn to a brief discussion of each of the tables of this section.
Table (4) considers crops aggregated by caloric content, with Panel A first considering

aggregation to the World level. The Panel A results point to a net yield elasticity that is
precisely estimated at a value of almost exactly zero (just slightly negative.) The World area
elasticity is about 0.09 and again quite precisely estimated. As in Roberts and Schlenker
(2010), this suggests an overall supply elasticity of a little less than 0.1, with the entirety of
price-induced supply coming from increased area. The remaining panels look at aggregate
crops in major producing countries. In the US, yield and area elasticities are similar to
those previously reported from the US panel data. Estimated Brazilian yield elasticities
are somewhat large but imprecisely estimated, while estimated Brazilian area elasticities are
somewhat higher than in the US and statistically significantly different from zero. China
shows statistically significant negative yield elasticities, while Thailand has an estimated
aggregate crop-land elasticity that is similar to the US.

Turning to crop-specific results, in Table 5, we see that maize yield-elasticity estimates
are statistically significantly different from zero in no country, whereas land area elasticities
are highly significant for the US and China, although not for other countries.

Table (6) considers country-specific elasticities for soybeans. The only highly statistically
significant results are for land area elasticities in Brazil, China and Argentina. The estimated
soy-land elasticities in Brazil and Argentina are extremely high, while the somewhat negative
soy-land elasticities in China are somewhat odd (and might indicate cross-crop competition
in the face of prices that are correlated across crops.) Point estimates of net yield elasticities
are fairly high in Brazil (over 0.2) and are marginally statistically significant. These yield
results, together with area elasticities that are over 4 times as high, suggest that further
research on Brazilian soybeans would be desirable. However, the very marginal statistical
significance of the current yield result makes it hard to draw any firm conclusions as to
whether soybean yield elasticities in Brazil are actually particularly high. One possibility to
be explored is that, in the case of Brazilian soybeans, the apparently large quantity of “new
land” attracted by high prices is of higher than average productivity, driving up average
yields. This could be because land in Amazonian Brazil is often cultivated because it is
close to transportation rather than because it is necessary the most productive land in the
country. For the purpose of carbon accounting, it would also be very important to know
what kind of land is being drawn into soy production and whether high yields are sustainable
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over a long period of time.
In Tables (7) and (8), covering wheat and rice respectively, the only statistically signifi-

cant yield elasticity estimates involve China and are negative. The statistical significance of
the negative yield-price elasticity for Chinese wheat and rice are not consistent across (col-
umn) specifications and might be a statistical artifact. Alternatively, “new land” in China
may be relatively unproductive, at least in the case of wheat and rice. US wheat-land elas-
ticities are highly significantly positive, as are Thai rice-land elasticities. Note that Thailand
is a major rice exporter.

Overall, the land-elasticity results are roughly consistent with the idea that land-elasticities
are high in countries that are important exporters of a particular crop, but closer to zero for
other crop / country combinations.
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Table 4: Regression of Log Yields and Log Total Growing Area on Instrumented Price

Explaining Log Yield Explaining Log Area
Variable (1a) (1b) (1a) (1b)

Panel A: World
Instrumented Log Price -0.010 -0.013 0.091∗∗∗ 0.089∗∗∗

(0.027) (0.027) (0.027) (0.027)
R2 0.9943 0.9944 0.9580 0.9564
Observations 50 50 50 50
F-stat on Inst. 12.82 12.69 12.82 12.69
p-value on F 8.2e-04 8.7e-04 8.2e-04 8.7e-04

Panel B: United States
Instrumented Log Price -0.033 -0.033 0.272∗∗∗ 0.267∗∗∗

(0.091) (0.091) (0.084) (0.090)
R2 0.9153 0.9151 0.8736 0.8569
Observations 50 50 50 50
F-stat on Inst. 12.82 12.69 12.82 12.69
p-value on F 8.2e-04 8.7e-04 8.2e-04 8.7e-04

Panel C: Brazil
Instrumented Log Price 0.152 0.155 0.397∗∗∗ 0.388∗∗∗

(0.103) (0.103) (0.126) (0.125)
R2 0.9654 0.9653 0.9364 0.9377
Observations 50 50 50 50
F-stat on Inst. 12.82 12.69 12.82 12.69
p-value on F 8.2e-04 8.7e-04 8.2e-04 8.7e-04

Panel D: China
Instrumented Log Price -0.127∗∗ -0.135∗∗ 0.043 0.040

(0.065) (0.063) (0.055) (0.056)
R2 0.9817 0.9831 0.7672 0.7523
Observations 50 50 50 50
F-stat on Inst. 12.82 12.69 12.82 12.69
p-value on F 8.2e-04 8.7e-04 8.2e-04 8.7e-04

Panel E: Thailand
Instrumented Log Price -0.031 -0.027 0.245∗∗∗ 0.238∗∗∗

(0.062) (0.060) (0.081) (0.077)
R2 0.9274 0.9302 0.9066 0.9152
Observations 50 50 50 50
F-stat on Inst. 12.82 12.69 12.82 12.69
p-value on F 8.2e-04 8.7e-04 8.2e-04 8.7e-04
Time Trend Quad. 3 knots Quad. 3 knots

Notes: Table regresses country-level log yields and log growing area on time trends and instrumented prices. Production of the four commodities
is aggregated by converting them all into calories. Columns (a) use quadratic time trends, columns (b) use restricted cubic splines in time with 3
knots. All columns use world caloric shocks summed over all countries and the four commodity crops: maize, rice, soybeans, and wheat. Significance
levels: ∗∗∗ 0.01; ∗∗ 0.05; and ∗ 0.1.
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Table 5: Regression of Log Maize Yields and Log Growing Area on Instrumented Price
Explaining Log Yield Explaining Log Area

Variable (1a) (1b) (2a) (2b) (1a) (1b) (2a) (2b)

Panel A: United States
Instrumented Log Price 0.005 0.004 0.004 0.004 0.262∗∗∗ 0.261∗∗∗ 0.238∗∗∗ 0.238∗∗∗

(0.120) (0.121) (0.115) (0.116) (0.083) (0.084) (0.079) (0.079)
R2 0.8844 0.8839 0.8844 0.8840 0.7126 0.7114 0.7185 0.7174
Observations 50 50 50 50 50 50 50 50
F-stat on Inst. 12.82 12.69 14.51 14.19 12.82 12.69 14.51 14.19
p-value on F 8.2e-04 8.7e-04 4.1e-04 4.7e-04 8.2e-04 8.7e-04 4.1e-04 4.7e-04

Panel B: China
Instrumented Log Price -0.042 -0.051 -0.101 -0.105 0.149∗∗ 0.151∗∗ 0.171∗∗∗ 0.173∗∗∗

(0.091) (0.087) (0.091) (0.087) (0.062) (0.062) (0.060) (0.060)
R2 0.9741 0.9768 0.9716 0.9747 0.9508 0.9515 0.9499 0.9506
Observations 50 50 50 50 50 50 50 50
F-stat on Inst. 12.82 12.69 14.51 14.19 12.82 12.69 14.51 14.19
p-value on F 8.2e-04 8.7e-04 4.1e-04 4.7e-04 8.2e-04 8.7e-04 4.1e-04 4.7e-04

Panel C: Brazil
Instrumented Log Price 0.091 0.095 0.070 0.074 -0.008 -0.012 -0.008 -0.012

(0.092) (0.091) (0.087) (0.086) (0.085) (0.084) (0.081) (0.080)
R2 0.9616 0.9627 0.9621 0.9632 0.8468 0.8508 0.8467 0.8507
Observations 49 49 49 49 49 49 49 49
F-stat on Inst. 12.59 12.47 14.22 14.10 12.59 12.47 14.22 14.10
p-value on F 9.2e-04 9.7e-04 4.7e-04 5.0e-04 9.2e-04 9.7e-04 4.7e-04 5.0e-04

Panel D: Former USSR
Instrumented Log Price 0.059 0.062 0.055 0.063 -0.310 -0.325 -0.226 -0.273

(0.194) (0.195) (0.224) (0.225) (0.320) (0.335) (0.358) (0.379)
R2 0.5894 0.5861 0.5906 0.5857 0.5585 0.5175 0.5906 0.5385
Observations 26 26 26 26 26 26 26 26
F-stat on Inst. 9.36 9.41 6.28 6.36 9.36 9.41 6.28 6.36
p-value on F .0057 .0056 .0201 .0194 .0057 .0056 .0201 .0194

Panel E: Mexico
Instrumented Log Price -0.044 -0.042 -0.103 -0.102 0.158 0.162 0.160 0.168

(0.106) (0.106) (0.098) (0.099) (0.130) (0.131) (0.124) (0.125)
R2 0.9627 0.9626 0.9650 0.9650 -0.0214 -0.0285 -0.0235 -0.0355
Observations 50 50 50 50 50 50 50 50
F-stat on Inst. 12.82 12.69 14.51 14.19 12.82 12.69 14.51 14.19
p-value on F 8.2e-04 8.7e-04 4.1e-04 4.7e-04 8.2e-04 8.7e-04 4.1e-04 4.7e-04
Time Trend Quad. 3 knots Quad. 3 knots Quad. 3 knots Quad. 3 knots

Notes: Table regresses country-level log yields and log growing area on time trends and instrumented prices. Columns (a) use quadratic time
trends, columns (b) use restricted cubic splines in time with 3 knots. The futures price as traded at the end of the previus year is instrumented
with different variables. Columns (1) use world caloric shocks summed over all countries and the four commodity crops: maize, rice, soybeans,
and wheat. Columns (2) is similar to columns (2), but only use caloric shocks of the other three crops. Significance levels: ∗∗∗ 0.01; ∗∗ 0.05; and
∗ 0.1.
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Table 6: Regression of Log Soybean Yields and Log Growing Area on Instrumented Price
Explaining Log Yield Explaining Log Area

Variable (1a) (1b) (2a) (2b) (1a) (1b) (2a) (2b)

Panel A: United States
Instrumented Log Price -0.002 -0.003 -0.040 -0.041 0.196∗ 0.204∗ 0.187∗ 0.201∗

(0.091) (0.091) (0.091) (0.092) (0.107) (0.110) (0.109) (0.113)
R2 0.8462 0.8464 0.8508 0.8510 0.8396 0.8301 0.8392 0.8301
Observations 46 46 46 46 46 46 46 46
F-stat on Inst. 12.58 12.42 12.05 11.79 12.58 12.42 12.05 11.79
p-value on F 9.7e-04 .001 .0012 .0014 9.7e-04 .001 .0012 .0014

Panel B: Brazil
Instrumented Log Price 0.222 0.226∗ 0.269∗ 0.275∗ 1.153∗∗∗ 1.210∗∗∗ 1.143∗∗∗ 1.230∗∗∗

(0.135) (0.137) (0.144) (0.146) (0.319) (0.350) (0.328) (0.363)
R2 0.8862 0.8845 0.8790 0.8765 0.9380 0.9262 0.9383 0.9255
Observations 45 45 45 45 45 45 45 45
F-stat on Inst. 12.29 12.10 11.42 11.14 12.29 12.10 11.42 11.14
p-value on F .0011 .0012 .0016 .0018 .0011 .0012 .0016 .0018

Panel C: China
Instrumented Log Price -0.150 -0.146 -0.146 -0.138 -0.179∗∗ -0.184∗∗ -0.189∗∗ -0.199∗∗

(0.102) (0.103) (0.104) (0.105) (0.076) (0.078) (0.078) (0.080)
R2 0.8944 0.8928 0.8944 0.8928 0.6440 0.6328 0.6410 0.6270
Observations 46 46 46 46 46 46 46 46
F-stat on Inst. 12.58 12.42 12.05 11.79 12.58 12.42 12.05 11.79
p-value on F 9.7e-04 .001 .0012 .0014 9.7e-04 .001 .0012 .0014

Panel D: Argentina
Instrumented Log Price 0.075 0.087 0.096 0.114 1.268∗∗∗ 1.369∗∗∗ 1.170∗∗∗ 1.331∗∗∗

(0.174) (0.177) (0.179) (0.183) (0.391) (0.398) (0.401) (0.409)
R2 0.7800 0.7772 0.7800 0.7766 0.9795 0.9791 0.9796 0.9793
Observations 45 45 45 45 45 45 45 45
F-stat on Inst. 12.29 12.10 11.42 11.14 12.29 12.10 11.42 11.14
p-value on F .0011 .0012 .0016 .0018 .0011 .0012 .0016 .0018

Panel E: India
Instrumented Log Price 0.358 0.381 0.419 0.450 0.182 0.357∗ 0.133 0.348∗

(0.254) (0.263) (0.276) (0.290) (0.192) (0.187) (0.208) (0.199)
R2 0.3978 0.3902 0.3616 0.3471 0.9935 0.9942 0.9932 0.9942
Observations 41 41 41 41 41 41 41 41
F-stat on Inst. 12.06 11.37 10.47 9.71 12.06 11.37 10.47 9.71
p-value on F .0013 .0018 .0026 .0035 .0013 .0018 .0026 .0035
Time Trend Quad. 3 knots Quad. 3 knots Quad. 3 knots Quad. 3 knots

Notes: Table regresses country-level log yields and log growing area on time trends and instrumented prices. Columns (a) us quadratic time
trends, columns (b) use restricted cubic splines in time with 3 knots. The futures price as traded at the end of the previous year is instrumented
with different variables. Columns (1) use world caloric shocks summed over all countries and the four commodity crops: maize, rice, soybeans,
and wheat. Columns (2) is similar to columns (2), but only use caloric shocks of the other three crops. Significance levels: ∗∗∗ 0.01; ∗∗ 0.05; and
∗ 0.1.
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Table 7: Regression of Log Wheat Yields and Log Growing Area on Instrumented Price
Explaining Log Yield Explaining Log Area

Variable (1a) (1b) (2a) (2b) (1a) (1b) (2a) (2b)

Panel A:Former USSR
Instrumented Log Price -0.188 -0.192 -0.320 -0.346 0.135∗ 0.139∗ 0.022 0.019

(0.243) (0.238) (0.215) (0.213) (0.081) (0.084) (0.062) (0.066)
R2 0.6185 0.6334 0.6231 0.6375 0.7938 0.7768 0.8472 0.8309
Observations 26 26 26 26 26 26 26 26
F-stat on Inst. 9.36 9.41 13.33 12.93 9.36 9.41 13.33 12.93
p-value on F .0057 .0056 .0014 .0016 .0057 .0056 .0014 .0016

Panel B: China
Instrumented Log Price -0.115 -0.126 -0.233∗∗ -0.254∗∗ -0.047 -0.054 -0.008 -0.021

(0.108) (0.105) (0.117) (0.115) (0.075) (0.071) (0.066) (0.063)
R2 0.9801 0.9815 0.9731 0.9740 0.6591 0.6953 0.6884 0.7203
Observations 50 50 50 50 50 50 50 50
F-stat on Inst. 12.82 12.69 15.61 15.52 12.82 12.69 15.61 15.52
p-value on F 8.2e-04 8.7e-04 2.7e-04 2.8e-04 8.2e-04 8.7e-04 2.7e-04 2.8e-04

Panel C: United States
Instrumented Log Price -0.066 -0.068 -0.061 -0.065 0.365∗∗∗ 0.357∗∗∗ 0.352∗∗∗ 0.335∗∗∗

(0.088) (0.088) (0.081) (0.081) (0.096) (0.095) (0.089) (0.087)
R2 0.8528 0.8533 0.8538 0.8540 0.7604 0.7672 0.7625 0.7708
Observations 50 50 50 50 50 50 50 50
F-stat on Inst. 12.82 12.69 15.61 15.52 12.82 12.69 15.61 15.52
p-value on F 8.2e-04 8.7e-04 2.7e-04 2.8e-04 8.2e-04 8.7e-04 2.7e-04 2.8e-04

Panel D: India
Instrumented Log Price -0.113 -0.119 -0.062 -0.074 0.010 0.004 0.072 0.060

(0.081) (0.081) (0.075) (0.075) (0.072) (0.071) (0.063) (0.062)
R2 0.9771 0.9774 0.9769 0.9772 0.9486 0.9506 0.9542 0.9555
Observations 50 50 50 50 50 50 50 50
F-stat on Inst. 12.82 12.69 15.61 15.52 12.82 12.69 15.61 15.52
p-value on F 8.2e-04 8.7e-04 2.7e-04 2.8e-04 8.2e-04 8.7e-04 2.7e-04 2.8e-04

Panel E: Canada
Instrumented Log Price 0.240 0.241 -0.109 -0.109 -0.038 -0.048 -0.195 -0.212

(0.203) (0.204) (0.193) (0.193) (0.218) (0.212) (0.205) (0.200)
R2 0.5883 0.5853 0.5686 0.5678 0.2045 0.2454 0.1808 0.2186
Observations 50 50 50 50 50 50 50 50
F-stat on Inst. 12.82 12.69 15.61 15.52 12.82 12.69 15.61 15.52
p-value on F 8.2e-04 8.7e-04 2.7e-04 2.8e-04 8.2e-04 8.7e-04 2.7e-04 2.8e-04

Time Trend Quad. 3 knots Quad. 3 knots Quad. 3 knots Quad. 3 knots
Notes: Table regresses country-level log yields and log growing area on time trends and instrumented prices. Columns (a) use quadratic time
trends, columns (b) use restricted cubic splines in time with 3 knots. The futures price as traded at the end of the previous year is instrumented
with different variables. Columns (1) use world caloric shocks summed over all countries and the four commodity crops: maize, rice, soybeans,
and wheat. Columns (2) is similar to columns (2), but only use caloric shocks of the other three crops. Significance levels: ∗∗∗ 0.01; ∗∗ 0.05; and
∗ 0.1.
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Table 8: Regression of Log Rice Yields and Log Growing Area on Instrumented Price
Explaining Log Yield Explaining Log Area

Variable (1a) (1b) (2a) (2b) (1a) (1b) (2a) (2b)

Panel A: China
Instrumented Log Price -0.165∗∗ -0.171∗∗ 0.021 0.001 0.094∗ 0.090 -0.026 -0.040

(0.071) (0.069) (0.157) (0.149) (0.055) (0.058) (0.157) (0.163)
R2 0.9717 0.9735 0.9700 0.9723 0.7216 0.6927 0.5099 0.4615
Observations 50 50 50 50 50 50 50 50
F-stat on Inst. 12.82 12.69 2.28 2.30 12.82 12.69 2.28 2.30
p-value on F 8.2e-04 8.7e-04 .1382 .1363 8.2e-04 8.7e-04 .1382 .1363

Panel B: India
Instrumented Log Price -0.020 -0.021 0.140 0.136 0.034 0.033 0.080 0.076

(0.093) (0.093) (0.246) (0.243) (0.032) (0.032) (0.079) (0.079)
R2 0.9372 0.9376 0.9058 0.9069 0.8899 0.8877 0.8515 0.8524
Observations 50 50 50 50 50 50 50 50
F-stat on Inst. 12.82 12.69 2.28 2.30 12.82 12.69 2.28 2.30
p-value on F 8.2e-04 8.7e-04 .1382 .1363 8.2e-04 8.7e-04 .1382 .1363

Panel C: Indonesia
Instrumented Log Price 0.003 -0.006 0.178 0.158 -0.051 -0.052 -0.002 -0.008

(0.085) (0.076) (0.212) (0.191) (0.036) (0.036) (0.080) (0.080)
R2 0.9491 0.9597 0.9311 0.9438 0.9769 0.9764 0.9750 0.9748
Observations 50 50 50 50 50 50 50 50
F-stat on Inst. 12.82 12.69 2.28 2.30 12.82 12.69 2.28 2.30
p-value on F 8.2e-04 8.7e-04 .1382 .1363 8.2e-04 8.7e-04 .1382 .1363

Panel D: Bangladesh
Instrumented Log Price 0.005 0.009 0.084 0.098 0.038 0.038 -0.014 -0.015

(0.059) (0.060) (0.150) (0.153) (0.045) (0.045) (0.105) (0.104)
R2 0.9788 0.9782 0.9702 0.9685 0.7367 0.7363 0.6927 0.6915
Observations 50 50 50 50 50 50 50 50
F-stat on Inst. 12.82 12.69 2.28 2.30 12.82 12.69 2.28 2.30
p-value on F 8.2e-04 8.7e-04 .1382 .1363 8.2e-04 8.7e-04 .1382 .1363

Panel E: Thailand
Instrumented Log Price -0.038 -0.035 0.095 0.102 0.250∗∗∗ 0.245∗∗∗ 0.337 0.324

(0.059) (0.058) (0.164) (0.163) (0.080) (0.078) (0.207) (0.199)
R2 0.9255 0.9273 0.8755 0.8751 0.8874 0.8919 0.8366 0.8469
Observations 50 50 50 50 50 50 50 50
F-stat on Inst. 12.82 12.69 2.28 2.30 12.82 12.69 2.28 2.30
p-value on F 8.2e-04 8.7e-04 .1382 .1363 8.2e-04 8.7e-04 .1382 .1363
Time Trend Quad. 3 knots Quad. 3 knots Quad. 3 knots Quad. 3 knots

Notes: Table regresses country-level log yields and log growing area on time trends and instrumented prices. Columns (a) us quadratic time
trends, columns (b) use restricted cubic splines in time with 3 knots. The futures price as traded at the end of the previous year is instrumented
with different variables. Columns (1) use world caloric shocks summed over all countries and the four commodity crops: maize, rice, soybeans,
and wheat. Columns (2) is similar to columns (2), but only use caloric shocks of the other three crops. Significance levels: ∗∗∗ 0.01; ∗∗ 0.05; and
∗ 0.1.
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5 Appendix

5.1 Degree Days

Degree days are a linear transformation of temperature between two boundaries. For ex-
ample, degree days 10-29◦C count how much temperatures are above 10◦C for each day
of the growing season, with an upper limit of 29◦C. For example, all temperatures below
10◦C equals 0 degree days 10-29◦C; a temperature of 11◦C equals 1 degree days 10-29◦C; a
temperature of 12◦C equals 2 degree days 10-29◦C; and any temperature of 29◦C or higher
equals 19 degree days 10-29◦C.

5.2 US Weather

US weather is constructed in the following way:

(i) Schlenker and Roberts (2009) construct a detailed weather data sets that construct
daily weather measures on a 2.5x2.5 mile grid for the contiguous United States.

(ii) The weather measures where added for the growing season March-August to get total
degree days as well as total precipitation for the season.

(iii) A satellite scan revealed how much cropland area was given in each 2.5x2.5 mile grid
cell. The weather outcome for a county is simply the area-weighted average of all
grid cells whose centroids fall within a county. Note that the cropland-area is overall
cropland and not crop-specific.

(iv) Both state and US aggregate weather data are weighted averages of the county data in
step (iii). Our models link log yields to weather, i.e., a weather variable has constant
relative impact on yields. Prices are determined by the overall yield shortfall, and
hence having a bad weather event in a high-productivity area will have great impacts
on the overall price level than the same bad weather event in a low-productivity area.

Specifically, we fit state-specific quadratic yields trends (restricted cubic splines with 3
knots) to derive predicted yields in each year. Each county is weighted by it’s predicted
production, which is the predicted yield times the actual area (a sensitivity check using
lagged area or area along a recited trend gave indistinguishable results).
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5.3 FAS Data

Table A1 A4 list the countries in the data of the Foreign Agricultural Service (FAS)7 that
on average produce at least 0.1% of world production.8

The first three columns of each Table gives the average, minimum and maximum share
of world production of the country. The last three columns give the number of observations
that were available, as well as the first and last year for which they were available.

The Foreign Agricultural Service gives yields for marketing years, which might differ from
calendar years. A marketing year usually starts with the month when a nw harvest becomes
available. Since countries in the Northern hemisphere are responsible for a larger share of
global production, we chose the end of the calendar year as our cutoff value. Production
quantities are assigned to the calendar year if the marketing year starts in February or
later and to the previous year if the start in January. For inventory levels we use a linear
approximation between the start and end month of the marketing year to derive the inventory
level in December.

Table A1: Countries in Foreign Agricultural Data Set with Soybean Yields

Fraction of World Production Range of Years
Country Avg. Min Max Obs. Min Max
United States Of America 54.66% 32.84% 73.41% 47 1964 2010
Brazil 17.28% 1.59% 29.54% 46 1965 2010
China 11.83% 5.70% 27.47% 47 1964 2010
Argentina 8.05% 0.05% 22.00% 46 1965 2010
Peru 2.09% 0.00% 100.00% 48 1963 2010
India 1.89% 0.03% 4.27% 42 1969 2010
Paraguay 1.12% 0.03% 3.04% 46 1965 2010
Canada 1.09% 0.44% 1.85% 47 1964 2010
Indonesia 0.91% 0.27% 1.65% 47 1964 2010
Ussr 0.89% 0.48% 1.61% 23 1964 1986
Italy 0.76% 0.01% 1.69% 10 1981 1990
Mexico 0.41% 0.04% 0.98% 47 1964 2010
Russian Federation 0.36% 0.19% 0.72% 24 1987 2010
Bolivia 0.35% 0.00% 0.93% 42 1969 2010
North Korea 0.32% 0.05% 0.75% 47 1964 2010
South Korea 0.26% 0.04% 0.61% 47 1964 2010
Romania 0.25% 0.01% 0.57% 35 1964 1998
Japan 0.23% 0.07% 0.84% 47 1964 2010
Thailand 0.21% 0.05% 0.65% 46 1965 2010
Ukraine 0.15% 0.01% 0.63% 24 1987 2010
Nigeria 0.13% 0.02% 0.24% 47 1964 2010
Colombia 0.12% 0.02% 0.32% 47 1964 2010
Serbia and Montenegro 0.11% 0.06% 0.19% 16 1990 2005
Rest Of World 0.82% 0.22% 1.57% 47 1964 2010

Notes: Table lists all countries in the Foreign Agricultural Service (FAS) data set that produce at least 0.1
percent of world production. All other countries are lumped together as “Rest Of World”.

7http://www.fas.usda.gov/psdonline/
8Separate yield trends were estimated for each country, but we only report the bigger ones here due to

space constraints. The remaining countries were lumped together as “Rest of World”.
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Table A2: Countries in Foreign Agricultural Data Set with Maize Yields

Fraction of World Production Range of Years
Country Avg. Min Max Obs. Min Max
United States Of America 45.10% 32.90% 58.39% 51 1960 2010
China 17.00% 8.44% 23.55% 51 1960 2010
Brazil 5.71% 3.66% 7.79% 50 1961 2010
Ussr 3.96% 2.11% 8.66% 27 1960 1986
Mexico 3.06% 1.66% 4.40% 51 1960 2010
Yugoslav Sfr 2.65% 1.48% 3.62% 32 1960 1991
Indonesia 2.64% 0.76% 77.82% 51 1959 2010
Romania 2.61% 1.36% 3.72% 39 1960 1998
Argentina 2.53% 1.11% 3.78% 50 1961 2010
South Africa 2.12% 0.65% 3.88% 50 1961 2010
India 2.09% 1.35% 3.02% 51 1960 2010
Hungary 1.57% 0.81% 2.19% 39 1960 1998
Canada 1.23% 0.38% 1.84% 51 1960 2010
Ukraine 1.03% 0.29% 2.35% 24 1987 2010
Serbia and Montenegro 0.95% 0.55% 1.20% 14 1992 2005
Egypt 0.95% 0.78% 1.16% 50 1960 2010
Philippines 0.83% 0.61% 1.23% 51 1960 2010
Czechoslovakia 0.78% 0.10% 18.10% 32 1959 1991
Thailand 0.71% 0.30% 1.23% 51 1960 2010
Nigeria 0.71% 0.32% 1.43% 51 1960 2010
Bulgaria 0.64% 0.18% 1.03% 39 1960 1998
Kenya 0.52% 0.26% 0.78% 51 1960 2010
North Korea 0.50% 0.18% 0.77% 51 1960 2010
Russian Federation 0.48% 0.14% 1.06% 24 1987 2010
Turkey 0.42% 0.28% 0.60% 51 1960 2010
Ethiopia 0.40% 0.23% 0.59% 51 1960 2010
United Republic Of Tanzania 0.40% 0.19% 0.70% 51 1960 2010
Zimbabwe 0.38% 0.07% 0.81% 50 1961 2010
Malawi 0.35% 0.05% 0.52% 50 1961 2010
Croatia 0.34% 0.25% 0.45% 19 1992 2010
Pakistan 0.29% 0.21% 0.48% 51 1960 2010
Nepal 0.27% 0.14% 0.49% 51 1960 2010
Colombia 0.26% 0.15% 0.51% 51 1960 2010
Guatemala 0.24% 0.14% 0.34% 51 1960 2010
Zambia 0.23% 0.09% 0.52% 49 1962 2010
Venezuela 0.22% 0.11% 0.35% 51 1960 2010
Moldova 0.22% 0.05% 0.36% 24 1987 2010
Vietnam 0.20% 0.01% 0.66% 51 1960 2010
Peru 0.20% 0.10% 0.25% 49 1961 2010
Afghanistan 0.17% 0.02% 0.41% 51 1960 2010
Democratic Republic Of The Congo 0.16% 0.10% 0.27% 50 1961 2010
Mozambique 0.15% 0.03% 0.26% 50 1961 2010
Ghana 0.15% 0.05% 0.26% 51 1960 2010
Chile 0.15% 0.06% 0.23% 49 1960 2010
Albania 0.14% 0.03% 4.08% 52 1959 2010
Uganda 0.14% 0.08% 0.26% 51 1960 2010
Cameroon 0.13% 0.08% 0.23% 51 1960 2010
Paraguay 0.13% 0.06% 0.31% 51 1960 2010
El Salvador 0.12% 0.07% 0.16% 51 1960 2010
Bosnia And Herzegovina 0.11% 0.07% 0.18% 19 1992 2010
Honduras 0.11% 0.06% 0.15% 51 1960 2010
Bolivia 0.11% 0.07% 0.15% 51 1960 2010
Angola 0.10% 0.04% 0.22% 49 1962 2010
Benin 0.10% 0.05% 0.18% 51 1960 2010
Rest Of World 1.49% 0.98% 2.35% 51 1960 2010

Notes: Table lists all countries in the Foreign Agricultural Service (FAS) data set that produce at least 0.1
percent of world production. All other countries are lumped together as “Rest Of World”.
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Table A3: Countries in Foreign Agricultural Data Set with Wheat Yields

Fraction of World Production Range of Years
Country Avg. Min Max Obs. Min Max
Ussr 26.54% 15.35% 35.94% 27 1960 1986
China 17.25% 7.71% 24.35% 51 1960 2010
United States Of America 14.52% 10.02% 19.90% 51 1960 2010
India 10.58% 4.01% 16.92% 51 1960 2010
Russian Federation 8.96% 5.54% 11.99% 24 1987 2010
Canada 5.80% 3.46% 10.25% 51 1960 2010
Ukraine 3.85% 0.81% 6.12% 24 1987 2010
Australia 3.84% 2.05% 5.88% 51 1960 2010
Turkey 3.42% 2.56% 4.13% 51 1960 2010
Pakistan 3.09% 1.51% 4.74% 51 1960 2010
Argentina 2.70% 1.74% 5.10% 51 1960 2010
Kazakhstan 2.45% 0.96% 3.85% 24 1987 2010
Iran 1.89% 1.14% 3.23% 51 1960 2010
Romania 1.64% 0.64% 2.79% 39 1960 1998
Poland 1.62% 1.10% 2.16% 39 1960 1998
Yugoslav Sfr 1.55% 1.08% 2.16% 32 1960 1991
Czechoslovakia 1.25% 0.76% 1.71% 32 1960 1991
Hungary 1.24% 0.64% 1.76% 39 1960 1998
Bulgaria 0.99% 0.35% 1.37% 39 1960 1999
Egypt 0.89% 0.43% 1.76% 51 1960 2010
Mexico 0.77% 0.50% 1.06% 51 1960 2010
Afghanistan 0.70% 0.33% 1.23% 51 1960 2010
Uzbekistan 0.70% 0.08% 1.27% 24 1987 2010
Morocco 0.66% 0.23% 1.34% 51 1960 2010
Brazil 0.64% 0.05% 1.45% 51 1960 2010
Syria 0.56% 0.19% 1.11% 51 1960 2010
Serbia and Montenegro 0.51% 0.31% 0.75% 14 1992 2005
South Africa 0.47% 0.21% 0.85% 51 1960 2010
Algeria 0.42% 0.13% 0.83% 51 1960 2010
Iraq 0.37% 0.11% 0.93% 51 1960 2010
Chile 0.36% 0.15% 0.63% 50 1960 2010
Saudi Arabia 0.30% 0.01% 0.90% 51 1960 2010
Ethiopia 0.29% 0.12% 0.59% 51 1960 2010
Azerbaijan 0.24% 0.12% 0.40% 24 1987 2010
Japan 0.23% 0.06% 0.96% 51 1960 2010
Tunisia 0.23% 0.05% 0.41% 51 1960 2010
Moldova 0.19% 0.02% 0.29% 24 1987 2010
Lithuania 0.19% 0.13% 0.26% 12 1987 1998
Kyrgyzstan 0.18% 0.10% 0.30% 24 1987 2010
Turkmenistan 0.18% 0.02% 0.34% 24 1987 2010
Bangladesh 0.18% 0.01% 0.43% 51 1960 2010
Belarus 0.18% 0.05% 0.39% 24 1987 2010
Croatia 0.17% 0.10% 0.23% 19 1992 2010
Nepal 0.16% 0.06% 0.30% 51 1960 2010
Switzerland 0.13% 0.09% 0.21% 51 1960 2010
Uruguay 0.12% 0.03% 0.34% 51 1960 2010
Rest Of World 1.03% 0.75% 1.26% 51 1960 2010

Notes: Table lists all countries in the Foreign Agricultural Service (FAS) data set that produce at least 0.1
percent of world production. All other countries are lumped together as “Rest Of World”.
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Table A4: Countries in Foreign Agricultural Data Set with Rice Yields

Fraction of World Production Range of Years
Country Avg. Min Max Obs. Min Max
China 34.74% 25.58% 39.71% 51 1960 2010
India 20.59% 16.54% 24.30% 51 1960 2010
Indonesia 7.64% 5.35% 9.02% 51 1960 2010
Bangladesh 5.58% 4.63% 7.39% 51 1960 2010
Thailand 4.15% 3.27% 4.70% 51 1960 2010
Vietnam 4.02% 2.50% 5.73% 51 1960 2010
Japan 3.83% 1.73% 7.81% 51 1960 2010
Myanmar 2.48% 2.12% 3.11% 51 1960 2010
Brazil 2.07% 1.47% 2.87% 50 1960 2010
Philippines 1.85% 1.36% 2.44% 51 1960 2010
South Korea 1.68% 0.96% 2.41% 51 1960 2010
United States Of America 1.52% 1.05% 2.16% 51 1960 2010
Taiwan 1.24% 0.23% 28.92% 52 1959 2010
Nepal 1.11% 0.44% 22.11% 51 1959 2010
Pakistan 1.07% 0.69% 1.55% 51 1960 2010
Egypt 0.74% 0.41% 1.07% 51 1960 2010
Sri Lanka 0.67% 0.29% 9.92% 51 1959 2010
Malaysia 0.64% 0.32% 12.18% 52 1959 2010
Cambodia 0.63% 0.13% 1.17% 51 1960 2010
North Korea 0.59% 0.31% 0.77% 51 1960 2010
Iran 0.53% 0.27% 7.68% 51 1959 2010
Madagascar 0.50% 0.40% 0.69% 51 1960 2010
Colombia 0.42% 0.21% 4.77% 51 1959 2010
Ussr 0.38% 0.06% 0.60% 27 1960 1986
Nigeria 0.32% 0.12% 0.60% 51 1960 2010
Laos 0.28% 0.20% 0.44% 51 1960 2010
Peru 0.22% 0.10% 0.48% 51 1960 2010
Afghanistan 0.16% 0.04% 3.30% 51 1959 2010
Ecuador 0.14% 0.04% 1.29% 51 1959 2010
Australia 0.14% 0.00% 0.29% 50 1961 2010
United Republic Of Tanzania 0.12% 0.03% 1.06% 50 1959 2010
Guinea 0.12% 0.08% 0.23% 51 1960 2010
Russian Federation 0.11% 0.06% 0.22% 24 1987 2010
Argentina 0.11% 0.06% 0.26% 50 1961 2010
Venezuela 0.11% 0.04% 0.76% 51 1959 2010
Dominican Republic 0.11% 0.05% 1.22% 51 1959 2010
Sierra Leone 0.11% 0.03% 0.17% 50 1960 2010
Guyana 0.11% 0.02% 1.98% 52 1959 2010
Uruguay 0.10% 0.02% 0.23% 50 1961 2010
Ivory Coast 0.10% 0.07% 0.15% 50 1960 2010
Rest Of World 1.16% 0.91% 4.80% 52 1959 2010

Notes: Table lists all countries in the Foreign Agricultural Service (FAS) data set that produce at least 0.1
percent of world production. All other countries are lumped together as “Rest Of World”.
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5.4 World Shocks - Methodology

We derive world caloric shocks following Roberts and Schlenker (2010). The four staple
commodities maize, wheat, rice, and soybeans are responsible for roughly 75% of the calories
that we consume as humans.

(i) For each of the four crops and each country we fit a time trend to log yields using
restricted cubic splines with 3 knots. Jackknifed yield residuals are obtained by esti-
mating the yield trend while excluding one observation at a time and then taking the
log yield residual for that observation from the estimates trend.

(ii) The log yield residuals from part (i) are averaged using production weights. The
methodology is analogous to how we averaged weather variables in part (iv) of Ap-
pendix 5.2. Production wights are the product of three terms: predicted yields along
the time trend (restricted cubic spline with 3 knots); the actual production area; and
a conversion ratio that transform production quantities into calories. We derive the
conversion ration by requiring that the average price per calorie is the same for all four
crops for the years 1961-2010.

(iii) The average log yield residual of step (ii) is then divided by the world caloric inventory
level. Intuitively, the same shock will have a leger effect on prices if inventory levels
are low.

The caloric price is the average of the futures prices for corn (maize), wheat, and soybeans
at the Chicago Board of trade one year before delivery.9 We use a delivery month of December
for corn and wheat, and November for soybeans. Caloric prices are the weighted average of
the three prices, where each commodity is weighted by the caloric production as outlined in
part (ii) above.

9Futures prices for rice only start being traded in the early 1980s and are hence excluded.
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