Real-world usage of plug-in hybrid electric vehicles

Fuel consumption, electric driving, and CO_2 emissions

Patrick Plötz

Fraunhofer

icct

THE INTERNATIONAL COUNCIL ON CLEAN TRANSPORTATION

Online presentation, 28 September 2020

© Fraunhofer ISI Seite 1

Plug-in hybrid electric vehicles (PHEVs) use electricity as well as conventional fuel for driving.

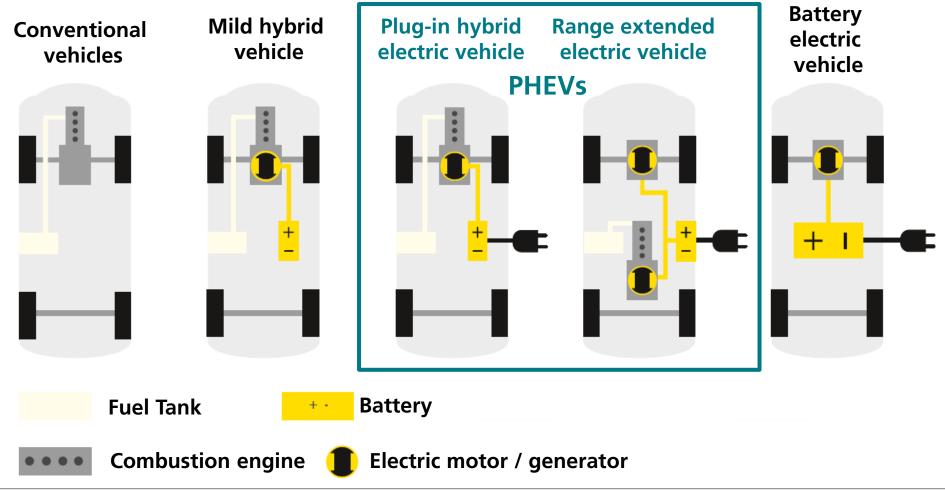
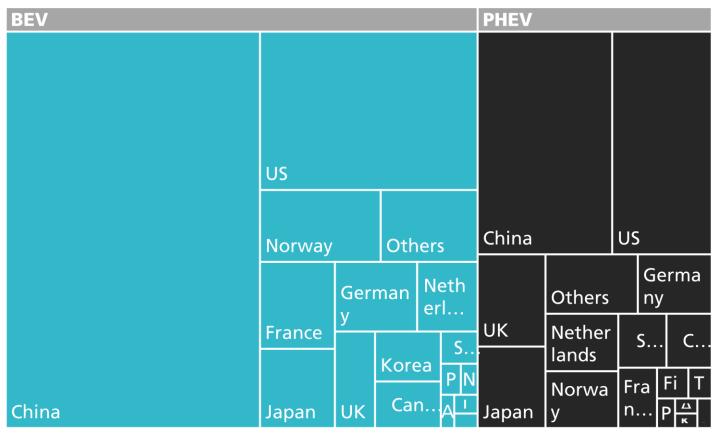
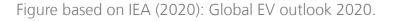



Figure source: e-mobil BW


© Fraunhofer ISI Seite 2

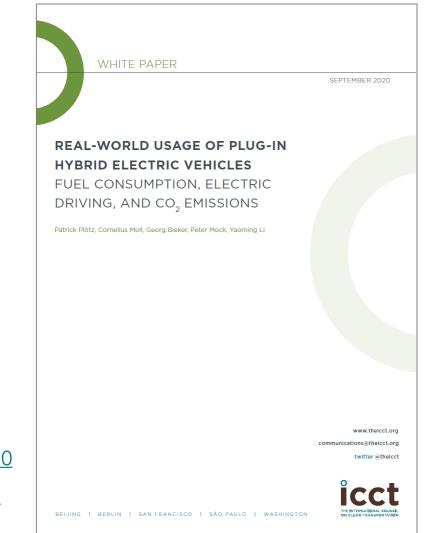
PHEVs are one third of the global electric vehicle fleet and contribute to CO_2 reduction targets worldwide.

- More than 2 million PHEV in stock globally
- One third of global electric vehicle stock are PHEV
- Sales shares 1st half 2020:
 - 3.5 % in Europe and growing
 - 1.1 % in China
- Most PHEV help manufacturers to reach CO₂ reduction sales targets

Global Electric vehicle stock (end of 2019)

Aim of the study: Empirical overview of real-world PHEVs usage and CO₂ emissions.

Background


- Potential to reduce local and global emissions depends on realworld usage and real-world utility factor (UF)
- No systematic investigation of PHEV usage compared to test cycles

Aim of the present study

- Better understanding of real-world usage, electric driving and CO₂ emissions of PHEVs in China, Europe, and North America.
- Focus on Germany, the largest PHEV market in Europe.
- Identify policy recommendations

Presentation of full study today!

- Full study: <u>https://theicct.org/publications/phev-real-world-usage-sept2020</u>
- English and German summaries here: <u>https://s.fhg.de/plug-in-hybrid</u>

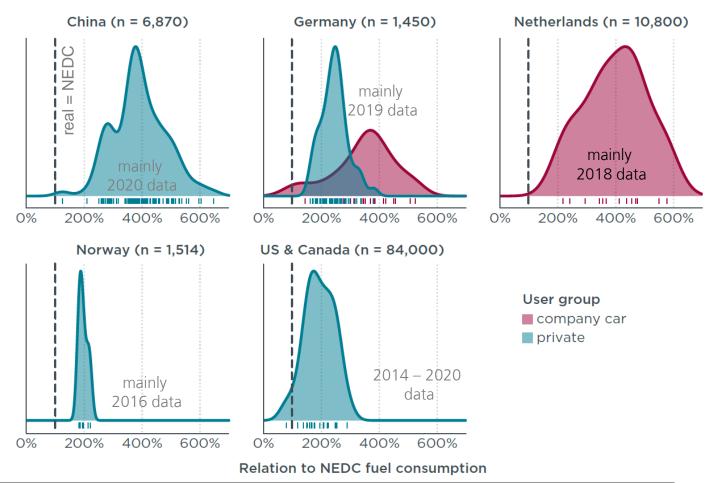
The data base covers usage of more than 100'000 PHEVs globally from primary and secondary sources.

Data base

- Primary sources: online fuel consumption tools (e.g. Spritmonitor.de)
- Secondary sources: published reports and scientific studies
- Comparison to simulation of PHEV from trip data of conventional vehicles
- Robustness of results: consistent findings across sources
- Meta-analysis of new and existing data

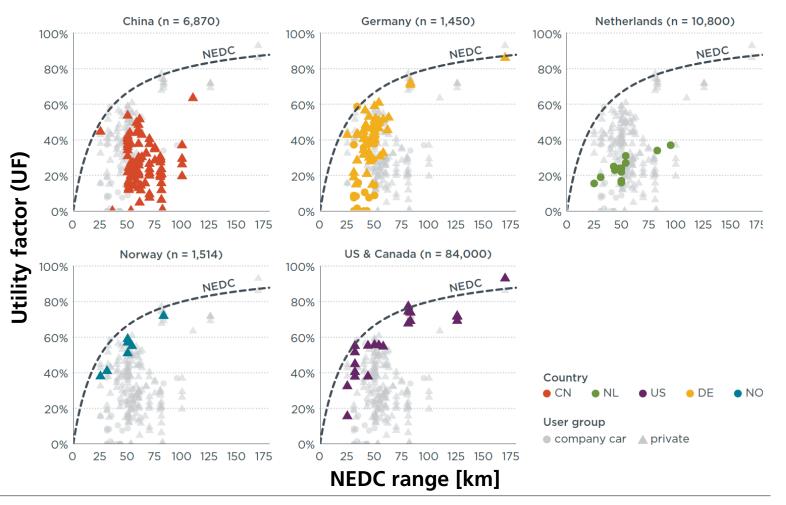
Available Information and sample

- Fuel consumption, annual vehicle kilometers traveled, UF
- Several countries; private and company cars
- 66 PHEV models and 202 PHEV model variants covered

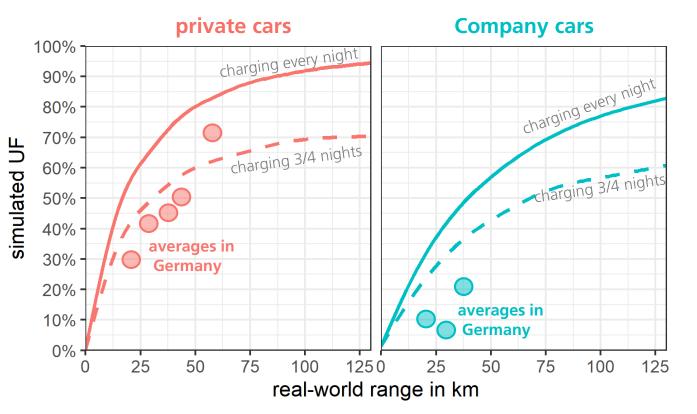

Sufficient & broad sample for all countries & user groups

User group	Country	Sample
Private	China	6'870
Private	Germany	1'385
Private	Norway	1'514
Private	US	84'068
Company car	Germany	72
Company car	Netherlands	10'800
TOTAL		104'709

PHEV fuel consumption and tail-pipe CO₂ emissions are two to four times higher than type-approval values.


- Deviation from type-approval values spans much larger ranges than for conventional vehicles
- Mean relation of real-world fuel consumption to type-approval values:
 - 2 3 times higher for private cars
 - 3 4 times higher for company cars
- Similar deviation for WLTP vehicles
- Most recent data for Germany & China
- US data mainly Volt, Prius, BMW i3

Real-world share of electric driving of PHEVs is about half the share considered in type-approval.

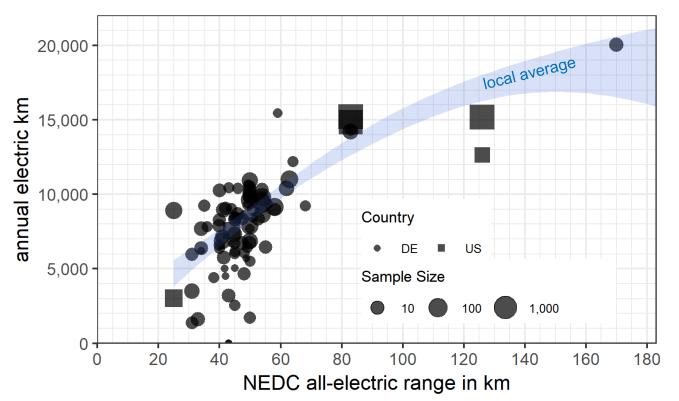

- Utility factor (UF): portion of kilometers driven on electricity
- Private cars:
 - Mean UF in NEDC is 69%
 - Real-world mean UF is 37%
 - Only about half the expected
- Company cars: 63 % in NEDC but only 20% in real-world
- Similar deviations for WLTP
- Noteworthy country differences
- UF increases by 2 6 percentage points with every 10 km of range

PHEVs are not charged every driving day.

- Private users in Germany charge their PHEVs on average on three out of four driving days
- Company cars charge only about every second driving day
 - economic disincentives for company cars
 - more long-distance trips
- The average charging among all user groups is less than once per day
- Low charging frequency reduces the share of kilometers driven on electricity
- Very low UF in China indicates low charging
- PHEVs in Norway and the United States appear to be charged more often

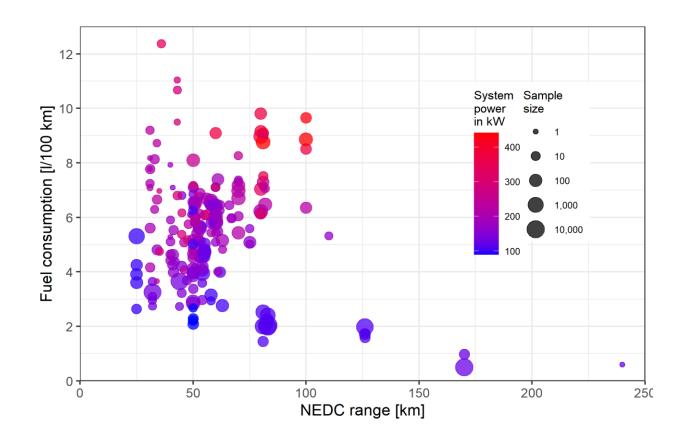
PHEVs show high annual mileage and many longdistance trips.

- Germany: average annual mileage of PHEVs is significantly higher than the car stock average (21'000 km for PHEV vs. 14'000 km in car stock)
- US: annual mileage of PHEVs is similar to national car average (21'700 km)
- Higher mileage means more long-distance trips
- Due to the limited all-electric range of PHEVs, this reduces the share of kilometers driven on electricity
- Long-distance driving >100 km only 5 10% of days per year, but 25 – 30% of annual km for private vehicles (and higher for company cars)
- Even daily charging does not imply 100% electric driving


Country	User group	Mean annual km
Germany	Private	21′000
Germany	Company car	30'000
US	Private	22'000

German Mobility Panel Data	private (N = 5'812)	company cars (N = 212)
share of days	7 %	24 %
share of driving days	9 %	28 %
share of annual mileage	19 %	47 %

PHEVs electrify many kilometers per year.


- Most PHEVs have ranges of 30 60 km (NEDC) and electrify 5,000–10,000 km/year
- Annual electric distance increases with range
- PHEVs with high electric ranges ≥ 80 km achieve 12,000–20,000 km mean annual electric mileages (comparable to mean annual driving of conventional vehicles)
- Electric driving implies 15%–55% less tailpipe CO₂ emissions compared to conventional cars
 - If fuel consumption of PHEVs at empty battery is similar to fuel consumption of conventional cars
 - Much lower CO₂ savings than expected from type-approval values

Decrease engine power and increase range to improve real-world fuel consumption & CO₂ emissions of PHEVs.

- Real-world fuel consumption and CO₂ emission
 - -8% to -14% with each 10 km of allelectric range (NEDC) increase
 - +2% to +4% with each 10 kW of system power increase
- Mean share of electric driving (UF)
 - +3 to +5 percentage points with each 10 km of all-electric range increase
 - -1 to -3 percentage points with each 10 kW of system power increase
- Vehicle properties impact real-world fuel consumption and CO₂ emissions

Summary: Analysis of 100,000 PHEVs confirms high deviation from official fuel efficiency and CO₂ values.

Background and study

- Plug-in hybrid electric vehicles (PHEVs) use electricity as well as conventional fuel for driving.
- They offer environmental benefits if they are mainly driven on electricity.
- The present study is the first large international and systematic study of real-world usage of PHEVs.

Findings

- PHEV fuel consumption & tail-pipe CO₂ emissions are two to four times higher than type-approval.
- Real-world share of electric driving of PHEVs is about half the share in type-approval values.
- PHEVs are not charged every day.

- PHEVs show high annual mileage and many long-distance trips.
- PHEVs electrify many kilometers per year.
- Decrease engine power and increase range to improve real-world fuel consumption & CO₂ emissions of PHEVs.

Thank you.

Dr. Patrick Plötz

Head of Business Unit Energy Economy Competence Center Energy Technology and Energy Systems Fraunhofer Institute for Systems and Innovation Research ISI

patrick.ploetz@isi.fraunhofer.de

WHITE PAPER

SEPTEMBER 2020

REAL-WORLD USAGE OF PLUG-IN HYBRID ELECTRIC VEHICLES FUEL CONSUMPTION, ELECTRIC DRIVING, AND CO, EMISSIONS

Patrick Plötz, Cornelius Moll, Georg Bieker, Peter Mock, Yaoming Li

Full study available online: https://theicct.org/publications/phev-realworld-usage-sept2020

English and German summaries:

BEIJING | BERLIN | SAN FRANCISCO | SÃO PAULO | WASHINGTON

https://s.fhq.de/plug-in-hybrid

www.thelcct.org

communications@thelcct.org

twitter @theicct

ICCT

