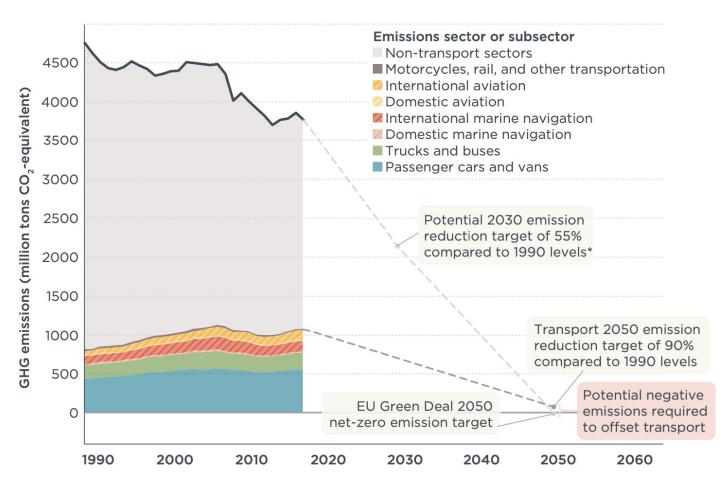
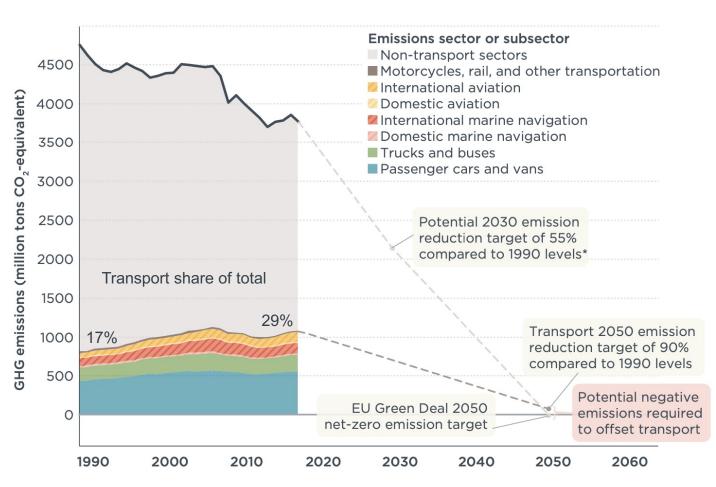
Decarbonizing EU transport: the role of CO₂ standards for passenger cars and vans


30 March 2021

Claire Buysse, Joshua Miller, Sonsoles Díaz, Arijit Sen, Caleb Braun

GHG emissions in the EU



CICCT

*pending agreement with the European Parliament

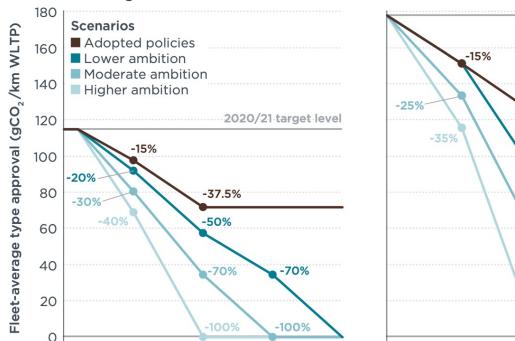
GHG emissions in the EU historical and targeted

Transport sector emissions remain a key challenge in achieving the EU's proposed climate targets.

O CONTRACTOR OF CONTRACTOR OF

*pending agreement with the European Parliament

Policy scenarios


We consider:

- Type approval targets
- ZLEV benchmarks
- PHEV uptake for passenger cars
- Real-world CO₂ gap

2020

2025

2035

2040 2020

2025

Vans

2020 target level

-70%

-100%

2040

2035

-31%

-50%

-70%

2030

Data labels: % reduction from 2020/21 target levels

2030

Adopted policies scenario

- OEMs meet fleet-wide type approval targets
- OEMs exceed ZLEV benchmarks by 5% for cars
- Maintain current ZEV:PHEV ratio for cars
- 1% annual growth in real-world CO₂ gap to 2030

Adopted policies scenario

- OEMs meet fleet-wide type approval targets
- OEMs exceed ZLEV benchmarks by 5% for cars

New policy scenarios

- Maintain current ZEV:PHEV ratio for cars
- 1% annual growth in real-world CO₂ gap to 2030

Passenger cars and vans

Trucks and buses

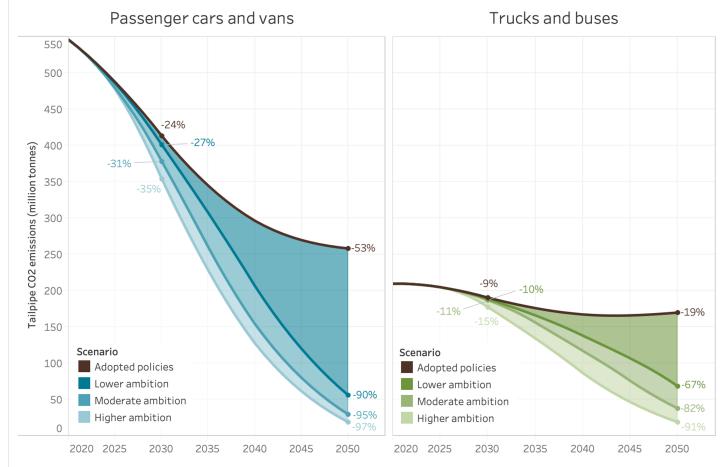
_	100% ZEV target	Annual ICE efficiency improvement*	100% ZEV target	Annual ICE efficiency improvement (post-2025)
Lower ambition	2040	<i>Cars:</i> 0.9% to 2025, then 2.3% to 2035 <i>Vans:</i> 0.4% to 2025, then 2.0% to 2035	2050	<i>MDTs and buses:</i> 2.9% to 2040 <i>HDTs:</i> 1.9% to 2040
Moderate ambition	2035	<i>Cars:</i> 4.3% to 2025, then 1.0% to 2030 <i>Vans:</i> 2.9% to 2025, then 0.6% to 2030	2045	<i>MDTs and buses:</i> 4.3% to 2035 <i>HDTs:</i> 3.7% to 2035
Higher ambition	2030	Cars: 5.7% to 2025 Vans: 1.2% to 2025	2040	MDTs and buses: 8.4% to 2030 HDTs: 7.2% to 2030

*For LDVs, ICE efficiency improvements are shown in reference to the WLTP test cycle. The gap between WLTP and real-world tailpipe CO₂ emissions is accounted for separately.

MDT = medium-duty truck; HDT = heavy-duty truck

Modeling results

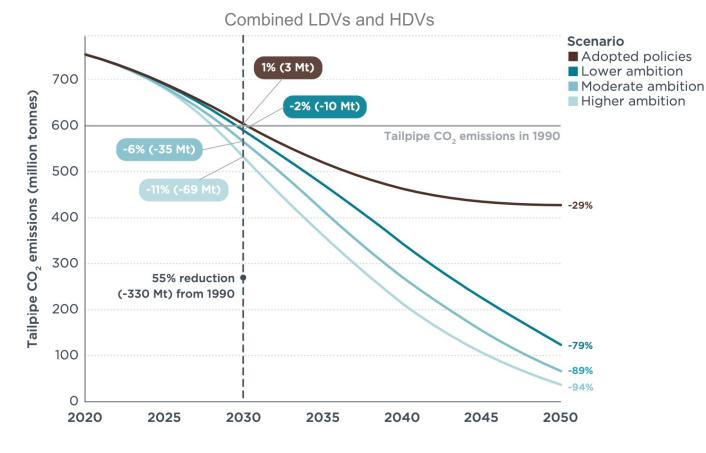
CO₂ emission trajectories


LDVs

 Relatively strong decarbonization by 2050 in all new policy scenarios, owing to 100% ZEV targets

HDVs

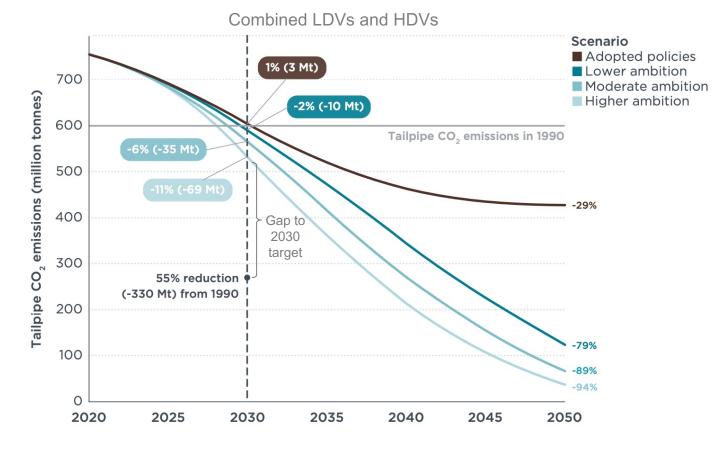
 Slower ZEV uptake drives wider spread in 2050 emissions



Data labels: % reduction from 2020

Road transport in 2030

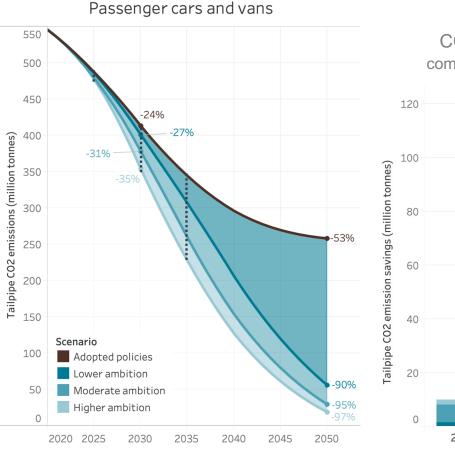
• Up to 11% reduction by 2030 relative to 1990



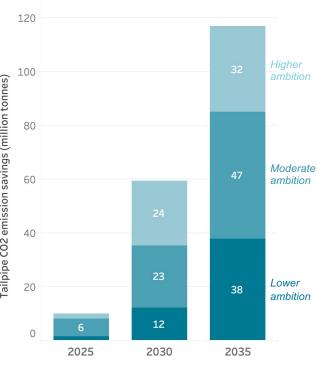
Data labels: % reduction from 1990 (absolute reduction from 1990)

Road transport in 2030

- Up to 11% reduction by 2030 relative to 1990
- Complementary policies and/or other sectors would need to reduce emissions by an additional 260–330 Mt CO₂e



Data labels: % reduction from 1990 (absolute reduction from 1990)

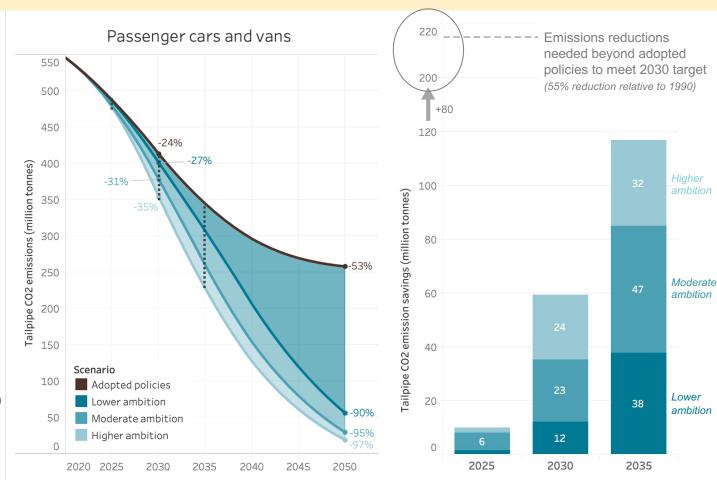


LDVs only in 2030

 Emission savings are 4.8 times greater in higher vs. lower ambition scenario in 2030

CO₂ emission savings compared to adopted policies

Data labels: % reduction from 2020


Data labels: incremental emission savings

LDVs only in 2030

- Emission savings are 4.8 times greater in higher vs. lower ambition scenario in 2030
- LDVs would achieve a 20% reduction from 1990 levels by 2030 in higher ambition scenario

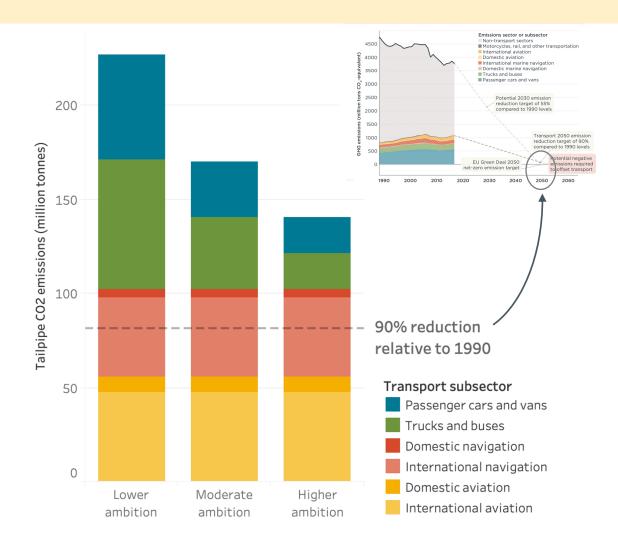
(right panel plus 27 Mt CO₂ savings from adopted policies)

Data labels: % reduction from 2020

Data labels: incremental emission savings

Transport sector in 2050

based on an ambitious yet feasible emissions trajectory


Subsector	2018 emissions Mt CO ₂	2050 projections Mt CO ₂	2050 ambition	
Marine navigation	153	47	75% reduction from 2008 levels by 2050	
Aviation	143	56	50% reduction from 2005 levels by 2050	
Motorcycles	9	0		
Rail	4	0	Net zero by 2050	
Other road transportation	<1	0		

Transport sector in 2050

- No scenario achieves the EU Green Deal's 90% reduction target
- This assumes ambitious mitigation in other transport subsectors (e.g., ships, planes, rail)
- Even if target is achieved, negative emissions will be needed in non-transport sectors to reach net-zero

Cumulative CO₂ emissions savings by 2030 and 2050

- Cumulative 2021–2030 emission savings are 5.1 (LDVs) and 7.5 (HDVs) times greater in higher vs. lower ambition scenario
- By 2050, moderate ambition scenario saves ~1 Gt CO₂ more than lower ambition, and higher ambition saves additional ~0.5 Gt CO₂ compared to moderate ambition (LDVs)

Trucks and buses

	2030	2050	2030	2050	
Lower ambition	40	2,040	4	790	
Moderate ambition	130	2,970	8	1,200	
Higher ambition	200	3,520	30	1,720	

Passenger cars and vans

Cumulative tailpipe CO₂ emissions savings from 2021 to 2030 and 2021 to 2050 under new policy scenarios relative to the adopted policies scenario in million tonnes

Recommendations

LDV type approval targets

- Strengthen 2025 targets to drive near-term ICE efficiency improvements and ZEV uptake
- Set 2030 targets as close to 0 gCO₂/km as feasible

ICE efficiency

• Add a CO₂ emissions cap for ICE vehicles to prevent backsliding

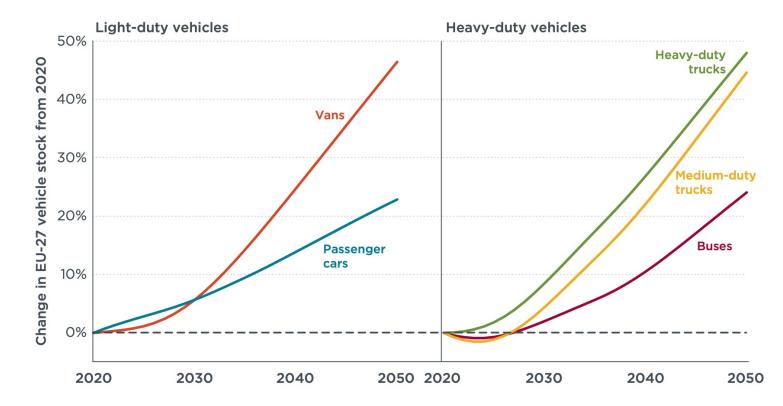
Real-world CO2 gap

 Expedite the Commission's timeline for real-world enforcement of CO₂ emissions (i.e. adjust manufacturers' average CO₂ emissions based on real-world data)

<u>PHEVs</u>

- Use real-world data to adjust the utility factor assumed in the regulation
- At the member state level, only incentivize PHEV models designed for electric driving (i.e. capable of rapid charging with limited combustion engine power)

Questions? Contact josh@theicct.org or s.diaz@theicct.org



Appendix

Activity growth assumptions

based on EU Reference Scenario 2016

