Health Effects of Air Pollution

Michael Brauer

School of Population and Public Health

C THE UNIVERSITY OF BRITISH COLUMBIA

UNIVERSITY of WASHINGTON

G20 2019 Transport Task Group Meeting, Tokyo, October 30, 2019

Tokyo, 2009

Key pollutants for health impacts

Particulate Matter (PM)

Jorge Uzon—AFP/Getty Images

Image courtesy of the U.S. EPA

Nitrogen Dioxide (NO₂)

Ozone (O_3)

Air pollution and health

- Ambient air pollution (individual) risk is small...but large exposed population = large population risk
- Diseases impacted by air pollution have other causes...
- ...Air pollution as a contributing risk factor

Air pollution and health

• On **days** with worse air quality, more people die*

Larrieu et al. Am J Epidemiol, 2009

*out-of-hospital, >65 yrs

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

AUGUST 22, 2019 VOL. 381 NO. 8

Ambient Particulate Air Pollution and Daily Mortality in 652 Cities

C. Liu, R. Chen, F. Sera, A.M. Vicedo-Cabrera, Y. Guo, S. Tong, M.S.Z.S. Coelho, P.H.N. Saldiva, E. Lavigne,
P. Matus, N. Valdes Ortega, S. Osorio Garcia, M. Pascal, M. Stafoggia, M. Scortichini, M. Hashizume, Y. Honda,
M. Hurtado-Díaz, J. Cruz, B. Nunes, J.P. Teixeira, H. Kim, A. Tobias, C. Íñiguez, B. Forsberg, C. Åström,
M.S. Ragettli, Y.-L. Guo, B.-Y. Chen, M.L. Bell, C.Y. Wright, N. Scovronick, R.M. Garland, A. Milojevic, J. Kyselý,
A. Urban, H. Orru, E. Indermitte, J.J.K. Jaakkola, N.R.I. Ryti, K. Katsouyanni, A. Analitis, A. Zanobetti, J. Schwartz,
J. Chen, T. Wu, A. Cohen, A. Gasparrini, and H. Kan

Air pollution and health

- On **days** with worse air quality, more people die*
- In more polluted cities, people die earlier than in less polluted cities...

Larrieu et al. Am J Epidemiol, 2009

*out-of-hospital, >65 yrs

Long-term fine particulate matter exposure and non-accidental and cause-specific mortality in a large national cohort of Chinese men

Baoging

- 10 km satellite-based estimates + surface measurements
- ~190,000 men > 40 years, 45 locations randomly selected from 145 DSPs
- 15 year follow-up

Yin P, Brauer M, Cohen A, Burnett RT, Liu J, Liu Y, Liang R, Wang W, Qi J, Wang L, Zhou M. Environmental Health Perspectives. 2017

Pappin et al., 2019; Christidis et al., 2019

Air pollution and health

- On **days** with worse air quality, more people die*
- In more polluted cities, people die earlier than in less polluted cities...
- ...and, in the most polluted areas of cities, there is an increased risk of dying

Larrieu et al. Am J Epidemiol, 2009

*out-of-hospital, >65 yrs

Traffic-related air pollution

Coronary heart disease (CHD) mortality

Henderson SB et al. Environmental Science and Technology. 2007; 41 (7):2422 -2428; Gan WQ et al. <u>Changes in residential proximity to road traffic and the risk of death from corofilery heart</u> <u>disease</u>. Epidemiology. 2010 Sep;21(5):642-9.

Air pollution and health

- On **days** with worse air quality, more people die*
- In more polluted cities, people die earlier than in less polluted cities...
- ...and, in the most polluted areas of cities, there is an increased risk of dying

Larrieu et al. Am J Epidemiol, 2009

*out-of-hospital, >65 yrs

Lung growth and decline

Air pollution reduces lung function growth in children...

Gauderman et al. NEJM. 2004.

...which leads to earlier than normal disability/death

Lung growth and decline

Air pollution reduces lung function growth in children...

Gauderman et al. NEJM. 2004.

...which leads to earlier than normal disability/death

Beyond the heart and lung

Size Fraction	Health Effect Category ^a and Exposure Duration	Causality	Determination	
		2009 PM ISA	Current Draft PM ISA	
PM2.5	Respiratory Effects—Short-term exposure Section <u>5.1.12</u> , <u>Table 5-18</u>	Likely to be a causal relationship	Likely to be a causal relationship	
	Respiratory Effects— Long-term exposure Section <u>5.2.13, Table 5-28</u>	Likely to be a causal relationship	Likely to be a causal relationship	
USEPA	Cardiovascular Effects— Short-term exposure Section <u>6.1.16</u> , <u>Table 6-33</u>	Causal relationship	Causal relationship	Pregnancy and Birth
	Cardiovascular Effects— Long-term exposure Section <u>6.2.18, Table 6-52</u>	Causal relationship	Causal relationship	Outcomes: Suggestive of, but not sufficient
	Nervous System Effects— Long-term exposure Section <u>8.2.9</u> , <u>Table 8-20</u>	Not evaluated	Likely to be a causal relationship	
	Cancer— Long-term exposure Section <u>10.2.6, Table 10-8</u>	Suggestive of, but not sufficient to infer, a causal relationship	Likely to be a causal relationship	
	Total mortality— Short-term exposure Section <u>11.1.12</u> , <u>Table 11-4</u>	Causal relationship	Causal relationship	
	Total mortality— Long-term exposure Section <u>11.2.7</u> , <u>Table 11-8</u>	Causal relationship	Causal relationship	

WHO REVIHAAP (2013): Cardiovascular and Respiratory Mortality and Morbidity

Growing evidence for birth outcomes and childhood respiratory disease

Possible links with neurodevelopment and cognitive function, diabetes

IARC (2013): Air pollution (and PM specifically) carcinogenic (lung cancer)

95% of population exposed above WHO Guideline

Brauer et al., 2012; Brauer et al., 2016; Shaddick et al. 2017. Shaddick et al., 2018.

https://vizhub.healthdata.org/gbd-compare/

World Bank. 2016. The cost of air pollution : strengthening the economic case for action

Global, Both sexes, All ages, 2017

https://vizhub.healthdata.org/gbd-compare/

Apte JS, Brauer M, Cohen AJ, Ezzati M, Pope CA. Ambient PM2.5 Reduces Global and Regional Life Expectancy. Environ. Sci. Technol. Lett., 2018, 5 (9), pp 546–551.DOI: 10.1021/acs.estlett.8b00360

stateofglobalair.org

stateofglobalair.org

Demographics plays a key role

Cohen, Brauer, et al., Lancet 2017.

stateofglobalair.org

stateofglobalair.org

Adverse reproductive outcomes

Birthweight

Preliminary Results, GBD 2019

What's missing?

Larrieu et al. Am J Epidemiol, 2009

Incident childhood asthma and NO₂

				Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
Carlsten et al. 2010 - at 7 y.o.	0.2253	0.1448	0.6%	1.25 [0.94, 1.66]	
Clark et al. 2010 LUR - at mean age of 4 y.o.	0.0489	0.0171	9.5%	1.05 [1.02, 1.09]	-
Dell et al. 2014 LUR - 5 to 9 y.o.	0.039	0.04	5.0%	1.04 [0.96, 1.12]	
Deng et al. 2016 - 3 to 6 y.o.	0.1374	0.0689	2.4%	1.15 [1.00, 1.31]	
Gehring et al. 2015 b - BAMSE birth to 16 y.o.	0.0397	0.0498	3.8%	1.04 [0.94, 1.15]	- -
Gehring et al. 2015 b - PIAMA birth to 14 y.o.	0.0665	0.0246	7.8%	1.07 [1.02, 1.12]	
Gehring et al. 2015b - GINI&LISA North birth to 15	-0.0679	0.1235	0.8%	0.93 [0.73, 1.19]	
Gehring et al. 2015b - GINI&LISA South birth to 15	-0.0252	0.0602	2.9%	0.98 [0.87, 1.10]	
Jerret et al. 2008 - 10 to 18 y.o.	0.0874	0.033	6.1%	1.09 [1.02, 1.16]	
Kim et al. 2016 - 6 to 7 y.o.	-0.0214	0.0219	8.4%	0.98 [0.94, 1.02]	
Krämer et al. 2009 - 4 to 6 y.o.	0.0698	0.069	2.3%	1.07 [0.94, 1.23]	
Liu et al. 2016 - 4 to 6 years old	0.0877	0.0215	8.5%	1.09 [1.05, 1.14]	-
MacIntyre et al. 2014 - CAPPS&SAGE only birth to 8	0.1111	0.1268	0.8%	1.12 [0.87, 1.43]	
McConnell et al. 2010 - 4th to 6th grade	0.0698	0.0281	7.1%	1.07 [1.01, 1.13]	
Mölter et al. 2014 b - MAAS only birth to 8 y.o.	0.574	0.2374	0.2%	1.78 [1.11, 2.83]	
Nishimura et al. 2013 - 8 to 21 y.o.	0.0632	0.0269	7.3%	1.07 [1.01, 1.12]	
Oftedal et al. 2009 - birth to 10 y.o.	-0.0359	0.0196	8.9%	0.96 [0.93, 1.00]	-
Ranzi et al. 2014 - birth to 7 y.o.	0.0289	0.0701	2.3%	1.03 [0.90, 1.18]	
Shima et al. 2002 - 6 to 12 y.o.	0.1136	0.0534	3.5%	1.12 [1.01, 1.24]	
Tétreault et al. 2016 - birth to 12 y.o.	0.0153	0.0048	11.6%	1.02 [1.01, 1.03]	•
Total (95% CI)			100.0%	1.05 [1.02, 1.07]	•
Heterogeneity: Tau ² = 0.00; Chi ² = 54.38, df = 19 (P < 0 Test for overall effect: Z = 3.76 (P = 0.0002)	0.0001); l² = 65%			per 4 μ g/m ³ NO ₂ 0.5	0.7 1 1.5 2 Decreased risk Increased risk

Exposure to traffic-related air pollution and risk of development of childhood asthma: A systematic review and meta-analysis. Khreis H, et al. Environ Int. 2017. doi: 10.1016/j.envint.2016.11.012.

Ambient NO₂ and Pediatric Asthma

- 4.0 (1.8 5.2) million new pediatric asthma cases annually
- 13% (5.8 16%) of global incidence

Number of new asthma cases due to NO₂ exposure (per 100 000)

Achakulwisut et al. Global, national, and urban burdens of paediatric asthma incidence attributable to ambient NO2 pollution: estimates from global datasets. Lancet Planetary Health DOI: (10.1016/S2542-5196(19)30046-4)

In high and low income country cities, NO₂ pollution is an important risk factor for pediatric asthma incidence

125 major cities, % of new pediatric asthma cases attributable to NO₂:

- Range: 6% (Orlu, Nigeria) to 48% (Shanghai, China).
- Exceeded 20% in 92 cities, in high and low income countries.
- Highest in 8 cities in China, in Moscow, and Seoul.

Traffic proximity and dementia

Non-Alzheimer's dementia

Non-Alzheimer's dementia

Non-Alzheimer's dementia

Chen H et al. Living near major roads and the incidence of dementia, Parkinson's disease, and multiple sclerosis: a population-based cohort study. Lancet. 2017 Feb 18;389(10070):718-726. doi: 10.1016/S0140-6736(16)32399-6.

Autism Spectrum Disorder

Vancouver BC: 132,256 births, 1307 children (1.0%) diagnosed with ASD by age 5

Pagalan L, Bickford C, Weikum W, Lanphear B, Brauer M, Lanphear N, Hanley GE, Oberlander TF, Winters M. <u>Association of Prenatal Exposure to Air Pollution With</u> <u>Autism Spectrum Disorder</u>. JAMA Pediatr. 2019 Jan 1;173(1):86-92. doi: 10.1001/jamapediatrics.2018.3101.

Traffic-related air pollution: Health Impacts

HEI		Health Outcome	Causality (strength of association)	
HEALTH EFFECTS INSTITUTE January 2010	SPECIAL REPORT 17 Traffic-Related Air Pollution: A Critical Review of the Literature on Emissions, Exposure, and Health Effects of Traffic-Related Air Pollution	Asthma exacerbation	Sufficient	
		Asthma onset Children Adults	Sufficient Suggestive, but insufficient	
		Lung function decrements (children, chronic exposure)	Suggestive, but insufficient	
		Lung Cancer	Suggestive, but insufficient	
A.	The state	CVD mortality (chronic and acute exposure)	Suggestive, but insufficient	
		CVD morbidity MI onset Atherosclerosis progression	Suggestive, but insufficient Suggestive, but insufficient	
HE	El 2010	Pregnancy outcomes	Inadequate and insufficient	
		Allergy	Inadequate and insufficient	
		childhood leukemia, cancer	Inadequate and insufficient	
		COPD	Inadequate and insufficient	

Traffic-related air pollution: Health Impacts

Health Effects Institute

Protocol for a Systematic Review and Meta–Analysis of Selected Health Effects of Long–Term Exposure to Traffic–Related Air Pollution

JULY 31, 2019

HEI 2020

Selected health outcomes:*

All cause and cause-specific mortality

•Respiratory (Chronic Obstructive Pulmonary Disease, Acute Lower Respiratory Infections)

- •Circulatory (Ischemic Heart Disease, Stroke)
- Diabetes
- •Lung cancer

Respiratory effects

•Asthma

Chronic Obstructive Pulmonary DiseaseAcute Lower Respiratory Infections

Cardiovascular effects •Coronary events

- •Stroke
- •Hypertension
- •Type 2 diabetes

Birth outcomesLow birth weight

•Preterm

michael.brauer@ubc.ca